Clean up expired forward compatibility checks.
PiperOrigin-RevId: 308455990 Change-Id: Icb38f1296a4c0326c3146e36e0e23a8dfaa37695
This commit is contained in:
parent
2f55b904b5
commit
3b58a7de85
tensorflow/python/data
experimental
kernel_tests/optimization
ops
ops
@ -19,7 +19,6 @@ from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
|
||||
from tensorflow.python.compat import compat
|
||||
from tensorflow.python.data.experimental.ops import testing
|
||||
from tensorflow.python.data.kernel_tests import test_base
|
||||
from tensorflow.python.data.ops import dataset_ops
|
||||
@ -37,11 +36,8 @@ class InjectPrefetchTest(test_base.DatasetTestBase, parameterized.TestCase):
|
||||
@combinations.generate(test_base.default_test_combinations())
|
||||
def testParallelMap(self):
|
||||
dataset = dataset_ops.Dataset.range(100)
|
||||
parallel_map = "ParallelMap"
|
||||
if compat.forward_compatible(2020, 3, 6):
|
||||
parallel_map = "ParallelMapV2"
|
||||
dataset = dataset.apply(
|
||||
testing.assert_next([parallel_map, "Prefetch", "FiniteTake"]))
|
||||
testing.assert_next(["ParallelMapV2", "Prefetch", "FiniteTake"]))
|
||||
dataset = dataset.map(
|
||||
lambda x: x + 1, num_parallel_calls=dataset_ops.AUTOTUNE)
|
||||
dataset = dataset.take(50)
|
||||
@ -64,11 +60,8 @@ class InjectPrefetchTest(test_base.DatasetTestBase, parameterized.TestCase):
|
||||
@combinations.generate(test_base.default_test_combinations())
|
||||
def testParallelInterleave(self):
|
||||
dataset = dataset_ops.Dataset.range(100)
|
||||
parallel_interleave = "ParallelInterleaveV3"
|
||||
if compat.forward_compatible(2020, 3, 6):
|
||||
parallel_interleave = "ParallelInterleaveV4"
|
||||
dataset = dataset.apply(
|
||||
testing.assert_next([parallel_interleave, "Prefetch", "FiniteTake"]))
|
||||
testing.assert_next(["ParallelInterleaveV4", "Prefetch", "FiniteTake"]))
|
||||
dataset = dataset.interleave(
|
||||
lambda x: dataset_ops.Dataset.from_tensors(x + 1),
|
||||
num_parallel_calls=dataset_ops.AUTOTUNE)
|
||||
@ -79,15 +72,9 @@ class InjectPrefetchTest(test_base.DatasetTestBase, parameterized.TestCase):
|
||||
@combinations.generate(test_base.default_test_combinations())
|
||||
def testChainedParallelDatasets(self):
|
||||
dataset = dataset_ops.Dataset.range(100)
|
||||
parallel_interleave = "ParallelInterleaveV3"
|
||||
if compat.forward_compatible(2020, 3, 6):
|
||||
parallel_interleave = "ParallelInterleaveV4"
|
||||
parallel_map = "ParallelMap"
|
||||
if compat.forward_compatible(2020, 3, 6):
|
||||
parallel_map = "ParallelMapV2"
|
||||
dataset = dataset.apply(
|
||||
testing.assert_next([
|
||||
parallel_map, "Prefetch", parallel_interleave, "Prefetch",
|
||||
"ParallelMapV2", "Prefetch", "ParallelInterleaveV4", "Prefetch",
|
||||
"MapAndBatch", "Prefetch", "FiniteTake"
|
||||
]))
|
||||
dataset = dataset.map(
|
||||
|
@ -25,7 +25,6 @@ import numpy as np
|
||||
|
||||
from tensorflow.core.example import example_pb2
|
||||
from tensorflow.core.example import feature_pb2
|
||||
from tensorflow.python.compat import compat
|
||||
from tensorflow.python.data.experimental.ops import batching
|
||||
from tensorflow.python.data.experimental.ops import testing
|
||||
from tensorflow.python.data.kernel_tests import test_base
