Starting to consolidate the xtensa kernels.
First steps towards http://b/173043817 Copied the xtensa_hifimini implementations into the new directory and added an appropriate makefile. Tested the following commands: Older build command: ``` make -f tensorflow/lite/micro/tools/make/Makefile -j8 TARGET=xtensa_hifimini TAGS=xtensa_hifimini XTENSA_CORE=<xtensa_core> test_keyword_benchmark ``` Output: ``` InitializeKeywordRunner() took 1388393 ticks (1388 ms) KeywordRunNIerations(1) took 88408 ticks (88 ms) KeywordRunNIerations(10) took 883639 ticks (883 ms) ``` Consolidated makefile invocation: ``` make -f tensorflow/lite/micro/tools/make/Makefile -j8 TARGET=xtensa OPTIMIZED_KERNEL_DIR=xtensa TARGET_ARCH=hifimini XTENSA_CORE=mini1m1m_RG test_keyword_benchmark ``` Output: ``` InitializeKeywordRunner() took 1388465 ticks (1388 ms) KeywordRunNIerations(1) took 88408 ticks (88 ms) KeywordRunNIerations(10) took 883639 ticks (883 ms) ``` xt-size (note the different location of the two output binaries) ===== older binary ========== text data bss dec hex filename 54864 48040 25032 127936 1f3c0 tensorflow/lite/micro/tools/make/gen/xtensa_hifimini_xtensa_hifimini/bin/keyword_benchmark ===== newer binary ========== text data bss dec hex filename 54864 48024 25032 127920 1f3b0 tensorflow/lite/micro/tools/make/gen/xtensa_hifimini/bin/keyword_benchmark
This commit is contained in:
parent
18de5404c1
commit
399b29f56e
456
tensorflow/lite/micro/kernels/xtensa/conv.cc
Normal file
456
tensorflow/lite/micro/kernels/xtensa/conv.cc
Normal file
@ -0,0 +1,456 @@
|
|||||||
|
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "tensorflow/lite/kernels/internal/reference/conv.h"
|
||||||
|
|
||||||
|
#include <xtensa/tie/xt_hifi2.h>
|
||||||
|
|
||||||
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||||
|
#include "tensorflow/lite/c/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||||
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/padding.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/xtensa_hifimini/fixedpoint_utils.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
constexpr int kInputTensor = 0;
|
||||||
|
constexpr int kFilterTensor = 1;
|
||||||
|
constexpr int kBiasTensor = 2;
|
||||||
|
constexpr int kOutputTensor = 0;
|
||||||
|
|
||||||
|
// Conv is quantized along dimension 0:
|
||||||
|
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||||
|
constexpr int kConvQuantizedDimension = 0;
|
||||||
|
|
||||||
|
struct OpData {
|
||||||
|
TfLitePaddingValues padding;
|
||||||
|
// The scaling factor from input to output (aka the 'real multiplier') can
|
||||||
|
// be represented as a fixed point multiplier plus a left shift.
|
||||||
|
int32_t output_multiplier;
|
||||||
|
int output_shift;
|
||||||
|
|
||||||
|
// Cached tensor zero point values for quantized operations.
|
||||||
|
int32_t input_zero_point;
|
||||||
|
int32_t output_zero_point;
|
||||||
|
|
||||||
|
// Per channel output multiplier and shift.
|
||||||
|
int32_t* per_channel_output_multiplier;
|
||||||
|
int32_t* per_channel_output_shift;
|
||||||
|
|
||||||
|
// The range of the fused activation layer. For example for kNone and
|
||||||
|
// uint8_t these would be 0 and 255.
|
||||||
|
int32_t output_activation_min;
|
||||||
|
int32_t output_activation_max;
|
||||||
|
};
|
||||||
|
|
||||||
|
void ConvPerChannel(const ConvParams& params, const int32_t* output_multiplier,
|
||||||
|
const int32_t* output_shift,
|
||||||
|
const RuntimeShape& input_shape, const int8_t* input_data,
|
||||||
|
const RuntimeShape& filter_shape, const int8_t* filter_data,
|
||||||
|
const RuntimeShape& bias_shape, const int32_t* bias_data,
|
||||||
|
const RuntimeShape& output_shape, int8_t* output_data) {
|
||||||
|
const int stride_width = params.stride_width;
|
||||||
|
const int stride_height = params.stride_height;
|
||||||
|
const int dilation_width_factor = params.dilation_width_factor;
|
||||||
|
const int dilation_height_factor = params.dilation_height_factor;
|
||||||
|
const int pad_width = params.padding_values.width;
|
||||||
|
const int pad_height = params.padding_values.height;
|
||||||
|
const int32_t input_offset = params.input_offset;
|
||||||
|
const int32_t output_offset = params.output_offset;
|
||||||
|
const int32_t output_activation_min = params.quantized_activation_min;
|
||||||
|
const int32_t output_activation_max = params.quantized_activation_max;
|
||||||
|
|
||||||
|
const int batches = input_shape.Dims(0);
|
||||||
|
|
||||||
|
const int input_height = input_shape.Dims(1);
|
||||||
|
const int input_width = input_shape.Dims(2);
|
||||||
|
const int input_depth = input_shape.Dims(3);
|
||||||
|
|
||||||
|
const int filter_height = filter_shape.Dims(1);
|
||||||
|
const int filter_width = filter_shape.Dims(2);
|
||||||
|
const int filter_depth = filter_shape.Dims(3);
|
||||||
|
|
||||||
|
const int output_height = output_shape.Dims(1);
|
||||||
|
const int output_width = output_shape.Dims(2);
|
||||||
|
const int output_depth = output_shape.Dims(3);
|
||||||
|
|
||||||
|
ae_p24x2s input_offset_24x2 = AE_MOVPA24(input_offset);
|
||||||
|
ae_q56s output_offset_56 = AE_CVTQ48A32S(output_offset);
|
||||||
|
ae_q56s output_activation_min_56 = AE_CVTQ48A32S(output_activation_min);
|
||||||
|
ae_q56s output_activation_max_56 = AE_CVTQ48A32S(output_activation_max);
|
||||||
|
|
||||||
|
for (int batch = 0; batch < batches; ++batch) {
|
||||||
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
||||||
|
const int in_y_origin = (out_y * stride_height) - pad_height;
|
||||||
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||||
|
const int in_x_origin = (out_x * stride_width) - pad_width;
|
||||||
|
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||||
|
ae_q56s acc_56 = AE_ZEROQ56();
|
||||||
|
|
||||||
|
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||||
|
for (int filter_x = 0; filter_x < filter_width; filter_x += 2) {
|
||||||
|
const int in_x = in_x_origin + dilation_width_factor * filter_x;
|
||||||
|
const int in_y = in_y_origin + dilation_height_factor * filter_y;
|
||||||
|
const bool is_point_inside_image =
|
||||||
|
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
|
||||||
|
(in_y < input_height);
|
||||||
|
if (is_point_inside_image) {
|
||||||
|
// Find current input index, minus 2 for Xtensa load
|
||||||
|
// alignments:
|
||||||
|
// TODO(b/147322595): Consider doing these offset calculations
|
||||||
|
// with intrinsics:
|
||||||
|
int input_idx =
|
||||||
|
((batch * input_height + in_y) * input_width + in_x) *
|
||||||
|
input_depth * 2 -
|
||||||
|
2;
|
||||||
|
const int8_t* input_vals_offset_ptr = input_data + input_idx;
|
||||||
|
for (int i = 0; i < input_depth; i += 2) {
|
||||||
|
// Load signed 2x 8bit values and right shift into 24bit
|
||||||
|
// alignment:
|
||||||
|
ae_p24x2s input_vals_24x2;
|
||||||
|
AE_LP8X2F_IU(input_vals_24x2, input_vals_offset_ptr, 2);
|
||||||
|
input_vals_24x2 = AE_P24X2S_SRAI(input_vals_24x2, 16);
|
||||||
|
|
||||||
|
// Add input offset (24bit aligned):
|
||||||
|
input_vals_24x2 =
|
||||||
|
AE_P24S_ADDS_P24X2S(input_vals_24x2, input_offset_24x2);
|
||||||
|
|
||||||
|
// Find current filter index, minus 2 for Xtensa load
|
||||||
|
// alignments:
|
||||||
|
int filter_idx =
|
||||||
|
((out_channel * filter_height + filter_y) * filter_width +
|
||||||
|
filter_x) *
|
||||||
|
filter_depth +
|
||||||
|
i - 2;
|
||||||
|
const int8_t* filter_vals_offset_ptr =
|
||||||
|
filter_data + filter_idx;
|
||||||
|
|
||||||
|
// Load signed 2x 8bit values and right shift into 24bit
|
||||||
|
// alignment:
|
||||||
|
ae_p24x2s filter_vals_24x2;
|
||||||
|
AE_LP8X2F_IU(filter_vals_24x2, filter_vals_offset_ptr, 2);
|
||||||
|
filter_vals_24x2 = AE_P24X2S_SRAI(filter_vals_24x2, 16);
|
||||||
|
|
||||||
|
// Multiply and accumulate into 48bit bit space:
|
||||||
|
AE_MULAAP24S_HH_LL(acc_56, filter_vals_24x2, input_vals_24x2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Left shift from 48bit alignment to 32bit:
|
||||||
|
acc_56 = AE_Q56S_SLAI(acc_56, 16);
|
||||||
|
|
||||||
|
if (bias_data) {
|
||||||
|
// Load and add bias at 32bit alignment:
|
||||||
|
ae_q56s bias_56 = AE_CVTQ48A32S(bias_data[out_channel]);
|
||||||
|
acc_56 = AE_ADDQ56(acc_56, bias_56);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Shift from 32bit alignment to 24bit alignment and place back on
|
||||||
|
// the PR register:
|
||||||
|
acc_56 = AE_Q56S_SLAI(acc_56, 8);
|
||||||
|
ae_p24x2s acc_24x2 = AE_TRUNCP24Q48(acc_56);
|
||||||
|
|
||||||
|
// Apply quantized multiplier and accumulate result at 48bit
|
||||||
|
// alignment. Convert the (unsigned) 32-bit multiplier down to a
|
||||||
|
// 24-bit multiplier.
