[Grappler] Add arithmetic optimizer stage for optimizing tf.nn.embedding_lookup_sparse().

This optimization eliminates unnecessary `tf.unique()` and `tf.gather()` operations from `tf.nn.embedding_lookup_sparse()` when the embeddings are unpartitioned (e.g. at inference time) and weights are not used. Instead, the `tf.sparse.segment_<combiner>()` operation is applied directly to the embedding matrix without uniquifying the IDs.

PiperOrigin-RevId: 308338718
Change-Id: I6e689610a8f4f3dd0a3e8af77cce609ac6d4f9f9
This commit is contained in:
Derek Murray 2020-04-24 15:30:26 -07:00 committed by TensorFlower Gardener
parent 64b83e8724
commit 3b336d3173
7 changed files with 178 additions and 1 deletions

View File

@ -76,6 +76,15 @@ bool IsAnyMin(const NodeDef& node) {
return op == "Min" || op == "SegmentMin" || op == "UnsortedSegmentMin";
}
bool IsAnySparseSegmentReduction(const NodeDef& node) {
const auto& op = node.op();
return op == "SparseSegmentSum" || op == "SparseSegmentSumWithNumSegments" ||
op == "SparseSegmentMean" ||
op == "SparseSegmentMeanWithNumSegments" ||
op == "SparseSegmentSqrtN" ||
op == "SparseSegmentSqrtNWithNumSegments";
}
bool IsApproximateEqual(const NodeDef& node) {
return node.op() == "ApproximateEqual";
}
@ -268,6 +277,11 @@ bool IsFusedBatchNormGrad(const NodeDef& node) {
op == "FusedBatchNormGradV3";
}
bool IsGather(const NodeDef& node) {
const auto& op = node.op();
return op == "Gather" || op == "GatherV2";
}
bool IsGreater(const NodeDef& node) { return node.op() == "Greater"; }
bool IsGreaterEqual(const NodeDef& node) { return node.op() == "GreaterEqual"; }
@ -589,6 +603,11 @@ bool IsTruncateDiv(const NodeDef& node) { return node.op() == "TruncateDiv"; }
bool IsTruncateMod(const NodeDef& node) { return node.op() == "TruncateMod"; }
bool IsUnique(const NodeDef& node) {
const auto& op = node.op();
return op == "Unique" || op == "UniqueV2";
}
bool IsUnpack(const NodeDef& node) { return node.op() == "Unpack"; }
bool IsVariable(const NodeDef& node) {

View File

@ -34,6 +34,7 @@ bool IsAnyMax(const NodeDef& node);
bool IsAnyMaxPool(const NodeDef& node);
bool IsAnyMin(const NodeDef& node);
bool IsAnyMul(const NodeDef& node);
bool IsAnySparseSegmentReduction(const NodeDef& node);
bool IsApproximateEqual(const NodeDef& node);
bool IsArg(const NodeDef& node);
bool IsArgMax(const NodeDef& node);
@ -81,6 +82,7 @@ bool IsFloorMod(const NodeDef& node);
bool IsFusedBatchNorm(const NodeDef& node);
bool IsFusedBatchNormEx(const NodeDef& node);
bool IsFusedBatchNormGrad(const NodeDef& node);
bool IsGather(const NodeDef& node);
bool IsGreater(const NodeDef& node);
bool IsGreaterEqual(const NodeDef& node);
bool IsHistogramSummary(const NodeDef& node);
@ -187,6 +189,7 @@ bool IsTile(const NodeDef& node);
bool IsTranspose(const NodeDef& node);
bool IsTruncateDiv(const NodeDef& node);
bool IsTruncateMod(const NodeDef& node);
bool IsUnique(const NodeDef& node);
bool IsUnpack(const NodeDef& node);
bool IsVariable(const NodeDef& node);
bool IsWhile(const NodeDef& node);

