Move Keras eager microbenchmarks to keras/benchmark.
Adds overhead benchmarking for __call__ for Layer and Layer subclasses in layers/core PiperOrigin-RevId: 315581358 Change-Id: Icb76f6d9e3d1829386c22a454c91105c20b28280
This commit is contained in:
parent
5f069e0eae
commit
3dcf574c5b
@ -52,8 +52,6 @@ from tensorflow.python.framework import dtypes
|
|||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
from tensorflow.python.framework import tensor_spec
|
from tensorflow.python.framework import tensor_spec
|
||||||
from tensorflow.python.framework import test_util
|
from tensorflow.python.framework import test_util
|
||||||
from tensorflow.python.keras.engine import base_layer
|
|
||||||
from tensorflow.python.keras.layers import core as core_layers
|
|
||||||
from tensorflow.python.ops import array_ops
|
from tensorflow.python.ops import array_ops
|
||||||
from tensorflow.python.ops import control_flow_ops
|
from tensorflow.python.ops import control_flow_ops
|
||||||
from tensorflow.python.ops import functional_ops
|
from tensorflow.python.ops import functional_ops
|
||||||
@ -1420,46 +1418,6 @@ class MicroBenchmarks(benchmarks_test_base.MicroBenchmarksBase):
|
|||||||
|
|
||||||
self._run(fn, 10000)
|
self._run(fn, 10000)
|
||||||
|
|
||||||
# TODO(b/157587712): Move to keras when benchmarks are setup.
|
|
||||||
def benchmark_tf_keras_layer_call_overhead(self):
|
|
||||||
|
|
||||||
class OnlyOverheadLayer(base_layer.Layer):
|
|
||||||
|
|
||||||
def call(self, x):
|
|
||||||
return x
|
|
||||||
|
|
||||||
layer = OnlyOverheadLayer()
|
|
||||||
x = ops.convert_to_tensor([[1.]])
|
|
||||||
|
|
||||||
def fn():
|
|
||||||
layer(x)
|
|
||||||
|
|
||||||
self._run(fn, 10000)
|
|
||||||
|
|
||||||
# TODO(b/157587712): Move to keras when benchmarks are setup.
|
|
||||||
def benchmark_tf_keras_dense_overhead(self):
|
|
||||||
|
|
||||||
layer = core_layers.Dense(1)
|
|
||||||
x = ops.convert_to_tensor([[1.]])
|
|
||||||
layer(x) # Warmup call to `build` layer.
|
|
||||||
|
|
||||||
def fn():
|
|
||||||
layer(x)
|
|
||||||
|
|
||||||
self._run(fn, 10000)
|
|
||||||
|
|
||||||
# TODO(b/157587712): Move to keras when benchmarks are setup.
|
|
||||||
def benchmark_tf_keras_flatten_overhead(self):
|
|
||||||
|
|
||||||
layer = core_layers.Flatten()
|
|
||||||
x = ops.convert_to_tensor([[[1.]]])
|
|
||||||
layer(x) # Warmup call to `build` layer.
|
|
||||||
|
|
||||||
def fn():
|
|
||||||
layer(x)
|
|
||||||
|
|
||||||
self._run(fn, 10000)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test.main()
|
test.main()
|
||||||
|
12
tensorflow/python/keras/benchmark/BUILD
Normal file → Executable file
12
tensorflow/python/keras/benchmark/BUILD
Normal file → Executable file
@ -1,6 +1,8 @@
|
|||||||
# Description:
|
# Description:
|
||||||
# Implementation of Keras benchmarks.
|
# Implementation of Keras benchmarks.
|
||||||
|
|
||||||
|
load("//tensorflow:tensorflow.bzl", "cuda_py_test")
|
||||||
|
|
||||||
package(
|
package(
|
||||||
default_visibility = ["//visibility:public"],
|
default_visibility = ["//visibility:public"],
|
||||||
licenses = ["notice"], # Apache 2.0
|
licenses = ["notice"], # Apache 2.0
|
||||||
@ -31,3 +33,13 @@ py_test(
|
|||||||
"//third_party/py/numpy",
|
"//third_party/py/numpy",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cuda_py_test(
|
||||||
|
name = "eager_microbenchmarks_test",
|
||||||
|
size = "medium",
|
||||||
|
srcs = ["eager_microbenchmarks_test.py"],
|
||||||
|
python_version = "PY3",
|
||||||
|
deps = [
|
||||||
|
"//tensorflow/python/keras",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
126
tensorflow/python/keras/benchmark/eager_microbenchmarks_test.py
Normal file
126
tensorflow/python/keras/benchmark/eager_microbenchmarks_test.py
Normal file
@ -0,0 +1,126 @@
|
|||||||
|
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
"""Microbenchmarks for Keras components in eager mode."""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
from tensorflow.python.eager import context
|
||||||
|
from tensorflow.python.framework import ops
|
||||||
|
from tensorflow.python.keras.engine import base_layer
|
||||||
|
from tensorflow.python.keras.layers import core as core_layers
|
||||||
|
from tensorflow.python.platform import test
|
||||||
|
from tensorflow.python.util import tf_inspect
|
||||||
|
|
||||||
|
|
||||||
|
def _run_benchmark(func, num_iters, execution_mode=None):
|
||||||
|
ctx = context.context()
|
||||||
|
with context.execution_mode(execution_mode):
|
||||||
|
# call func to warm up
|
||||||
|
func()
|
||||||
|
if execution_mode == context.ASYNC:
|
||||||
|
ctx.executor.wait()
|
||||||
|
start = time.time()
|
||||||
|
for _ in range(num_iters):
|
||||||
|
func()
|
||||||
|
if execution_mode == context.ASYNC:
|
||||||
|
ctx.executor.wait()
|
||||||
|
end = time.time()
|
||||||
|
|
||||||
|
return end - start
|
||||||
|
|
||||||
|
|
||||||
|
class MicroBenchmarksBase(test.Benchmark):
|
||||||
|
"""Run and report benchmark results."""