|
||||||
|
acc_56 = MultiplyByQuantizedMultiplier(
|
||||||
|
acc_24x2, output_multiplier[out_channel] >> 8,
|
||||||
|
output_shift[out_channel]);
|
||||||
|
|
||||||
|
// Add output offset, cap activation, and assign to the output:
|
||||||
|
acc_56 = AE_ADDQ56(acc_56, output_offset_56);
|
||||||
|
acc_56 = AE_MINQ56S(acc_56, output_activation_max_56);
|
||||||
|
acc_56 = AE_MAXQ56S(acc_56, output_activation_min_56);
|
||||||
|
|
||||||
|
int output_idx =
|
||||||
|
((batch * output_height + out_y) * output_width + out_x) *
|
||||||
|
output_depth +
|
||||||
|
out_channel;
|
||||||
|
output_data[output_idx] = static_cast<int8_t>(AE_TRUNCA32Q48(acc_56));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO(b/154240772): Move shared code into common methods.
|
||||||
|
inline void Conv1x32Input32x32Filter(
|
||||||
|
const int input_offset, const int output_offset,
|
||||||
|
const int quantized_activation_min, const int quantized_activation_max,
|
||||||
|
const int32_t* output_multiplier, const int32_t* output_shift,
|
||||||
|
const RuntimeShape& input_shape, const int8_t* input_data,
|
||||||
|
const RuntimeShape& filter_shape, const int8_t* filter_data,
|
||||||
|
const RuntimeShape& bias_shape, const int32_t* bias_data,
|
||||||
|
const RuntimeShape& output_shape, int8_t* output_data) {
|
||||||
|
ae_p24x2s input_offset_24x2 = AE_MOVPA24(input_offset);
|
||||||
|
ae_q56s output_offset_56 = AE_CVTQ48A32S(output_offset);
|
||||||
|
ae_q56s output_activation_max_56 = AE_CVTQ48A32S(quantized_activation_max);
|
||||||
|
ae_q56s output_activation_min_56 = AE_CVTQ48A32S(quantized_activation_min);
|
||||||
|
|
||||||
|
constexpr int kChannels = 32;
|
||||||
|
constexpr int kFilterDepth = 32;
|
||||||
|
for (int ch = 0; ch < kChannels; ch++) {
|
||||||
|
ae_q56s acc_56 = AE_ZEROQ56();
|
||||||
|
const int8_t* input_vals_ptr = input_data - 2;
|
||||||
|
for (int i = 0; i < kFilterDepth; i += 2) {
|
||||||
|
// Load signed 2x 8bit values and right shift into 24bit
|
||||||
|
// alignment:
|
||||||
|
ae_p24x2s input_vals_24x2;
|
||||||
|
AE_LP8X2F_IU(input_vals_24x2, input_vals_ptr, 2);
|
||||||
|
input_vals_24x2 = AE_P24X2S_SRAI(input_vals_24x2, 16);
|
||||||
|
|
||||||
|
// Add input offset (24bit aligned):
|
||||||
|
input_vals_24x2 = AE_P24S_ADDS_P24X2S(input_vals_24x2, input_offset_24x2);
|
||||||
|
// Find current filter index, minus 2 for Xtensa load
|
||||||
|
// alignments:
|
||||||
|
const int filter_idx = ch * kFilterDepth + i - 2;
|
||||||
|
const int8_t* filter_vals_offset_ptr = filter_data + filter_idx;
|
||||||
|
|
||||||
|
// Load signed 2x 8bit values and right shift into 24bit
|
||||||
|
// alignment:
|
||||||
|
ae_p24x2s filter_vals_24x2;
|
||||||
|
AE_LP8X2F_IU(filter_vals_24x2, filter_vals_offset_ptr, 2);
|
||||||
|
filter_vals_24x2 = AE_P24X2S_SRAI(filter_vals_24x2, 16);
|
||||||
|
|
||||||
|
// Multiply and accumulate into 48bit bit space:
|
||||||
|
AE_MULAAP24S_HH_LL(acc_56, filter_vals_24x2, input_vals_24x2);
|
||||||
|
}
|
||||||
|
// Left shift from 48bit alignment to 32bit:
|
||||||
|
acc_56 = AE_Q56S_SLAI(acc_56, 16);
|
||||||
|
if (bias_data) {
|
||||||
|
// Load and add bias at 32bit alignment:
|
||||||
|
ae_q56s bias_56 = AE_CVTQ48A32S(bias_data[ch]);
|
||||||
|
acc_56 = AE_ADDQ56(acc_56, bias_56);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Shift from 32bit alignment to 24bit alignment and place back on
|
||||||
|
// the PR register:
|
||||||
|
acc_56 = AE_Q56S_SLAI(acc_56, 8);
|
||||||
|
ae_p24x2s acc_24x2 = AE_TRUNCP24Q48(acc_56);
|
||||||
|
|
||||||
|
// Apply quantized multiplier and accumulate result at 48bit alignment.
|
||||||
|
// Convert the (unsigned) 32-bit multiplier down to a 24-bit multiplier.
|
||||||
|
acc_56 = MultiplyByQuantizedMultiplier(acc_24x2, output_multiplier[ch] >> 8,
|
||||||
|
output_shift[ch]);
|
||||||
|
|
||||||
|
// Add output offset, cap activation, and assign to the output:
|
||||||
|
acc_56 = AE_ADDQ56(acc_56, output_offset_56);
|
||||||
|
acc_56 = AE_MINQ56S(acc_56, output_activation_max_56);
|
||||||
|
acc_56 = AE_MAXQ56S(acc_56, output_activation_min_56);
|
||||||
|
|
||||||
|
output_data[ch] = static_cast<int8_t>(AE_TRUNCA32Q48(acc_56));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||||
|
TfLiteConvParams* params, int width, int height,
|
||||||
|
int filter_width, int filter_height, int out_width,
|
||||||
|
int out_height, const TfLiteType data_type,
|
||||||
|
OpData* data) {
|
||||||
|
bool has_bias = node->inputs->size == 3;
|
||||||
|
// Check number of inputs/outputs
|
||||||
|
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
|
||||||
|
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
|
||||||
|
|
||||||
|
// Matching GetWindowedOutputSize in TensorFlow.
|
||||||
|
auto padding = params->padding;
|
||||||
|
data->padding = ComputePaddingHeightWidth(
|
||||||
|
params->stride_height, params->stride_width,
|
||||||
|
params->dilation_height_factor, params->dilation_width_factor, height,
|
||||||
|
width, filter_height, filter_width, padding, &out_height, &out_width);
|
||||||
|
|
||||||
|
// Note that quantized inference requires that all tensors have their
|
||||||
|
// parameters set. This is usually done during quantized training.
