Correcting for PR comments

This commit is contained in:
902449@58880@bigcat_chen@ASIC 2020-06-11 13:54:16 +08:00
parent 13d3b34349
commit 3b95c2c54d
4 changed files with 6 additions and 136 deletions

View File

@ -22,7 +22,6 @@ limitations under the License.
// should implement their own versions of this function.
void RespondToDetection(tflite::ErrorReporter* error_reporter,
int8_t person_score, int8_t no_person_score) {
if (person_score > no_person_score) {
hx_drv_led_on(HX_DRV_LED_GREEN);
} else {

View File

@ -21,14 +21,12 @@ limitations under the License.
hx_drv_sensor_image_config_t g_pimg_config;
TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width,
int image_height, int channels, int8_t* image_data) {
static bool is_initialized = false;
if (!is_initialized) {
if(hx_drv_sensor_initial(&g_pimg_config)!= HX_DRV_LIB_PASS)
{
if (hx_drv_sensor_initial(&g_pimg_config) != HX_DRV_LIB_PASS) {
return kTfLiteError;
}
is_initialized = true;
@ -36,9 +34,9 @@ TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width,
hx_drv_sensor_capture(&g_pimg_config);
hx_drv_image_rescale((uint8_t*)g_pimg_config.raw_address, g_pimg_config.img_width, g_pimg_config.img_height,
image_data, image_width, image_height);
hx_drv_image_rescale((uint8_t*)g_pimg_config.raw_address,
g_pimg_config.img_width, g_pimg_config.img_height,
image_data, image_width, image_height);
return kTfLiteOk;
}

View File

@ -1,126 +0,0 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/micro/examples/person_detection_experimental/main_functions.h"
#include "tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h"
#include "tensorflow/lite/micro/examples/person_detection_experimental/image_provider.h"
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
#include "tensorflow/lite/micro/examples/person_detection_experimental/person_detect_model_data.h"
#include "tensorflow/lite/micro/kernels/micro_ops.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
// Globals, used for compatibility with Arduino-style sketches.
namespace {
tflite::ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
TfLiteTensor* input = nullptr;
// In order to use optimized tensorflow lite kernels, a signed int8 quantized
// model is preferred over the legacy unsigned model format. This means that
// throughout this project, input images must be converted from unisgned to
// signed format. The easiest and quickest way to convert from unsigned to
// signed 8-bit integers is to subtract 128 from the unsigned value to get a
// signed value.
// An area of memory to use for input, output, and intermediate arrays.
constexpr int kTensorArenaSize = 125 * 1024;
#pragma Bss(".tensor_arena")
static uint8_t tensor_arena[kTensorArenaSize];
#pragma Bss()
} // namespace
// The name of this function is important for Arduino compatibility.
void setup() {
// Set up logging. Google style is to avoid globals or statics because of
// lifetime uncertainty, but since this has a trivial destructor it's okay.
// NOLINTNEXTLINE(runtime-global-variables)
static tflite::MicroErrorReporter micro_error_reporter;
error_reporter = &micro_error_reporter;
// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
model = tflite::GetModel(g_person_detect_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
TF_LITE_REPORT_ERROR(error_reporter,
"Model provided is schema version %d not equal "
"to supported version %d.",
model->version(), TFLITE_SCHEMA_VERSION);
return;
}
// Pull in only the operation implementations we need.
// This relies on a complete list of all the ops needed by this graph.
// An easier approach is to just use the AllOpsResolver, but this will
// incur some penalty in code space for op implementations that are not
// needed by this graph.
//
// tflite::AllOpsResolver resolver;
// NOLINTNEXTLINE(runtime-global-variables)
static tflite::MicroMutableOpResolver<5> micro_op_resolver;
micro_op_resolver.AddBuiltin(
tflite::BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_CONV_2D,
tflite::ops::micro::Register_CONV_2D());
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_AVERAGE_POOL_2D,
tflite::ops::micro::Register_AVERAGE_POOL_2D());
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_RESHAPE,
tflite::ops::micro::Register_RESHAPE());
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_SOFTMAX,
tflite::ops::micro::Register_SOFTMAX());
// Build an interpreter to run the model with.
// NOLINTNEXTLINE(runtime-global-variables)
static tflite::MicroInterpreter static_interpreter(
model, micro_op_resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;
// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
return;
}
// Get information about the memory area to use for the model's input.
input = interpreter->input(0);
}
// The name of this function is important for Arduino compatibility.
void loop() {
// Get image from provider.
if (kTfLiteOk != GetImage(error_reporter, kNumCols, kNumRows, kNumChannels,
input->data.int8)) {
TF_LITE_REPORT_ERROR(error_reporter, "Image capture failed.");
}
// Run the model on this input and make sure it succeeds.
if (kTfLiteOk != interpreter->Invoke()) {
TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed.");
}
TfLiteTensor* output = interpreter->output(0);
// Process the inference results.
int8_t person_score = output->data.uint8[kPersonIndex];
int8_t no_person_score = output->data.uint8[kNotAPersonIndex];
RespondToDetection(error_reporter, person_score, no_person_score);
}

View File

@ -20,12 +20,11 @@ limitations under the License.
#include "tensorflow/lite/micro/debug_log.h"
#include "hx_drv_tflm.h"
extern "C" void DebugLog(const char* s) {
static bool is_initialized = false;
if (!is_initialized) {
hx_drv_uart_initial();
is_initialized = true;
hx_drv_uart_initial();
is_initialized = true;
}
hx_drv_uart_print("%s", s);