|
||||
@ -222,9 +221,7 @@ class MapVectorizationTest(test_base.DatasetTestBase, parameterized.TestCase):
|
||||
"""
|
||||
map_node_name = "Map"
|
||||
if num_parallel_calls is not None:
|
||||
map_node_name = "ParallelMap"
|
||||
if compat.forward_compatible(2020, 3, 6):
|
||||
map_node_name = "ParallelMapV2"
|
||||
map_node_name = "ParallelMapV2"
|
||||
|
||||
def _make_dataset(node_names):
|
||||
dataset = base_dataset.apply(testing.assert_next(node_names))
|
||||
|
@ -21,7 +21,6 @@ import functools
|
||||
|
||||
from absl.testing import parameterized
|
||||
|
||||
from tensorflow.python.compat import compat
|
||||
from tensorflow.python.data.experimental.ops import testing
|
||||
from tensorflow.python.data.kernel_tests import test_base
|
||||
from tensorflow.python.data.ops import dataset_ops
|
||||
@ -51,8 +50,7 @@ def _test_combinations():
|
||||
ds = ds.map(lambda x: (x, x), num_parallel_calls=2) # Not eliminated
|
||||
return ds.map(lambda x, y: (x, y)) # Eliminated
|
||||
|
||||
parallel_map_name = "ParallelMapV2" if compat.forward_compatible(
|
||||
2020, 3, 6) else "ParallelMap"
|
||||
parallel_map_name = "ParallelMapV2"
|
||||
|
||||
cases = [
|
||||
("Skip0", lambda ds: ds.skip(0), None),
|
||||
|
@ -17,7 +17,6 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from tensorflow.python.compat import compat
|
||||
from tensorflow.python.data.ops import dataset_ops
|
||||
from tensorflow.python.data.util import structure
|
||||
from tensorflow.python.framework import dtypes
|
||||
@ -85,35 +84,20 @@ class _ParseExampleDataset(dataset_ops.UnaryDataset):
|
||||
self._element_spec[key] = ragged_tensor.RaggedTensorSpec(
|
||||
input_dataset_shape.concatenate([None]), value_type, 1, splits_type)
|
||||
|
||||
if deterministic is not None or compat.forward_compatible(2020, 3, 6):
|
||||
variant_tensor = (
|
||||
gen_experimental_dataset_ops.parse_example_dataset_v2(
|
||||
self._input_dataset._variant_tensor, # pylint: disable=protected-access
|
||||
self._num_parallel_calls,
|
||||
self._dense_defaults,
|
||||
self._sparse_keys,
|
||||
self._dense_keys,
|
||||
self._sparse_types,
|
||||
self._dense_shapes,
|
||||
deterministic=self._deterministic,
|
||||
ragged_keys=self._ragged_keys,
|
||||
ragged_value_types=self._ragged_value_types,
|
||||
ragged_split_types=self._ragged_split_types,
|
||||
**self._flat_structure))
|
||||
else:
|
||||
variant_tensor = (
|
||||
gen_experimental_dataset_ops.parse_example_dataset(
|
||||
self._input_dataset._variant_tensor, # pylint: disable=protected-access
|
||||
self._num_parallel_calls,
|
||||
self._dense_defaults,
|
||||
self._sparse_keys,
|
||||
self._dense_keys,
|
||||
self._sparse_types,
|
||||
self._dense_shapes,
|
||||
ragged_keys=self._ragged_keys,
|
||||
ragged_value_types=self._ragged_value_types,
|
||||
ragged_split_types=self._ragged_split_types,
|
||||
**self._flat_structure))
|
||||
variant_tensor = (
|
||||
gen_experimental_dataset_ops.parse_example_dataset_v2(
|
||||
self._input_dataset._variant_tensor, # pylint: disable=protected-access
|
||||
self._num_parallel_calls,
|
||||
self._dense_defaults,
|
||||
self._sparse_keys,
|
||||
self._dense_keys,
|
||||
self._sparse_types,
|
||||