|
||||||
|
if (data_type != kTfLiteFloat32) {
|
||||||
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||||
|
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||||
|
const TfLiteTensor* bias =
|
||||||
|
GetOptionalInputTensor(context, node, kBiasTensor);
|
||||||
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||||
|
int output_channels = filter->dims->data[kConvQuantizedDimension];
|
||||||
|
|
||||||
|
return tflite::PopulateConvolutionQuantizationParams(
|
||||||
|
context, input, filter, bias, output, params->activation,
|
||||||
|
&data->output_multiplier, &data->output_shift,
|
||||||
|
&data->output_activation_min, &data->output_activation_max,
|
||||||
|
data->per_channel_output_multiplier,
|
||||||
|
reinterpret_cast<int*>(data->per_channel_output_shift),
|
||||||
|
output_channels);
|
||||||
|
}
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||||
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||||
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||||
|
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
|
||||||
|
|
||||||
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||||
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||||
|
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||||
|
|
||||||
|
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||||
|
|
||||||
|
int input_width = input->dims->data[2];
|
||||||
|
int input_height = input->dims->data[1];
|
||||||
|
int filter_width = filter->dims->data[2];
|
||||||
|
int filter_height = filter->dims->data[1];
|
||||||
|
int output_width = output->dims->data[2];
|
||||||
|
int output_height = output->dims->data[1];
|
||||||
|
|
||||||
|
// Per channel quantization is only needed for int8_t inference. For other
|
||||||
|
// quantized types, only a single scale and zero point is needed.
|
||||||
|
const int num_channels = filter->dims->data[kConvQuantizedDimension];
|
||||||
|
// Dynamically allocate per-channel quantization parameters.
|
||||||
|
op_data->per_channel_output_multiplier =
|
||||||
|
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||||
|
context, num_channels * sizeof(int32_t)));
|
||||||
|
op_data->per_channel_output_shift =
|
||||||
|
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||||
|
context, num_channels * sizeof(int32_t)));
|
||||||
|
op_data->input_zero_point = input->params.zero_point;
|
||||||
|
op_data->output_zero_point = output->params.zero_point;
|
||||||
|
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||||
|
if (input->type == kTfLiteInt8) {
|
||||||
|
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||||
|
kTfLiteAffineQuantization);
|
||||||
|
|
||||||
|
const auto* affine_quantization =
|
||||||
|
reinterpret_cast<TfLiteAffineQuantization*>(
|
||||||
|
filter->quantization.params);
|
||||||
|
TF_LITE_ENSURE(context, affine_quantization);
|
||||||
|
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||||
|
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
||||||
|
|
||||||
|
TF_LITE_ENSURE(context,
|
||||||
|
affine_quantization->scale->size == 1 ||
|
||||||
|
affine_quantization->scale->size ==
|
||||||
|
filter->dims->data[kConvQuantizedDimension]);
|
||||||
|
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
||||||
|
affine_quantization->zero_point->size);
|
||||||
|
}
|
||||||
|
|
||||||
|
return CalculateOpData(context, node, params, input_width, input_height,
|
||||||
|
filter_width, filter_height, output_width,
|
||||||
|
output_height, input->type, op_data);
|
||||||
|
}
|
||||||
|
|
||||||
|
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||||
|
TfLiteConvParams* params, OpData* data,
|
||||||
|
const TfLiteEvalTensor* input,
|
||||||
|
const TfLiteEvalTensor* filter,
|
||||||
|
const TfLiteEvalTensor* bias,
|
||||||
|
TfLiteEvalTensor* output,
|
||||||
|
TfLiteEvalTensor* im2col) {
|
||||||
|
// TODO(b/154032858): Investigate removing extra copies.
|
||||||
|
ConvParams op_params;
|
||||||
|
op_params.input_offset = -data->input_zero_point;
|
||||||
|
op_params.output_offset = data->output_zero_point;
|
||||||
|
op_params.stride_height = params->stride_height;
|
||||||
|
op_params.stride_width = params->stride_width;
|
||||||
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
||||||
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||||
|
op_params.padding_values.height = data->padding.height;
|
||||||
|
op_params.padding_values.width = data->padding.width;
|
||||||
|
op_params.quantized_activation_min = data->output_activation_min;
|
||||||
|
op_params.quantized_activation_max = data->output_activation_max;
|
||||||
|
|
||||||
|
ConvPerChannel(op_params, data->per_channel_output_multiplier,
|
||||||
|
data->per_channel_output_shift,
|
||||||
|
tflite::micro::GetTensorShape(input),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(input),
|
||||||
|
tflite::micro::GetTensorShape(filter),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(filter),
|
||||||
|
tflite::micro::GetTensorShape(bias),
|
||||||
|
tflite::micro::GetTensorData<int32_t>(bias),
|
||||||
|
tflite::micro::GetTensorShape(output),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(output));
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||||
|
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
|
||||||
|
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||||
|
|
||||||
|
TfLiteEvalTensor* output =
|
||||||
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||||
|
const TfLiteEvalTensor* input =
|
||||||
|
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||||
|
const TfLiteEvalTensor* filter =
|
||||||
|
tflite::micro::GetEvalInput(context, node, kFilterTensor);
|
||||||
|
const TfLiteEvalTensor* bias =
|
||||||
|
(NumInputs(node) == 3)
|
||||||
|
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
|
||||||
|
: nullptr;
|
||||||
|
|
||||||
|
int* input_dims = input->dims->data;
|
||||||
|
int* filter_dims = filter->dims->data;
|
||||||
|
if (input_dims[0] == 1 && input_dims[1] == 1 && input_dims[2] == 1 &&
|
||||||
|
input_dims[3] == 32 && filter_dims[0] == 32 && filter_dims[1] == 1 &&
|
||||||
|
filter_dims[2] == 1 && filter_dims[3] == 32) {
|
||||||
|
Conv1x32Input32x32Filter(
|
||||||
|
-op_data->input_zero_point, op_data->output_zero_point,
|
||||||
|
op_data->output_activation_min, op_data->output_activation_max,
|
||||||
|
op_data->per_channel_output_multiplier,
|
||||||
|
op_data->per_channel_output_shift, tflite::micro::GetTensorShape(input),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(input),
|
||||||
|
tflite::micro::GetTensorShape(filter),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(filter),
|
||||||
|
tflite::micro::GetTensorShape(bias),
|
||||||
|
tflite::micro::GetTensorData<int32_t>(bias),
|
||||||
|
tflite::micro::GetTensorShape(output),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(output));
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
switch (input->type) {
|
||||||
|
case kTfLiteInt8:
|
||||||
|
EvalQuantizedPerChannel(context, node, params, op_data, input, filter,
|
||||||
|
bias, output, nullptr);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||||
|
TfLiteTypeGetName(input->type), input->type);
|
||||||
|
return kTfLiteError;
|
||||||
|
}
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
TfLiteRegistration Register_CONV_2D() {
|
||||||
|
return {/*init=*/Init,
|
||||||
|
/*free=*/nullptr,
|
||||||
|
/*prepare=*/Prepare,
|
||||||
|
/*invoke=*/Eval,
|
||||||
|
/*profiling_string=*/nullptr,
|
||||||
|
/*builtin_code=*/0,
|
||||||
|
/*custom_name=*/nullptr,
|
||||||
|
/*version=*/0};
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace tflite
|
503
tensorflow/lite/micro/kernels/xtensa/depthwise_conv.cc
Normal file
503
tensorflow/lite/micro/kernels/xtensa/depthwise_conv.cc
Normal file
@ -0,0 +1,503 @@
|
|||||||
|
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include <xtensa/tie/xt_hifi2.h>
|
||||||
|
|
||||||
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||||
|
#include "tensorflow/lite/c/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||||
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/padding.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/xtensa_hifimini/fixedpoint_utils.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
constexpr int kInputTensor = 0;
|
||||||
|
constexpr int kFilterTensor = 1;
|
||||||
|
constexpr int kBiasTensor = 2;
|
||||||
|
constexpr int kOutputTensor = 0;
|
||||||
|
|
||||||
|
// Depthwise conv is quantized along dimension 3:
|
||||||
|
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||||
|
constexpr int kDepthwiseConvQuantizedDimension = 3;
|
||||||
|
|
||||||
|
struct OpData {
|
||||||
|
TfLitePaddingValues padding;
|
||||||
|
// The scaling factor from input to output (aka the 'real multiplier') can
|
||||||
|
// be represented as a fixed point multiplier plus a left shift.
|
||||||
|
int32_t output_multiplier;
|
||||||
|
int output_shift;
|
||||||
|
|
||||||
|
// Cached tensor zero point values for quantized operations.
|
||||||
|
int32_t input_zero_point;
|
||||||
|
int32_t output_zero_point;
|
||||||
|
|
||||||
|
// Per channel output multiplier and shift.
|
||||||
|
// TODO(b/141139247): Allocate these dynamically when possible.
|
||||||
|
int32_t* per_channel_output_multiplier;
|
||||||
|
int32_t* per_channel_output_shift;
|
||||||
|
|
||||||
|
// The range of the fused activation layer. For example for kNone and
|
||||||
|
// uint8_t these would be 0 and 255.
