Fix Beta, Wishart and Mixture sampling to use different seeds per random draw.

Change: 136075925
This commit is contained in:
A. Unique TensorFlower 2016-10-13 12:04:59 -08:00 committed by TensorFlower Gardener
parent 8e63535abb
commit 3b14418c77
7 changed files with 81 additions and 7 deletions

View File

@ -245,6 +245,23 @@ class BetaTest(tf.test.TestCase):
stats.beta.var(a, b),
atol=1e-1)
# Test that sampling with the same seed twice gives the same results.
def testBetaSampleMultipleTimes(self):
with self.test_session():
a_val = 1.
b_val = 2.
n_val = 100
tf.set_random_seed(654321)
beta1 = tf.contrib.distributions.Beta(a=a_val, b=b_val, name="beta1")
samples1 = beta1.sample_n(n_val, seed=123456).eval()
tf.set_random_seed(654321)
beta2 = tf.contrib.distributions.Beta(a=a_val, b=b_val, name="beta2")
samples2 = beta2.sample_n(n_val, seed=123456).eval()
self.assertAllClose(samples1, samples2)
def testBetaSampleMultidimensional(self):
with self.test_session():
a = np.random.rand(3, 2, 2).astype(np.float32)

View File

@ -334,6 +334,32 @@ class MixtureTest(tf.test.TestCase):
which_dist_samples = dist_sample_values[c][:size_c]
self.assertAllClose(which_dist_samples, sample_values[which_c])
# Test that sampling with the same seed twice gives the same results.
def testSampleMultipleTimes(self):
# 5 component mixture.
logits = [-10.0, -5.0, 0.0, 5.0, 10.0]
mus = [-5.0, 0.0, 5.0, 4.0, 20.0]
sigmas = [0.1, 5.0, 3.0, 0.2, 4.0]
with self.test_session():
n = 100
tf.set_random_seed(654321)
components = [distributions_py.Normal(
mu=mu, sigma=sigma) for mu, sigma in zip(mus, sigmas)]
cat = distributions_py.Categorical(logits, dtype=tf.int32, name="cat1")
dist1 = distributions_py.Mixture(cat, components, name="mixture1")
samples1 = dist1.sample_n(n, seed=123456).eval()
tf.set_random_seed(654321)
components2 = [distributions_py.Normal(
mu=mu, sigma=sigma) for mu, sigma in zip(mus, sigmas)]
cat2 = distributions_py.Categorical(logits, dtype=tf.int32, name="cat2")
dist2 = distributions_py.Mixture(cat2, components2, name="mixture2")
samples2 = dist2.sample_n(n, seed=123456).eval()
self.assertAllClose(samples1, samples2)
def testSampleScalarBatchMultivariate(self):
with self.test_session() as sess:
num_components = 3

View File

@ -130,16 +130,17 @@ class StudentTTest(tf.test.TestCase):
mu_v = 3.0
sigma_v = np.sqrt(10.0)
n = tf.constant(100)
tf.set_random_seed(654321)
student = tf.contrib.distributions.StudentT(
name="student_t1", df=df, mu=mu, sigma=sigma)
df=df, mu=mu, sigma=sigma, name="student_t1")
samples1 = student.sample_n(n, seed=123456).eval()
# We need to start another test session, since this resets the internal
# state.
with self.test_session():
tf.set_random_seed(654321)
student2 = tf.contrib.distributions.StudentT(
name="student_t2", df=df, mu=mu, sigma=sigma)
df=df, mu=mu, sigma=sigma, name="student_t2")
samples2 = student2.sample_n(n, seed=123456).eval()
self.assertAllClose(samples1, samples2)
def testStudentSampleSmallDfNoNan(self):

View File

@ -149,6 +149,30 @@ class WishartCholeskyTest(tf.test.TestCase):
variance_estimate,
rtol=0.05)
# Test that sampling with the same seed twice gives the same results.
def testSampleMultipleTimes(self):
with self.test_session():
df = 4.
n_val = 100
tf.set_random_seed(654321)
chol_w1 = distributions.WishartCholesky(
df=df,
scale=chol(make_pd(1., 3)),
cholesky_input_output_matrices=False,
name="wishart1")
samples1 = chol_w1.sample_n(n_val, seed=123456).eval()
tf.set_random_seed(654321)
chol_w2 = distributions.WishartCholesky(
df=df,
scale=chol(make_pd(1., 3)),
cholesky_input_output_matrices=False,
name="wishart2")
samples2 = chol_w2.sample_n(n_val, seed=123456).eval()
self.assertAllClose(samples1, samples2)
def testProb(self):
with self.test_session():
# Generate some positive definite (pd) matrices and their Cholesky

View File

@ -197,7 +197,8 @@ class Beta(distribution.Distribution):
gamma1_sample = random_ops.random_gamma(
[n,], a, dtype=self.dtype, seed=seed)
gamma2_sample = random_ops.random_gamma(
[n,], b, dtype=self.dtype, seed=seed)
[n,], b, dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, "beta"))
beta_sample = gamma1_sample / (gamma1_sample + gamma2_sample)
return beta_sample

View File

@ -22,6 +22,7 @@ import numpy as np
from tensorflow.contrib.distributions.python.ops import categorical
from tensorflow.contrib.distributions.python.ops import distribution
from tensorflow.contrib.distributions.python.ops import distribution_util
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
@ -295,8 +296,10 @@ class Mixture(distribution.Distribution):
partitions=cat_samples,
num_partitions=self.num_components)
samples_class = [None for _ in range(self.num_components)]
for c in range(self.num_components):
n_class = array_ops.size(partitioned_samples_indices[c])
seed = distribution_util.gen_new_seed(seed, "mixture")
samples_class_c = self.components[c].sample_n(n_class, seed=seed)
# Pull out the correct batch entries from each index.

View File

@ -22,6 +22,7 @@ import math
import numpy as np
from tensorflow.contrib.distributions.python.ops import distribution
from tensorflow.contrib.distributions.python.ops import distribution_util
from tensorflow.contrib.distributions.python.ops import operator_pd_cholesky
from tensorflow.contrib.distributions.python.ops import operator_pd_full
from tensorflow.contrib.framework.python.framework import tensor_util as contrib_tensor_util
@ -211,7 +212,8 @@ class _WishartOperatorPD(distribution.Distribution):
0.5 * self.df, self.dimension),
beta=0.5,
dtype=self.dtype,
seed=seed)
seed=distribution_util.gen_new_seed(
seed, "wishart"))
# Complexity: O(nbk^2)
x = array_ops.matrix_band_part(x, -1, 0) # Tri-lower.