View File

@ -3466,6 +3466,108 @@ class RemoveStackSliceSameAxis : public ArithmeticOptimizerStage {
}
};
// Eliminates unnecessary copies during sparse embedding lookup operations.
//
// For non-partitioned variables, the `tf.nn.embedding_lookup_sparse()` function
// generates code of the form:
//
// embeddings = <a 2D Tensor>
// sparse_ids = <a tf.int64 SparseTensor>
// segment_ids = sparse_ids.indices[:, 0]
// ids, idx = tf.unique(sparse_ids.values)
// gathered_rows = tf.gather(params, ids)
// result = tf.sparse.segment_<combiner>(gathered_rows, idx, segment_ids)
//
// In this case, all of the work in `tf.unique()` and `tf.gather()`
// can be avoided by passing the full embeddings to
// `tf.sparse.segment_<combiner>()` and performing the same amount of
// computation (but fewer copies and allocations) as follows:
//
// embeddings = <a 2D Tensor>
// sparse_ids = <a tf.int64 SparseTensor>
// segment_ids = sparse_ids.indices[:, 0]
// result = tf.sparse.segment_<combiner>(
// embeddings, sparse_ids.values, segment_ids)
class SimplifyEmbeddingLookupStage : public ArithmeticOptimizerStage {
public:
explicit SimplifyEmbeddingLookupStage(
const GraphOptimizerContext& ctx,
const ArithmeticOptimizerContext& ctx_ext)
: ArithmeticOptimizerStage("SimplifyEmbeddingLookupStage", ctx, ctx_ext) {
}
~SimplifyEmbeddingLookupStage() override = default;
bool IsSupported(const NodeDef* node) const override {
return IsAnySparseSegmentReduction(*node);
}
Status TrySimplify(NodeDef* reduction_node,
string* simplified_node_name) override {
if (IsInPreserveSet(*reduction_node)) return Status::OK();
// Input 0 (data) of the reduction node must be a tf.gather() on the 0th
// axis.
NodeDef* gather_node = nullptr;
TF_RETURN_IF_ERROR(GetInputNode(reduction_node->input(0), &gather_node));
if (!IsGather(*gather_node) || IsInPreserveSet(*gather_node) ||
gather_node->device() != reduction_node->device())
return Status::OK();
if (gather_node->op() == "GatherV2" && !IsAxis0(*gather_node, 2))
return Status::OK();
// Input 1 (indices) of the gather node must be a tf.unique() on the 0th
// axis.
NodeDef* unique_node = nullptr;
TF_RETURN_IF_ERROR(GetInputNode(gather_node->input(1), &unique_node));
if (!IsUnique(*unique_node) || IsInPreserveSet(*unique_node) ||
unique_node->device() != gather_node->device())
return Status::OK();
if (unique_node->op() == "UniqueV2" && !IsAxis0(*unique_node, 1))
return Status::OK();
DataType unique_element_type;
TF_RETURN_IF_ERROR(GetNodeAttr(*unique_node, "T", &unique_element_type));
// Input 1 (indices) of the reduction node must be output 1 of the unique
// node.
const TensorId idx_tensor = ParseTensorName(reduction_node->input(1));
if (idx_tensor != TensorId(unique_node->name(), 1)) return Status::OK();
// Input 0 (data) of the reduction node becomes input 1 (params) of the
// gather node.
reduction_node->set_input(0, gather_node->input(0));
ctx().node_map->UpdateInput(reduction_node->name(),
reduction_node->input(0),
gather_node->input(0));
// Input 1 (indices) of the reduction node becomes input 0 (x) of the unique
// node.
reduction_node->set_input(1, unique_node->input(0));
ctx().node_map->UpdateInput(reduction_node->name(),
reduction_node->input(1),
unique_node->input(0));
SetDataTypeToAttr(unique_element_type, "Tidx", reduction_node);
*simplified_node_name = reduction_node->name();
return Status::OK();
}
private:
bool IsAxis0(const NodeDef& node, int axis_input) {
Tensor axis_tensor;
if (!GetTensorFromConstNode(node.input(axis_input), &axis_tensor))
return false;
if (axis_tensor.NumElements() != 1) return false;
if (axis_tensor.dtype() == DT_INT32) {
return axis_tensor.flat<int32>()(0) == 0;
} else if (axis_tensor.dtype() == DT_INT64) {
return axis_tensor.flat<int64>()(0) == 0;
} else {
return false;
}
}
};
} // namespace
Status ArithmeticOptimizer::SimplifyArithmeticOps(bool can_use_shapes) {
@ -3538,6 +3640,8 @@ Status ArithmeticOptimizer::SimplifyArithmeticOps(bool can_use_shapes) {
pipeline.AddStage<RemoveStackSliceSameAxis>(ctx, ctx_ext);
if (options_.fuse_squared_diff)
pipeline.AddStage<FuseSquaredDiffStage>(ctx, ctx_ext);
if (options_.simplify_embedding_lookup)
pipeline.AddStage<SimplifyEmbeddingLookupStage>(ctx, ctx_ext);
VLOG(1) << "Run " << pipeline.NumStages() << " arithmetic optimizer stages: "
<< absl::StrJoin(pipeline.StageNames(), ", ");