|
||||||
|
int32_t output_activation_min;
|
||||||
|
int32_t output_activation_max;
|
||||||
|
};
|
||||||
|
|
||||||
|
inline void DepthwiseConvPerChannel(
|
||||||
|
const DepthwiseParams& params, const int32_t* output_multiplier,
|
||||||
|
const int32_t* output_shift, const RuntimeShape& input_shape,
|
||||||
|
const int8_t* input_data, const RuntimeShape& filter_shape,
|
||||||
|
const int8_t* filter_data, const RuntimeShape& bias_shape,
|
||||||
|
const int32_t* bias_data, const RuntimeShape& output_shape,
|
||||||
|
int8_t* output_data) {
|
||||||
|
// TODO(b/154032858): Investigate removing extra copies.
|
||||||
|
const int stride_width = params.stride_width;
|
||||||
|
const int stride_height = params.stride_height;
|
||||||
|
const int dilation_width_factor = params.dilation_width_factor;
|
||||||
|
const int dilation_height_factor = params.dilation_height_factor;
|
||||||
|
const int pad_width = params.padding_values.width;
|
||||||
|
const int pad_height = params.padding_values.height;
|
||||||
|
const int depth_multiplier = params.depth_multiplier;
|
||||||
|
const int32_t input_offset = params.input_offset;
|
||||||
|
const int32_t output_offset = params.output_offset;
|
||||||
|
const int32_t output_activation_min = params.quantized_activation_min;
|
||||||
|
const int32_t output_activation_max = params.quantized_activation_max;
|
||||||
|
|
||||||
|
const int batches = input_shape.Dims(0);
|
||||||
|
|
||||||
|
const int input_height = input_shape.Dims(1);
|
||||||
|
const int input_width = input_shape.Dims(2);
|
||||||
|
const int input_depth = input_shape.Dims(3);
|
||||||
|
|
||||||
|
const int filter_height = filter_shape.Dims(1);
|
||||||
|
const int filter_width = filter_shape.Dims(2);
|
||||||
|
const int filter_depth = filter_shape.Dims(3);
|
||||||
|
|
||||||
|
const int output_height = output_shape.Dims(1);
|
||||||
|
const int output_width = output_shape.Dims(2);
|
||||||
|
const int output_depth = output_shape.Dims(3);
|
||||||
|
|
||||||
|
ae_p24x2s input_offset_24x2 = AE_MOVPA24(input_offset);
|
||||||
|
ae_q56s output_offset_56 = AE_CVTQ48A32S(output_offset);
|
||||||
|
ae_q56s output_activation_min_56 = AE_CVTQ48A32S(output_activation_min);
|
||||||
|
ae_q56s output_activation_max_56 = AE_CVTQ48A32S(output_activation_max);
|
||||||
|
|
||||||
|
for (int batch = 0; batch < batches; ++batch) {
|
||||||
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
||||||
|
const int in_y_origin = (out_y * stride_height) - pad_height;
|
||||||
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||||
|
const int in_x_origin = (out_x * stride_width) - pad_width;
|
||||||
|
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
||||||
|
for (int m = 0; m < depth_multiplier; ++m) {
|
||||||
|
const int output_channel = m + in_channel * depth_multiplier;
|
||||||
|
ae_q56s acc_56 = AE_ZEROQ56();
|
||||||
|
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||||
|
const int in_y = in_y_origin + dilation_height_factor * filter_y;
|
||||||
|
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
|
||||||
|
const int in_x = in_x_origin + dilation_width_factor * filter_x;
|
||||||
|
// Zero padding by omitting the areas outside the image.
|
||||||
|
const bool is_point_inside_image =
|
||||||
|
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
|
||||||
|
(in_y < input_height);
|
||||||
|
|
||||||
|
if (is_point_inside_image) {
|
||||||
|
// Find current input index, minus 2 for Xtensa load
|
||||||
|
// alignments:
|
||||||
|
// TODO(b/147322595): Consider doing these offset calculations
|
||||||
|
// with intrinsics:
|
||||||
|
int input_idx =
|
||||||
|
((batch * input_height + in_y) * input_width + in_x) *
|
||||||
|
input_depth +
|
||||||
|
(in_channel);
|
||||||
|
int32_t input_val = input_data[input_idx];
|
||||||
|
|
||||||
|
// Find current filter index, minus 2 for Xtensa load
|
||||||
|
// alignments:
|
||||||
|
int filter_idx =
|
||||||
|
((filter_y)*filter_width + filter_x) * filter_depth +
|
||||||
|
(output_channel);
|
||||||
|
int32_t filter_val = filter_data[filter_idx];
|
||||||
|
|
||||||
|
// Load 8bit value as int32_t into a 24x24 register and right
|
||||||
|
// shift into 24bit space. Note: value is duplicated in the HH
|
||||||
|
// and LL register - but all calculations are done on the HH
|
||||||
|
// side.
|
||||||
|
ae_p24x2s input_val_24x2 = AE_MOVPA24(input_val);
|
||||||
|
|
||||||
|
// Add input offset (24bit aligned):
|
||||||
|
input_val_24x2 =
|
||||||
|
AE_P24S_ADDS_P24X2S(input_val_24x2, input_offset_24x2);
|
||||||
|
|
||||||
|
// Load filter 8bit value into 24bit alignment:
|
||||||
|
ae_p24x2s filter_val_24x2 = AE_MOVPA24(filter_val);
|
||||||
|
|
||||||
|
// Multiply and accumulate the HH side of each 24x24 PR
|
||||||
|
// register:
|
||||||
|
AE_MULAS56P24S_HH(acc_56, filter_val_24x2, input_val_24x2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Left shift from 48bit alignment to 32bit:
|
||||||
|
acc_56 = AE_Q56S_SLAI(acc_56, 16);
|
||||||
|
|
||||||
|
if (bias_data) {
|
||||||
|
// Load and add bias at 32bit alignment:
|
||||||
|
ae_q56s bias_56 = AE_CVTQ48A32S(bias_data[output_channel]);
|
||||||
|
acc_56 = AE_ADDQ56(acc_56, bias_56);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Shift from 32bit alignment to 24bit alignment and place back on
|
||||||
|
// the PR register:
|
||||||
|
acc_56 = AE_Q56S_SLAI(acc_56, 8);
|
||||||
|
ae_p24x2s acc_24x2 = AE_TRUNCP24Q48(acc_56);
|
||||||
|
|
||||||
|
// Apply quantized multiplier and accumulate result at 48bit
|
||||||
|
// alignment:
|
||||||
|
acc_56 = MultiplyByQuantizedMultiplier(
|
||||||
|
acc_24x2, output_multiplier[output_channel],
|
||||||
|
output_shift[output_channel]);
|
||||||
|
|
||||||
|
// Add output offset, cap activation, and assign to the output:
|
||||||
|
acc_56 = AE_ADDQ56(acc_56, output_offset_56);
|
||||||
|
acc_56 = AE_MINQ56S(acc_56, output_activation_max_56);
|
||||||
|
acc_56 = AE_MAXQ56S(acc_56, output_activation_min_56);
|
||||||
|
|
||||||
|
int output_idx =
|
||||||
|
((batch * output_height + out_y) * output_width + out_x) *
|
||||||
|
output_depth +
|
||||||
|
output_channel;
|
||||||
|
output_data[output_idx] =
|
||||||
|
static_cast<int8_t>(AE_TRUNCA32Q48(acc_56));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int kConvolutionalKernelWidth = 4;
|
||||||
|
constexpr int kConvolutionalKernelDepth = 32;
|
||||||
|
inline void DepthwiseConv4x32MatchingInputAndFilter(
|
||||||
|
const int input_offset, const int output_offset,
|
||||||
|
const int quantized_activation_min, const int quantized_activation_max,
|
||||||
|
const int32_t* output_multiplier, const int32_t* output_shift,
|
||||||
|
const RuntimeShape& input_shape, const int8_t* input_data,
|
||||||
|
const RuntimeShape& filter_shape, const int8_t* filter_data,
|
||||||
|
const RuntimeShape& bias_shape, const int32_t* bias_data,
|
||||||
|
const RuntimeShape& output_shape, int8_t* output_data) {
|
||||||
|
// Convert the (unsigned) 32-bit multiplier down to a 24-bit multiplier.
|
||||||
|
const int32_t mult = output_multiplier[0] >> 8;
|
||||||
|
const int32_t shift = output_shift[0];
|
||||||
|
ae_p24x2s input_offset_24x2 = AE_MOVPA24(input_offset);
|
||||||
|
ae_q56s output_offset_56 = AE_CVTQ48A32S(output_offset);
|
||||||
|
ae_q56s output_activation_min_56 = AE_CVTQ48A32S(quantized_activation_min);
|
||||||
|
ae_q56s output_activation_max_56 = AE_CVTQ48A32S(quantized_activation_max);
|
||||||
|
|
||||||
|
const int num_blocks =
|
||||||
|
kConvolutionalKernelDepth / 2; // Based on the 24x2 register size.
