Fix Beta, Wishart and Mixture sampling to use different seeds per random draw.
Change: 136075925
This commit is contained in:
parent
8e63535abb
commit
3b14418c77
@ -245,6 +245,23 @@ class BetaTest(tf.test.TestCase):
|
||||
stats.beta.var(a, b),
|
||||
atol=1e-1)
|
||||
|
||||
# Test that sampling with the same seed twice gives the same results.
|
||||
def testBetaSampleMultipleTimes(self):
|
||||
with self.test_session():
|
||||
a_val = 1.
|
||||
b_val = 2.
|
||||
n_val = 100
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
beta1 = tf.contrib.distributions.Beta(a=a_val, b=b_val, name="beta1")
|
||||
samples1 = beta1.sample_n(n_val, seed=123456).eval()
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
beta2 = tf.contrib.distributions.Beta(a=a_val, b=b_val, name="beta2")
|
||||
samples2 = beta2.sample_n(n_val, seed=123456).eval()
|
||||
|
||||
self.assertAllClose(samples1, samples2)
|
||||
|
||||
def testBetaSampleMultidimensional(self):
|
||||
with self.test_session():
|
||||
a = np.random.rand(3, 2, 2).astype(np.float32)
|
||||
|
@ -334,6 +334,32 @@ class MixtureTest(tf.test.TestCase):
|
||||
which_dist_samples = dist_sample_values[c][:size_c]
|
||||
self.assertAllClose(which_dist_samples, sample_values[which_c])
|
||||
|
||||
# Test that sampling with the same seed twice gives the same results.
|
||||
def testSampleMultipleTimes(self):
|
||||
# 5 component mixture.
|
||||
logits = [-10.0, -5.0, 0.0, 5.0, 10.0]
|
||||
mus = [-5.0, 0.0, 5.0, 4.0, 20.0]
|
||||
sigmas = [0.1, 5.0, 3.0, 0.2, 4.0]
|
||||
|
||||
with self.test_session():
|
||||
n = 100
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
components = [distributions_py.Normal(
|
||||
mu=mu, sigma=sigma) for mu, sigma in zip(mus, sigmas)]
|
||||
cat = distributions_py.Categorical(logits, dtype=tf.int32, name="cat1")
|
||||
dist1 = distributions_py.Mixture(cat, components, name="mixture1")
|
||||
samples1 = dist1.sample_n(n, seed=123456).eval()
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
components2 = [distributions_py.Normal(
|
||||
mu=mu, sigma=sigma) for mu, sigma in zip(mus, sigmas)]
|
||||
cat2 = distributions_py.Categorical(logits, dtype=tf.int32, name="cat2")
|
||||
dist2 = distributions_py.Mixture(cat2, components2, name="mixture2")
|
||||
samples2 = dist2.sample_n(n, seed=123456).eval()
|
||||
|
||||
self.assertAllClose(samples1, samples2)
|
||||
|
||||
def testSampleScalarBatchMultivariate(self):
|
||||
with self.test_session() as sess:
|
||||
num_components = 3
|
||||
|
@ -130,16 +130,17 @@ class StudentTTest(tf.test.TestCase):
|
||||
mu_v = 3.0
|
||||
sigma_v = np.sqrt(10.0)
|
||||
n = tf.constant(100)
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
student = tf.contrib.distributions.StudentT(
|
||||
name="student_t1", df=df, mu=mu, sigma=sigma)
|
||||
df=df, mu=mu, sigma=sigma, name="student_t1")
|
||||
samples1 = student.sample_n(n, seed=123456).eval()
|
||||
|
||||
# We need to start another test session, since this resets the internal
|
||||
# state.
|
||||
with self.test_session():
|
||||
tf.set_random_seed(654321)
|
||||
student2 = tf.contrib.distributions.StudentT(
|
||||
name="student_t2", df=df, mu=mu, sigma=sigma)
|
||||
df=df, mu=mu, sigma=sigma, name="student_t2")
|
||||
samples2 = student2.sample_n(n, seed=123456).eval()
|
||||
|
||||
self.assertAllClose(samples1, samples2)
|
||||
|
||||
def testStudentSampleSmallDfNoNan(self):
|
||||
|
@ -149,6 +149,30 @@ class WishartCholeskyTest(tf.test.TestCase):
|
||||
variance_estimate,
|
||||
rtol=0.05)
|
||||
|
||||
# Test that sampling with the same seed twice gives the same results.
|
||||
def testSampleMultipleTimes(self):
|
||||
with self.test_session():
|
||||
df = 4.