View File

@ -85,6 +85,7 @@ class ArithmeticOptimizer : public GraphOptimizer {
bool convert_expm1 = true;
bool unary_ops_composition = true;
bool remove_stack_slice_same_axis = true;
bool simplify_embedding_lookup = true;
// Choose which arithmetic optimizer stages will be enabled for a given
// optimization level by default.

View File

@ -4085,5 +4085,49 @@ TEST_F(ArithmeticOptimizerTest, SimplifyAggregationBFloat16) {
test::ExpectTensorEqual<bfloat16>(tensors[0], tensors_expected[0]);
}
TEST_F(ArithmeticOptimizerTest, SimplifyEmbeddingLookup) {
for (DataType unique_idx_type : {DT_INT32, DT_INT64}) {
tensorflow::Scope s = tensorflow::Scope::NewRootScope();
Output embeddings = ops::Const(s.WithOpName("embeddings"),
{1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
Output segment_ids =
ops::Const(s.WithOpName("segment_ids"), {0, 1, 1, 2, 2, 2, 2});
Output indices = ops::Const(s.WithOpName("indices"), {0, 0, 1, 0, 1, 0, 1});
auto unique = ops::Unique(s.WithOpName("unique"), indices,
/*attrs=*/{unique_idx_type});
Output ids = unique.y;
Output idx = unique.idx;
Output gathered_rows =
ops::Gather(s.WithOpName("gathered_rows"), embeddings, ids);
Output result = ops::SparseSegmentSum(s.WithOpName("result"), gathered_rows,
idx, segment_ids);
Output id = ops::Identity(s.WithOpName("id"), result);
GrapplerItem item;
TF_CHECK_OK(s.ToGraphDef(&item.graph));
item.fetch = {"id"};
auto tensors_expected = EvaluateNodes(item.graph, item.fetch);
ASSERT_EQ(tensors_expected.size(), 1);
GraphDef output;
ArithmeticOptimizer optimizer;
EnableOnlySimplifyEmbeddingLookup(&optimizer);
OptimizeAndPrune(&optimizer, &item, &output);
for (const auto& node : output.node()) {
if (node.name() == "result") {
EXPECT_EQ(node.input(0), "embeddings");
EXPECT_EQ(node.input(1), "indices");
}
EXPECT_NE(node.op(), "Unique");
EXPECT_NE(node.op(), "Gather");
}
auto tensors = EvaluateNodes(output, item.fetch);
ASSERT_EQ(tensors.size(), 1);
test::ExpectTensorEqual<float>(tensors[0], tensors_expected[0]);
}
}
} // namespace grappler
} // namespace tensorflow

View File

@ -223,6 +223,11 @@ class ArithmeticOptimizerTest : public GrapplerTest {
optimizer->options_.remove_stack_slice_same_axis = true;
}
void EnableOnlySimplifyEmbeddingLookup(ArithmeticOptimizer* optimizer) {
DisableAllStages(optimizer);
optimizer->options_.simplify_embedding_lookup = true;
}
private:
void DisableAllStages(ArithmeticOptimizer* optimizer) {
ArithmeticOptimizer::ArithmeticOptimizerOptions options;
@ -250,6 +255,7 @@ class ArithmeticOptimizerTest : public GrapplerTest {
options.replace_mul_with_square = false;
options.simplify_aggregation = false;
options.unary_ops_composition = false;
options.simplify_embedding_lookup = false;
optimizer->options_ = options;
}
};

View File

@ -4416,7 +4416,7 @@ class IdentityCategoricalColumnTest(test.TestCase):
with _initialized_session():
with self.assertRaisesRegexp(errors.OpError,
r'indices\[0\] = 2 is not in \[0, 2\)'):
r'indices\[0\] .* 2 .* \[0, 2\)'):
self.evaluate(embedding_lookup)
@test_util.run_deprecated_v1