|
||||||
|
const int stride_elements =
|
||||||
|
(kConvolutionalKernelDepth / kConvolutionalKernelWidth);
|
||||||
|
|
||||||
|
const int8_t* input_0_ptr = (const int8_t*)(input_data - 2);
|
||||||
|
const int8_t* weight_0_ptr = (const int8_t*)(filter_data - 2);
|
||||||
|
// Apply the kernels in blocks of 4 for all the channels.
|
||||||
|
const int8_t* input_1_ptr = input_0_ptr + stride_elements * 4;
|
||||||
|
const int8_t* input_2_ptr = input_1_ptr + stride_elements * 4;
|
||||||
|
const int8_t* input_3_ptr = input_2_ptr + stride_elements * 4;
|
||||||
|
|
||||||
|
const int8_t* weight_1_ptr = weight_0_ptr + stride_elements * 4;
|
||||||
|
const int8_t* weight_2_ptr = weight_1_ptr + stride_elements * 4;
|
||||||
|
const int8_t* weight_3_ptr = weight_2_ptr + stride_elements * 4;
|
||||||
|
|
||||||
|
for (int i = 0; i < num_blocks; ++i) {
|
||||||
|
ae_q56s block_0_acc = AE_ZEROQ56();
|
||||||
|
ae_q56s block_1_acc = AE_ZEROQ56();
|
||||||
|
|
||||||
|
// Load all the weights.
|
||||||
|
ae_p24x2s weight_0, weight_1, weight_2, weight_3;
|
||||||
|
AE_LP8X2F_IU(weight_0, weight_0_ptr, 2);
|
||||||
|
AE_LP8X2F_IU(weight_1, weight_1_ptr, 2);
|
||||||
|
AE_LP8X2F_IU(weight_2, weight_2_ptr, 2);
|
||||||
|
AE_LP8X2F_IU(weight_3, weight_3_ptr, 2);
|
||||||
|
|
||||||
|
// Load all the inputs.
|
||||||
|
ae_p24x2s input_0, input_1, input_2, input_3;
|
||||||
|
AE_LP8X2F_IU(input_0, input_0_ptr, 2);
|
||||||
|
AE_LP8X2F_IU(input_1, input_1_ptr, 2);
|
||||||
|
AE_LP8X2F_IU(input_2, input_2_ptr, 2);
|
||||||
|
AE_LP8X2F_IU(input_3, input_3_ptr, 2);
|
||||||
|
|
||||||
|
// Shift inputs to 8 bit alignment and add offsets.
|
||||||
|
input_0 = AE_P24X2S_SRAI(input_0, 16);
|
||||||
|
input_1 = AE_P24X2S_SRAI(input_1, 16);
|
||||||
|
input_2 = AE_P24X2S_SRAI(input_2, 16);
|
||||||
|
input_3 = AE_P24X2S_SRAI(input_3, 16);
|
||||||
|
|
||||||
|
input_0 = AE_P24S_ADDS_P24X2S(input_0, input_offset_24x2);
|
||||||
|
input_1 = AE_P24S_ADDS_P24X2S(input_1, input_offset_24x2);
|
||||||
|
input_2 = AE_P24S_ADDS_P24X2S(input_2, input_offset_24x2);
|
||||||
|
input_3 = AE_P24S_ADDS_P24X2S(input_3, input_offset_24x2);
|
||||||
|
|
||||||
|
// Do the multiplies across all channels. Resulting accumulators are 32bit
|
||||||
|
// aligned (24 bit aligned weights * 8 bit aligned inputs).
|
||||||
|
AE_MULAS56P24S_HH(block_0_acc, input_0, weight_0);
|
||||||
|
AE_MULAS56P24S_HH(block_0_acc, input_1, weight_1);
|
||||||
|
AE_MULAS56P24S_HH(block_0_acc, input_2, weight_2);
|
||||||
|
AE_MULAS56P24S_HH(block_0_acc, input_3, weight_3);
|
||||||
|
|
||||||
|
AE_MULAS56P24S_LL(block_1_acc, input_0, weight_0);
|
||||||
|
AE_MULAS56P24S_LL(block_1_acc, input_1, weight_1);
|
||||||
|
AE_MULAS56P24S_LL(block_1_acc, input_2, weight_2);
|
||||||
|
AE_MULAS56P24S_LL(block_1_acc, input_3, weight_3);
|
||||||
|
|
||||||
|
int ch_0 = i * 2;
|
||||||
|
int ch_1 = i * 2 + 1;
|
||||||
|
|
||||||
|
// Load and add bias at 32bit alignment:
|
||||||
|
ae_q56s bias_56_0 = AE_CVTQ48A32S(bias_data[ch_0]);
|
||||||
|
ae_q56s bias_56_1 = AE_CVTQ48A32S(bias_data[ch_1]);
|
||||||
|
block_0_acc = AE_ADDQ56(block_0_acc, bias_56_0);
|
||||||
|
block_1_acc = AE_ADDQ56(block_1_acc, bias_56_1);
|
||||||
|
|
||||||
|
// Shift from 32bit alignment to 24bit alignment and place back on
|
||||||
|
// the PR register:
|
||||||
|
block_0_acc = AE_Q56S_SLAI(block_0_acc, 8);
|
||||||
|
block_1_acc = AE_Q56S_SLAI(block_1_acc, 8);
|
||||||
|
ae_p24x2s acc_24x2_0 = AE_TRUNCP24Q48(block_0_acc);
|
||||||
|
ae_p24x2s acc_24x2_1 = AE_TRUNCP24Q48(block_1_acc);
|
||||||
|
|
||||||
|
// Apply quantized multiplier and accumulate result at 48bit
|
||||||
|
// alignment:
|
||||||
|
block_0_acc = MultiplyByQuantizedMultiplier(acc_24x2_0, mult, shift);
|
||||||
|
// Apply quantized multiplier and accumulate result at 48bit
|
||||||
|
// alignment:
|
||||||
|
block_1_acc = MultiplyByQuantizedMultiplier(acc_24x2_1, mult, shift);
|
||||||
|
|
||||||
|
// Add output offset, cap activation, and assign to the output:
|
||||||
|
block_0_acc = AE_ADDQ56(block_0_acc, output_offset_56);
|
||||||
|
block_1_acc = AE_ADDQ56(block_1_acc, output_offset_56);
|
||||||
|
block_0_acc = AE_MINQ56S(block_0_acc, output_activation_max_56);
|
||||||
|
block_1_acc = AE_MINQ56S(block_1_acc, output_activation_max_56);
|
||||||
|
block_0_acc = AE_MAXQ56S(block_0_acc, output_activation_min_56);
|
||||||
|
block_1_acc = AE_MAXQ56S(block_1_acc, output_activation_min_56);
|
||||||
|
|
||||||
|
output_data[ch_0] = static_cast<int8_t>(AE_TRUNCA32Q48(block_0_acc));
|
||||||
|
output_data[ch_1] = static_cast<int8_t>(AE_TRUNCA32Q48(block_1_acc));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||||
|
TfLiteDepthwiseConvParams* params, int width,
|
||||||
|
int height, int filter_width, int filter_height,
|
||||||
|
const TfLiteType data_type, OpData* data) {
|
||||||
|
bool has_bias = node->inputs->size == 3;
|
||||||
|
// Check number of inputs/outputs
|
||||||
|
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
|
||||||
|
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
|
||||||
|
|
||||||
|
int unused_output_height, unused_output_width;
|
||||||
|
data->padding = ComputePaddingHeightWidth(
|
||||||
|
params->stride_height, params->stride_width, 1, 1, height, width,
|
||||||
|
filter_height, filter_width, params->padding, &unused_output_height,
|
||||||
|
&unused_output_width);
|
||||||
|
|
||||||
|
// Note that quantized inference requires that all tensors have their
|
||||||
|
// parameters set. This is usually done during quantized training.
|
||||||
|
if (data_type != kTfLiteFloat32) {
|
||||||
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||||
|
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||||
|
const TfLiteTensor* bias =
|
||||||
|
GetOptionalInputTensor(context, node, kBiasTensor);
|
||||||
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||||
|
int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
|
||||||
|
|
||||||
|
// TODO(b/148610881): Consider calculating quantized params at int24
|
||||||
|
// calculations:
|
||||||
|
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
|
||||||
|
context, input, filter, bias, output, params->activation,
|
||||||
|
&data->output_multiplier, &data->output_shift,
|
||||||
|
&data->output_activation_min, &data->output_activation_max,
|
||||||
|
data->per_channel_output_multiplier,
|
||||||
|
reinterpret_cast<int*>(data->per_channel_output_shift), num_channels));
|
||||||
|
}
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||||
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||||
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||||
|
auto* params =
|
||||||
|
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
||||||
|
|
||||||
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||||
|
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||||
|
const TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||||
|
|
||||||
|
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||||
|
|
||||||
|
const TfLiteType data_type = input->type;
|
||||||
|
int width = SizeOfDimension(input, 2);
|
||||||
|
int height = SizeOfDimension(input, 1);
|
||||||
|
int filter_width = SizeOfDimension(filter, 2);
|
||||||
|
int filter_height = SizeOfDimension(filter, 1);
|
||||||
|
|
||||||
|
// Per channel quantization is only needed for int8_t inference. For other
|
||||||
|
// quantized types, only a single scale and zero point is needed.
