Assert closeness of output values instead of equality in layout optimizer tests
using convolutions Convolution output may differ across convolution algorithms and is not guaranteed to match exactly. PiperOrigin-RevId: 205276671
This commit is contained in:
parent
8571b4f3d2
commit
3d6c8b8aae
@ -1340,7 +1340,7 @@ class LayoutOptimizerTest(test.TestCase):
|
|||||||
expected_num_transposes = 2
|
expected_num_transposes = 2
|
||||||
self.assertEqual(expected_num_transposes, num_transposes)
|
self.assertEqual(expected_num_transposes, num_transposes)
|
||||||
self._assert_trans_nhwc_to_nchw('Conv2D-0', nodes)
|
self._assert_trans_nhwc_to_nchw('Conv2D-0', nodes)
|
||||||
self.assertAllEqual(output_val_ref, output_val)
|
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
|
||||||
|
|
||||||
def testLoop(self):
|
def testLoop(self):
|
||||||
if test.is_gpu_available(cuda_only=True):
|
if test.is_gpu_available(cuda_only=True):
|
||||||
|
Loading…
Reference in New Issue
Block a user