|
||||||
|
|
||||||
|
def run_report(self, run_benchmark, func, num_iters, execution_mode=None):
|
||||||
|
"""Run and report benchmark results."""
|
||||||
|
total_time = run_benchmark(func, num_iters, execution_mode)
|
||||||
|
mean_us = total_time * 1e6 / num_iters
|
||||||
|
extras = {
|
||||||
|
"examples_per_sec": float("{0:.3f}".format(num_iters / total_time)),
|
||||||
|
"us_per_example": float("{0:.3f}".format(total_time * 1e6 / num_iters))
|
||||||
|
}
|
||||||
|
benchmark_name = self._get_benchmark_name()
|
||||||
|
self.report_benchmark(
|
||||||
|
iters=num_iters, wall_time=mean_us, extras=extras, name=benchmark_name)
|
||||||
|
|
||||||
|
def _get_benchmark_name(self):
|
||||||
|
"""Mostly copied from benchmark.py _get_name()."""
|
||||||
|
stack = tf_inspect.stack()
|
||||||
|
name = None
|
||||||
|
for frame in stack[::-1]:
|
||||||
|
f_locals = frame[0].f_locals
|
||||||
|
f_self = f_locals.get("self", None)
|
||||||
|
if isinstance(f_self, test.Benchmark):
|
||||||
|
name = frame[3] # Get the method name
|
||||||
|
# This is a hack to get around the fact that some methods might have a
|
||||||
|
# disable_tfrt decorator around them. In that case a function called
|
||||||
|
# 'decorated' wraps the real called function underneath and so we
|
||||||
|
# peek one deeper into the stack to get the real name.
|
||||||
|
if name == "decorated":
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
if name is None:
|
||||||
|
raise ValueError("Unable to determine calling Benchmark function.")
|
||||||
|
if context.is_tfrt_enabled():
|
||||||
|
name = name + "_tfrt"
|
||||||
|
return name
|
||||||
|
|
||||||
|
def _run(self, func, num_iters, execution_mode=None):
|
||||||
|
self.run_report(_run_benchmark, func, num_iters, execution_mode)
|
||||||
|
|
||||||
|
def benchmark_tf_keras_layer_call_overhead(self):
|
||||||
|
|
||||||
|
class OnlyOverheadLayer(base_layer.Layer):
|
||||||
|
|
||||||
|
def call(self, x):
|
||||||
|
return x
|
||||||
|
|
||||||
|
layer = OnlyOverheadLayer()
|
||||||
|
x = ops.convert_to_tensor([[1.]])
|
||||||
|
|
||||||
|
def fn():
|
||||||
|
layer(x)
|
||||||
|
|
||||||
|
self._run(fn, 10000)
|
||||||
|
|
||||||
|
def benchmark_tf_keras_dense_overhead(self):
|
||||||
|
|
||||||
|
layer = core_layers.Dense(1)
|
||||||
|
x = ops.convert_to_tensor([[1.]])
|
||||||
|
|
||||||
|
def fn():
|
||||||
|
layer(x)
|
||||||
|
|
||||||
|
self._run(fn, 10000)
|
||||||
|
|
||||||
|
def benchmark_tf_keras_flatten_overhead(self):
|
||||||
|
|
||||||
|
layer = core_layers.Flatten()
|
||||||
|
x = ops.convert_to_tensor([[[1.]]])
|
||||||
|
|
||||||
|
def fn():
|
||||||
|
layer(x)
|
||||||
|
|
||||||
|
self._run(fn, 10000)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
ops.enable_eager_execution()
|
||||||
|
test.main()
|
Loading…
Reference in New Issue
Block a user