|
||||||
|
const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
|
||||||
|
// Dynamically allocate per-channel quantization parameters.
|
||||||
|
op_data->per_channel_output_multiplier =
|
||||||
|
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||||
|
context, num_channels * sizeof(int32_t)));
|
||||||
|
op_data->per_channel_output_shift =
|
||||||
|
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||||
|
context, num_channels * sizeof(int32_t)));
|
||||||
|
|
||||||
|
op_data->input_zero_point = input->params.zero_point;
|
||||||
|
op_data->output_zero_point = output->params.zero_point;
|
||||||
|
|
||||||
|
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||||
|
if (input->type == kTfLiteInt8) {
|
||||||
|
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||||
|
kTfLiteAffineQuantization);
|
||||||
|
|
||||||
|
const auto* affine_quantization =
|
||||||
|
reinterpret_cast<TfLiteAffineQuantization*>(
|
||||||
|
filter->quantization.params);
|
||||||
|
TF_LITE_ENSURE(context, affine_quantization);
|
||||||
|
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||||
|
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
||||||
|
TF_LITE_ENSURE(
|
||||||
|
context, affine_quantization->scale->size == 1 ||
|
||||||
|
affine_quantization->scale->size ==
|
||||||
|
filter->dims->data[kDepthwiseConvQuantizedDimension]);
|
||||||
|
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
||||||
|
affine_quantization->zero_point->size);
|
||||||
|
}
|
||||||
|
|
||||||
|
return CalculateOpData(context, node, params, width, height, filter_width,
|
||||||
|
filter_height, data_type, op_data);
|
||||||
|
}
|
||||||
|
|
||||||
|
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||||
|
TfLiteDepthwiseConvParams* params, OpData* data,
|
||||||
|
const TfLiteEvalTensor* input,
|
||||||
|
const TfLiteEvalTensor* filter,
|
||||||
|
const TfLiteEvalTensor* bias,
|
||||||
|
TfLiteEvalTensor* output) {
|
||||||
|
DepthwiseParams op_params;
|
||||||
|
op_params.padding_type = PaddingType::kSame;
|
||||||
|
op_params.padding_values.width = data->padding.width;
|
||||||
|
op_params.padding_values.height = data->padding.height;
|
||||||
|
op_params.stride_width = params->stride_width;
|
||||||
|
op_params.stride_height = params->stride_height;
|
||||||
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||||
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
||||||
|
op_params.depth_multiplier = params->depth_multiplier;
|
||||||
|
op_params.input_offset = -data->input_zero_point;
|
||||||
|
op_params.weights_offset = 0;
|
||||||
|
op_params.output_offset = data->output_zero_point;
|
||||||
|
// TODO(b/130439627): Use calculated value for clamping.
|
||||||
|
op_params.quantized_activation_min = std::numeric_limits<int8_t>::min();
|
||||||
|
op_params.quantized_activation_max = std::numeric_limits<int8_t>::max();
|
||||||
|
|
||||||
|
DepthwiseConvPerChannel(op_params, data->per_channel_output_multiplier,
|
||||||
|
data->per_channel_output_shift,
|
||||||
|
tflite::micro::GetTensorShape(input),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(input),
|
||||||
|
tflite::micro::GetTensorShape(filter),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(filter),
|
||||||
|
tflite::micro::GetTensorShape(bias),
|
||||||
|
tflite::micro::GetTensorData<int32_t>(bias),
|
||||||
|
tflite::micro::GetTensorShape(output),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(output));
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||||
|
auto* params =
|
||||||
|
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
||||||
|
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||||
|
|
||||||
|
TfLiteEvalTensor* output =
|
||||||
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||||
|
const TfLiteEvalTensor* input =
|
||||||
|
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||||
|
const TfLiteEvalTensor* filter =
|
||||||
|
tflite::micro::GetEvalInput(context, node, kFilterTensor);
|
||||||
|
const TfLiteEvalTensor* bias =
|
||||||
|
(NumInputs(node) == 3)
|
||||||
|
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
|
||||||
|
: nullptr;
|
||||||
|
|
||||||
|
// Handle special case for streaming model.
|
||||||
|
int* input_dims = input->dims->data;
|
||||||
|
int* filter_dims = filter->dims->data;
|
||||||
|
if (input_dims[0] == 1 && input_dims[1] == 4 && input_dims[2] == 1 &&
|
||||||
|
input_dims[3] == 32 && filter_dims[0] == 1 && filter_dims[1] == 4 &&
|
||||||
|
filter_dims[2] == 1 && filter_dims[3] == 32) {
|
||||||
|
DepthwiseConv4x32MatchingInputAndFilter(
|
||||||
|
-op_data->input_zero_point, op_data->output_zero_point,
|
||||||
|
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max(),
|
||||||
|
op_data->per_channel_output_multiplier,
|
||||||
|
op_data->per_channel_output_shift, tflite::micro::GetTensorShape(input),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(input),
|
||||||
|
tflite::micro::GetTensorShape(filter),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(filter),
|
||||||
|
tflite::micro::GetTensorShape(bias),
|
||||||
|
tflite::micro::GetTensorData<int32_t>(bias),
|
||||||
|
tflite::micro::GetTensorShape(output),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(output));
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
switch (input->type) { // Already know in/out types are same.
|
||||||
|
case kTfLiteInt8:
|
||||||
|
EvalQuantizedPerChannel(context, node, params, op_data, input, filter,
|
||||||
|
bias, output);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||||
|
TfLiteTypeGetName(input->type), input->type);
|
||||||
|
return kTfLiteError;
|
||||||
|
}
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
TfLiteRegistration Register_DEPTHWISE_CONV_2D() {
|
||||||
|
return {/*init=*/Init,
|
||||||
|
/*free=*/nullptr,
|
||||||
|
/*prepare=*/Prepare,
|
||||||
|
/*invoke=*/Eval,
|
||||||
|
/*profiling_string=*/nullptr,
|
||||||
|
/*builtin_code=*/0,
|
||||||
|
/*custom_name=*/nullptr,
|
||||||
|
/*version=*/0};
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace tflite
|
137
tensorflow/lite/micro/kernels/xtensa/fixedpoint_utils.h
Normal file
137
tensorflow/lite/micro/kernels/xtensa/fixedpoint_utils.h
Normal file
@ -0,0 +1,137 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_XTENSA_HIFIMINI_FIXEDPOINT_UTILS_H_
|
||||||
|
#define TENSORFLOW_LITE_MICRO_KERNELS_XTENSA_HIFIMINI_FIXEDPOINT_UTILS_H_
|
||||||
|
|
||||||
|
#include <xtensa/tie/xt_hifi2.h>
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstdint>
|
||||||
|
|
||||||
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
|
||||||
|
// INT24 MIN/MAX
|
||||||
|
#define INT24_MIN -8388608
|
||||||
|
#define INT24_MAX 8388607
|
||||||
|
|
||||||
|
// Multiply 24bit value by a quantized multiplier (w/ shift) and returns a 48bit
|
||||||
|
// aligned value in the QR register.
|
||||||
|
inline ae_q56s MultiplyByQuantizedMultiplier(ae_p24x2s x_24x2,
|
||||||
|
int32_t quantized_multiplier,
|
||||||
|
int shift) {
|
||||||
|
// A value with 1 sign bit, N integer bits and M fractional bits is
|
||||||
|
// represented as QN+1.M since the sign bit is included in the integer bits.
|
||||||
|
//
|
||||||
|
// The Q notation in this method explains the values represented in each
|
||||||
|
// variable, along with an implicit division since the quantized_multiplier
|
||||||
|
// represents a value between 0.5 and 1.0 (Q1.X-1 where X is the bit precision
|
||||||
|
// of the type).
|
||||||
|
//
|
||||||
|
// Load the quantized multiplier into the PR register.
|
||||||
|
// NOTE: This method assumes that this param has been calculated for 24bit
|
||||||
|
// space - not 32bits.
|
||||||
|
// Q32.0 / 2^23 -> Q24.0 / 2^23 representing a Q1.23 multiplier.
|
||||||
|
ae_p24x2s quantized_multiplier_24x2 = AE_MOVPA24(quantized_multiplier);
|
||||||
|
// Shift right by 23 - 16 bits minus the specified shift. This is because we
|
||||||
|
// keep 16 fractional bits until the end to perform rounding. Subtract shift
|
||||||
|
// since shift is a left shift, and the 23-16 is a right shift.