self._dense_shapes,
|
||||
deterministic=self._deterministic,
|
||||
ragged_keys=self._ragged_keys,
|
||||
ragged_value_types=self._ragged_value_types,
|
||||
ragged_split_types=self._ragged_split_types,
|
||||
**self._flat_structure))
|
||||
super(_ParseExampleDataset, self).__init__(input_dataset, variant_tensor)
|
||||
|
||||
@property
|
||||
|
@ -18,7 +18,6 @@ from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from tensorflow.python import tf2
|
||||
from tensorflow.python.compat import compat
|
||||
from tensorflow.python.data.ops import dataset_ops
|
||||
from tensorflow.python.data.util import convert
|
||||
from tensorflow.python.framework import dtypes
|
||||
@ -249,9 +248,6 @@ class ParallelInterleaveDataset(dataset_ops.UnaryDataset):
|
||||
cycle_length, dtype=dtypes.int64, name="cycle_length")
|
||||
self._block_length = ops.convert_to_tensor(
|
||||
block_length, dtype=dtypes.int64, name="block_length")
|
||||
if sloppy is not None:
|
||||
self._sloppy = ops.convert_to_tensor(
|
||||
sloppy, dtype=dtypes.bool, name="sloppy")
|
||||
self._buffer_output_elements = convert.optional_param_to_tensor(
|
||||
"buffer_output_elements",
|
||||
buffer_output_elements,
|
||||
@ -260,34 +256,22 @@ class ParallelInterleaveDataset(dataset_ops.UnaryDataset):
|
||||
"prefetch_input_elements",
|
||||
prefetch_input_elements,
|
||||
argument_default=2 * cycle_length)
|
||||
if sloppy is None or compat.forward_compatible(2020, 3, 6):
|
||||
if sloppy is None:
|
||||
self._deterministic = "default"
|
||||
elif sloppy:
|
||||
self._deterministic = "false"
|
||||
else:
|
||||
self._deterministic = "true"
|
||||
variant_tensor = ged_ops.legacy_parallel_interleave_dataset_v2(
|
||||
self._input_dataset._variant_tensor, # pylint: disable=protected-access
|
||||
self._map_func.function.captured_inputs,
|
||||
self._cycle_length,
|
||||
self._block_length,
|
||||
self._buffer_output_elements,
|
||||
self._prefetch_input_elements,
|
||||
f=self._map_func.function,
|
||||
deterministic=self._deterministic,
|
||||
**self._flat_structure)
|
||||
if sloppy is None:
|
||||
self._deterministic = "default"
|
||||
elif sloppy:
|
||||
self._deterministic = "false"
|
||||
else:
|
||||
variant_tensor = ged_ops.parallel_interleave_dataset(
|
||||
self._input_dataset._variant_tensor, # pylint: disable=protected-access
|
||||
self._map_func.function.captured_inputs,
|
||||
self._cycle_length,
|
||||
self._block_length,
|
||||
self._sloppy,
|
||||
self._buffer_output_elements,
|
||||
self._prefetch_input_elements,
|
||||
f=self._map_func.function,
|
||||
**self._flat_structure)
|
||||
self._deterministic = "true"
|
||||
variant_tensor = ged_ops.legacy_parallel_interleave_dataset_v2(
|
||||
self._input_dataset._variant_tensor, # pylint: disable=protected-access
|
||||
self._map_func.function.captured_inputs,
|
||||
self._cycle_length,
|
||||
self._block_length,
|
||||
self._buffer_output_elements,
|
||||
self._prefetch_input_elements,
|
||||
f=self._map_func.function,
|
||||
deterministic=self._deterministic,
|
||||
**self._flat_structure)
|
||||
super(ParallelInterleaveDataset, self).__init__(input_dataset,
|
||||
variant_tensor)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user