Adds a sparse_eye operation to tensorflow.

PiperOrigin-RevId: 209683367
This commit is contained in:
A. Unique TensorFlower 2018-08-21 16:47:03 -07:00 committed by TensorFlower Gardener
parent 9941300301
commit 3cb13feff0
5 changed files with 113 additions and 0 deletions

View File

@ -2614,6 +2614,17 @@ py_library(
],
)
py_test(
name = "sparse_ops_test",
srcs = ["ops/sparse_ops_test.py"],
srcs_version = "PY2AND3",
deps = [
":constant_op",
":framework_test_lib",
":sparse_ops",
],
)
py_library(
name = "spectral_grad",
srcs = ["ops/spectral_grad.py"],

View File

@ -41,6 +41,7 @@ from tensorflow.python.ops import math_ops
# pylint: disable=wildcard-import
from tensorflow.python.ops.gen_sparse_ops import *
# pylint: enable=wildcard-import
from tensorflow.python.util import compat
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import tf_export
@ -85,6 +86,50 @@ def _convert_to_sparse_tensors(sp_inputs):
raise TypeError("Inputs must be a list or tuple.")
def _make_int64_tensor(value, name):
if isinstance(value, compat.integral_types):
return ops.convert_to_tensor(value, name=name, dtype=dtypes.int64)
if not isinstance(value, ops.Tensor):
raise TypeError("{} must be an integer value".format(name))
if value.dtype == dtypes.int64:
return value
return math_ops.cast(value, dtypes.int64)
@tf_export("sparse.eye")
def sparse_eye(num_rows,
num_columns=None,
dtype=dtypes.float32,
name=None):
"""Creates a two-dimensional sparse tensor with ones along the diagonal.
Args:
num_rows: Non-negative integer or `int32` scalar `tensor` giving the number
of rows in the resulting matrix.
num_columns: Optional non-negative integer or `int32` scalar `tensor` giving
the number of columns in the resulting matrix. Defaults to `num_rows`.
dtype: The type of element in the resulting `Tensor`.
name: A name for this `Op`. Defaults to "eye".
Returns:
A `SparseTensor` of shape [num_rows, num_columns] with ones along the
diagonal.
"""
with ops.name_scope(name, default_name="eye", values=[num_rows, num_columns]):
num_rows = _make_int64_tensor(num_rows, "num_rows")
num_columns = num_rows if num_columns is None else _make_int64_tensor(
num_columns, "num_columns")
# Create the sparse tensor.
diag_size = math_ops.minimum(num_rows, num_columns)
diag_range = math_ops.range(diag_size, dtype=dtypes.int64)
return sparse_tensor.SparseTensor(
indices=array_ops.stack([diag_range, diag_range], axis=1),
values=array_ops.ones(diag_size, dtype=dtype),
dense_shape=[num_rows, num_columns])
# pylint: disable=protected-access
@tf_export("sparse_concat")
@deprecation.deprecated_args(

View File

@ -0,0 +1,49 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for sparse ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import test_util
from tensorflow.python.ops import sparse_ops
from tensorflow.python.platform import googletest
@test_util.run_all_in_graph_and_eager_modes
class SparseOpsTest(test_util.TensorFlowTestCase):
def testSparseEye(self):
def test_one(n, m, as_tensors):
expected = np.eye(n, m)
if as_tensors:
m = constant_op.constant(m)
n = constant_op.constant(n)
s = sparse_ops.sparse_eye(n, m)
d = sparse_ops.sparse_to_dense(s.indices, s.dense_shape, s.values)
self.assertAllEqual(self.evaluate(d), expected)
for n in range(2, 10, 2):
for m in range(2, 10, 2):
# Test with n and m as both constants and tensors.
test_one(n, m, True)
test_one(n, m, False)
if __name__ == '__main__':
googletest.main()

View File

@ -8,4 +8,8 @@ tf_module {
name: "cross_hashed"
argspec: "args=[\'inputs\', \'num_buckets\', \'hash_key\', \'name\'], varargs=None, keywords=None, defaults=[\'0\', \'None\', \'None\'], "
}
member_method {
name: "eye"
argspec: "args=[\'num_rows\', \'num_columns\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \"<dtype: \'float32\'>\", \'None\'], "
}
}

View File

@ -8,4 +8,8 @@ tf_module {
name: "cross_hashed"
argspec: "args=[\'inputs\', \'num_buckets\', \'hash_key\', \'name\'], varargs=None, keywords=None, defaults=[\'0\', \'None\', \'None\'], "
}
member_method {
name: "eye"
argspec: "args=[\'num_rows\', \'num_columns\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \"<dtype: \'float32\'>\", \'None\'], "
}
}