|
||||||
|
int shift_amount = 7 - shift;
|
||||||
|
|
||||||
|
// Find the product of x and the quantized_multiplier.
|
||||||
|
// Q24.0 / 2^23 * Q24.0 = Q48.0 / 2^23
|
||||||
|
// Q48.0 / 2^23 >> 7 = Q48.0 / 2^16
|
||||||
|
ae_q56s result_56 = AE_MULP24S_HH(x_24x2, quantized_multiplier_24x2);
|
||||||
|
|
||||||
|
// Shift right if shift amount is positive, left if shift amount is negative.
|
||||||
|
if (shift_amount >= 0) {
|
||||||
|
result_56 = AE_Q56S_SRA(result_56, shift_amount);
|
||||||
|
} else {
|
||||||
|
result_56 = AE_Q56S_SLA(result_56, -shift_amount);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Round off the bottom 16 bits.
|
||||||
|
// Q48.0 / 2^16 -> Q32.0 aligned to 48 bits.
|
||||||
|
result_56 = AE_ROUNDSQ32SYM(result_56);
|
||||||
|
return result_56;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Multiply 32bit value by a quantized multiplier (w/ shift) and returns a 48bit
|
||||||
|
// aligned value in the QR register.
|
||||||
|
inline ae_q56s MultiplyByQuantizedMultiplierResult48Bit(
|
||||||
|
int32_t x, int32_t quantized_multiplier, int shift) {
|
||||||
|
// Convert x into a 2x24bit PR register file. If x is outside the numerical
|
||||||
|
// limits of a 24bit integer, the "fractional" or lower 8bits are discarded.
|
||||||
|
// If x is within the range of a 24 bit integer, the "signed" or upper 8bits
|
||||||
|
// are discarded.
|
||||||
|
ae_p24x2s x_24x2;
|
||||||
|
if (x > INT24_MIN && x < INT24_MAX) {
|
||||||
|
x_24x2 = AE_MOVPA24(x);
|
||||||
|
} else {
|
||||||
|
x_24x2 = static_cast<ae_p24s>(*reinterpret_cast<ae_p24f*>(&x));
|
||||||
|
shift += 8;
|
||||||
|
}
|
||||||
|
|
||||||
|
return MultiplyByQuantizedMultiplier(x_24x2, quantized_multiplier, shift);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate quantization params for 24bit runtimes.
|
||||||
|
inline void QuantizeMultiplierForInt24(float multiplier,
|
||||||
|
int32_t* quantized_multiplier,
|
||||||
|
int* shift) {
|
||||||
|
if (multiplier == 0.0f) {
|
||||||
|
*quantized_multiplier = 0;
|
||||||
|
*shift = 0;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Special cased to 24bit:
|
||||||
|
const float q = std::frexp(multiplier, shift);
|
||||||
|
auto q_fixed = static_cast<int64_t>(std::round(q * (1 << 23)));
|
||||||
|
|
||||||
|
TFLITE_CHECK(q_fixed <= (1 << 23));
|
||||||
|
if (q_fixed == (1 << 23)) {
|
||||||
|
q_fixed /= 2;
|
||||||
|
++*shift;
|
||||||
|
}
|
||||||
|
TFLITE_CHECK_LE(q_fixed, INT24_MAX);
|
||||||
|
|
||||||
|
// Ensure shift does not exceed 24-bit range.
|
||||||
|
TFLITE_CHECK_LE(*shift, 23);
|
||||||
|
if (*shift < -23) {
|
||||||
|
*shift = 0;
|
||||||
|
q_fixed = 0;
|
||||||
|
}
|
||||||
|
*quantized_multiplier = static_cast<int32_t>(q_fixed);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert a floating point number to a Q representation for 24 bit integers.
|
||||||
|
inline int CreateQConstantForInt24(int integer_bits, float f) {
|
||||||
|
const float min_bounds = static_cast<float>(INT24_MIN);
|
||||||
|
const float max_bounds = static_cast<float>(INT24_MAX);
|
||||||
|
|
||||||
|
int fractional_bits = 23 - integer_bits;
|
||||||
|
float raw = std::round(f * static_cast<float>(1 << fractional_bits));
|
||||||
|
raw = std::max(raw, min_bounds);
|
||||||
|
raw = std::min(raw, max_bounds);
|
||||||
|
return static_cast<int>(raw);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace tflite
|
||||||
|
|
||||||
|
#endif // TENSORFLOW_LITE_MICRO_KERNELS_XTENSA_HIFIMINI_FIXEDPOINT_UTILS_H_
|
252
tensorflow/lite/micro/kernels/xtensa/fully_connected.cc
Normal file
252
tensorflow/lite/micro/kernels/xtensa/fully_connected.cc
Normal file
@ -0,0 +1,252 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "tensorflow/lite/kernels/internal/reference/fully_connected.h"
|
||||||
|
|
||||||
|
#include <xtensa/tie/xt_hifi2.h>
|
||||||
|
|
||||||
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||||
|
#include "tensorflow/lite/c/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||||
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/xtensa_hifimini/fixedpoint_utils.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
struct OpData {
|
||||||
|
// The scaling factor from input to output (aka the 'real multiplier') can
|
||||||
|
// be represented as a fixed point multiplier plus a left shift.
|
||||||
|
int32_t output_multiplier;
|
||||||
|
int output_shift;
|
||||||
|
|
||||||
|
// Cached tensor zero point values for quantized operations.
|
||||||
|
int32_t input_zero_point;
|
||||||
|
int32_t filter_zero_point;
|
||||||
|
int32_t output_zero_point;
|
||||||
|
|
||||||
|
// The range of the fused activation layer. For example for kNone and
|
||||||
|
// uint8_t these would be 0 and 255.
|
||||||
|
int32_t output_activation_min;
|
||||||
|
int32_t output_activation_max;
|
||||||
|
// The index of the temporary tensor where the quantized inputs are cached.
|
||||||
|
int input_quantized_index;
|
||||||
|
};
|
||||||
|
|
||||||
|
constexpr int kInputTensor = 0;
|
||||||
|
constexpr int kWeightsTensor = 1;
|
||||||
|
constexpr int kBiasTensor = 2;
|
||||||
|
constexpr int kOutputTensor = 0;
|
||||||
|
|
||||||
|
void FullyConnected(const FullyConnectedParams& params,
|
||||||
|
const RuntimeShape& input_shape, const int8_t* input_data,
|
||||||
|
const RuntimeShape& filter_shape, const int8_t* filter_data,
|
||||||
|
const RuntimeShape& bias_shape, const int32_t* bias_data,
|
||||||
|
const RuntimeShape& output_shape, int8_t* output_data) {
|
||||||
|
// TODO(b/154032858): Investigate removing extra copies.