|
||||
n_val = 100
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
chol_w1 = distributions.WishartCholesky(
|
||||
df=df,
|
||||
scale=chol(make_pd(1., 3)),
|
||||
cholesky_input_output_matrices=False,
|
||||
name="wishart1")
|
||||
samples1 = chol_w1.sample_n(n_val, seed=123456).eval()
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
chol_w2 = distributions.WishartCholesky(
|
||||
df=df,
|
||||
scale=chol(make_pd(1., 3)),
|
||||
cholesky_input_output_matrices=False,
|
||||
name="wishart2")
|
||||
samples2 = chol_w2.sample_n(n_val, seed=123456).eval()
|
||||
|
||||
self.assertAllClose(samples1, samples2)
|
||||
|
||||
def testProb(self):
|
||||
with self.test_session():
|
||||
# Generate some positive definite (pd) matrices and their Cholesky
|
||||
|
@ -197,7 +197,8 @@ class Beta(distribution.Distribution):
|
||||
gamma1_sample = random_ops.random_gamma(
|
||||
[n,], a, dtype=self.dtype, seed=seed)
|
||||
gamma2_sample = random_ops.random_gamma(
|
||||
[n,], b, dtype=self.dtype, seed=seed)
|
||||
[n,], b, dtype=self.dtype,
|
||||
seed=distribution_util.gen_new_seed(seed, "beta"))
|
||||
beta_sample = gamma1_sample / (gamma1_sample + gamma2_sample)
|
||||
return beta_sample
|
||||
|
||||
|
@ -22,6 +22,7 @@ import numpy as np
|
||||
|
||||
from tensorflow.contrib.distributions.python.ops import categorical
|
||||
from tensorflow.contrib.distributions.python.ops import distribution
|
||||
from tensorflow.contrib.distributions.python.ops import distribution_util
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import tensor_shape
|
||||
from tensorflow.python.framework import tensor_util
|
||||
@ -295,8 +296,10 @@ class Mixture(distribution.Distribution):
|
||||
partitions=cat_samples,
|
||||
num_partitions=self.num_components)
|
||||
samples_class = [None for _ in range(self.num_components)]
|
||||
|
||||
for c in range(self.num_components):
|
||||
n_class = array_ops.size(partitioned_samples_indices[c])
|
||||
seed = distribution_util.gen_new_seed(seed, "mixture")
|
||||
samples_class_c = self.components[c].sample_n(n_class, seed=seed)
|
||||
|
||||
# Pull out the correct batch entries from each index.
|
||||
|
@ -22,6 +22,7 @@ import math
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.contrib.distributions.python.ops import distribution
|
||||
from tensorflow.contrib.distributions.python.ops import distribution_util
|
||||
from tensorflow.contrib.distributions.python.ops import operator_pd_cholesky
|
||||
from tensorflow.contrib.distributions.python.ops import operator_pd_full
|
||||
from tensorflow.contrib.framework.python.framework import tensor_util as contrib_tensor_util
|
||||
@ -211,7 +212,8 @@ class _WishartOperatorPD(distribution.Distribution):
|
||||
0.5 * self.df, self.dimension),
|
||||
beta=0.5,
|
||||
dtype=self.dtype,
|
||||
seed=seed)
|
||||
seed=distribution_util.gen_new_seed(
|
||||
seed, "wishart"))
|
||||
|
||||
# Complexity: O(nbk^2)
|
||||
x = array_ops.matrix_band_part(x, -1, 0) # Tri-lower.
|
||||
|
Loading…
Reference in New Issue
Block a user