|
||||||
|
const int32_t input_offset = params.input_offset;
|
||||||
|
const int32_t filter_offset = params.weights_offset;
|
||||||
|
const int32_t output_offset = params.output_offset;
|
||||||
|
const int32_t output_multiplier = params.output_multiplier;
|
||||||
|
const int output_shift = params.output_shift;
|
||||||
|
const int32_t output_activation_min = params.quantized_activation_min;
|
||||||
|
const int32_t output_activation_max = params.quantized_activation_max;
|
||||||
|
|
||||||
|
const int filter_dim_count = filter_shape.DimensionsCount();
|
||||||
|
const int batches = output_shape.Dims(0);
|
||||||
|
const int output_depth = output_shape.Dims(1);
|
||||||
|
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
|
||||||
|
const int accum_depth_iters = accum_depth / 2;
|
||||||
|
|
||||||
|
ae_p24x2s offsets_input_24x2 = AE_MOVPA24(input_offset);
|
||||||
|
ae_p24x2s offsets_filter_24x2 = AE_MOVPA24(filter_offset);
|
||||||
|
ae_q56s output_offset_56 = AE_CVTQ48A32S(output_offset);
|
||||||
|
ae_q56s output_activation_max_56 = AE_CVTQ48A32S(output_activation_max);
|
||||||
|
ae_q56s output_activation_min_56 = AE_CVTQ48A32S(output_activation_min);
|
||||||
|
|
||||||
|
for (int b = 0; b < batches; ++b) {
|
||||||
|
for (int out_c = 0; out_c < output_depth; ++out_c) {
|
||||||
|
// Load intrinsics advance pointer before loading so backoff data pointers
|
||||||
|
// by two before loading:
|
||||||
|
const int8_t* input_ptr = (input_data + b * accum_depth) - 2;
|
||||||
|
const int8_t* filter_ptr = (filter_data + out_c * accum_depth) - 2;
|
||||||
|
|
||||||
|
// Main accumulator register entry for loop:
|
||||||
|
ae_q56s sum_56 = AE_ZEROQ56();
|
||||||
|
|
||||||
|
for (int d = 0; d < accum_depth_iters; d++) {
|
||||||
|
// Load the signed 8bit values into the PR register:
|
||||||
|
ae_p24x2s input_24x2;
|
||||||
|
ae_p24x2s filter_24x2;
|
||||||
|
AE_LP8X2F_IU(input_24x2, input_ptr, 2);
|
||||||
|
AE_LP8X2F_IU(filter_24x2, filter_ptr, 2);
|
||||||
|
|
||||||
|
// Right shift the signed 8bit values to expand to signed 24bit values:
|
||||||
|
input_24x2 = AE_P24X2S_SRAI(input_24x2, 16);
|
||||||
|
filter_24x2 = AE_P24X2S_SRAI(filter_24x2, 16);
|
||||||
|
|
||||||
|
// Add offsets to data values (24 bit aligned):
|
||||||
|
input_24x2 = AE_P24S_ADDS_P24X2S(offsets_input_24x2, input_24x2);
|
||||||
|
filter_24x2 = AE_P24S_ADDS_P24X2S(offsets_filter_24x2, filter_24x2);
|
||||||
|
|
||||||
|
// 24x2 signed integer dual MAC w/ addition into 56bit accumulator (48
|
||||||
|
// bit aligned):
|
||||||
|
AE_MULAAP24S_HH_LL(sum_56, input_24x2, filter_24x2);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Left shift to get back into 32bit space (right padded to 48bit):
|
||||||
|
sum_56 = AE_Q56S_SLAI(sum_56, 16);
|
||||||
|
|
||||||
|
// Add bias data if needed:
|
||||||
|
if (bias_data) {
|
||||||
|
ae_q56s bias_56 = AE_CVTQ48A32S(bias_data[out_c]);
|
||||||
|
sum_56 = AE_ADDQ56(sum_56, bias_56);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Shift left into 24bit space and place back on PR register:
|
||||||
|
sum_56 = AE_Q56S_SLAI(sum_56, 8);
|
||||||
|
ae_p24x2s sum_24x2 = AE_TRUNCP24Q48(sum_56);
|
||||||
|
|
||||||
|
// MultiplyByQuantizedMultiplier returns a 48bit aligned value
|
||||||
|
sum_56 = MultiplyByQuantizedMultiplier(sum_24x2, output_multiplier,
|
||||||
|
output_shift);
|
||||||
|
|
||||||
|
// Add output_offset and cap min/max values:
|
||||||
|
sum_56 = AE_ADDQ56(sum_56, output_offset_56);
|
||||||
|
sum_56 = AE_MINQ56S(sum_56, output_activation_max_56);
|
||||||
|
sum_56 = AE_MAXQ56S(sum_56, output_activation_min_56);
|
||||||
|
|
||||||
|
output_data[out_c + output_depth * b] =
|
||||||
|
static_cast<int8_t>(AE_TRUNCA32Q48(sum_56));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus CalculateOpData(TfLiteContext* context,
|
||||||
|
TfLiteFusedActivation activation,
|
||||||
|
TfLiteType data_type, const TfLiteTensor* input,
|
||||||
|
const TfLiteTensor* filter,
|
||||||
|
const TfLiteTensor* bias, TfLiteTensor* output,
|
||||||
|
OpData* data) {
|
||||||
|
double real_multiplier = 0.0;
|
||||||
|
TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler(
|
||||||
|
context, input, filter, bias, output, &real_multiplier));
|
||||||
|
QuantizeMultiplierForInt24(real_multiplier, &data->output_multiplier,
|
||||||
|
&data->output_shift);
|
||||||
|
return CalculateActivationRangeQuantized(context, activation, output,
|
||||||
|
&data->output_activation_min,
|
||||||
|
&data->output_activation_max);
|
||||||
|
}
|
||||||
|
|
||||||
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||||
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||||
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||||
|
|
||||||
|
OpData* data = static_cast<OpData*>(node->user_data);
|
||||||
|
const auto* params =
|
||||||
|
reinterpret_cast<TfLiteFullyConnectedParams*>(node->builtin_data);
|
||||||
|
|
||||||
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||||
|
const TfLiteTensor* filter = GetInput(context, node, kWeightsTensor);
|
||||||
|
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
|
||||||
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||||
|
|
||||||
|
if (input->type != kTfLiteInt8) {
|
||||||
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||||
|
TfLiteTypeGetName(input->type), input->type);
|
||||||
|
return kTfLiteError;
|
||||||
|
}
|
||||||
|
|
||||||
|
data->input_zero_point = input->params.zero_point;
|
||||||
|
data->filter_zero_point = filter->params.zero_point;
|
||||||
|
data->output_zero_point = output->params.zero_point;
|
||||||
|
|
||||||
|
return CalculateOpData(context, params->activation, input->type, input,
|
||||||
|
filter, bias, output, data);
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus EvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node,
|
||||||
|
const OpData& data,
|
||||||
|
const TfLiteEvalTensor* input,
|
||||||
|
const TfLiteEvalTensor* filter,
|
||||||
|
const TfLiteEvalTensor* bias,
|
||||||
|
TfLiteEvalTensor* output) {
|
||||||
|
// TODO(b/154032858): Investigate removing extra copies, and also passing by
|
||||||
|
// value. TODO(b/155656675): Consider passing OpData by value once it is also
|
||||||
|
// passed to the FullyConnected function. Until it is copied to a local
|
||||||
|
// op_param variable, we do not get any latency improvements from passing by
|
||||||
|
// value.
|
||||||
|
FullyConnectedParams op_params;
|
||||||
|
op_params.input_offset = -data.input_zero_point;
|
||||||
|
op_params.weights_offset = -data.filter_zero_point;
|
||||||
|
op_params.output_offset = data.output_zero_point;
|
||||||
|
op_params.output_multiplier = data.output_multiplier;
|
||||||
|
op_params.output_shift = data.output_shift;
|
||||||
|
op_params.quantized_activation_min = data.output_activation_min;
|
||||||
|
op_params.quantized_activation_max = data.output_activation_max;
|
||||||
|
|
||||||
|
FullyConnected(op_params, tflite::micro::GetTensorShape(input),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(input),
|
||||||
|
tflite::micro::GetTensorShape(filter),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(filter),
|
||||||
|
tflite::micro::GetTensorShape(bias),
|
||||||
|
tflite::micro::GetTensorData<int32_t>(bias),
|
||||||
|
tflite::micro::GetTensorShape(output),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(output));
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||||
|
|
||||||
|
const TfLiteEvalTensor* input =
|
||||||
|
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||||
|
const TfLiteEvalTensor* filter =
|
||||||
|
tflite::micro::GetEvalInput(context, node, kWeightsTensor);
|
||||||
|
const TfLiteEvalTensor* bias =
|
||||||
|
(NumInputs(node) == 3)
|
||||||
|
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
|
||||||
|
: nullptr;
|
||||||
|
|
||||||
|
TfLiteEvalTensor* output =
|
||||||
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||||
|
|
||||||
|
return EvalQuantizedInt8(context, node, data, input, filter, bias, output);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
TfLiteRegistration Register_FULLY_CONNECTED() {
|
||||||
|
return {/*init=*/Init,
|
||||||
|
/*free=*/nullptr,
|
||||||
|
/*prepare=*/Prepare,
|
||||||
|
/*invoke=*/Eval,
|
||||||
|
/*profiling_string=*/nullptr,
|
||||||
|
/*builtin_code=*/0,
|
||||||
|
/*custom_name=*/nullptr,
|
||||||
|
/*version=*/0};
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace tflite
|
161
tensorflow/lite/micro/kernels/xtensa/quantize.cc
Normal file
161
tensorflow/lite/micro/kernels/xtensa/quantize.cc
Normal file
@ -0,0 +1,161 @@
|
|||||||
|
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "tensorflow/lite/kernels/internal/reference/quantize.h"
|
||||||
|
|
||||||
|
#include <xtensa/tie/xt_hifi2.h>
|
||||||
|
|
||||||
|
#include "tensorflow/lite/c/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||||
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/xtensa_hifimini/fixedpoint_utils.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
struct OpData {
|
||||||
|
int32_t zero_point = 0;
|
||||||
|
int scale_multiplier = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
void AffineQuantize(int scale_multiplier, const int32_t zero_point,
|
||||||
|
const RuntimeShape& input_shape, const int16_t* input_data,
|
||||||
|
const RuntimeShape& output_shape, int8_t* output_data) {
|
||||||
|
const int flat_size = MatchingFlatSize(input_shape, output_shape);
|
||||||
|
ae_q56s min_val_56 = AE_CVTQ48A32S(INT16_MIN);
|
||||||
|
ae_q56s max_val_56 = AE_CVTQ48A32S(INT16_MAX);
|
||||||
|
ae_q56s zero_point_56 = AE_CVTQ48A32S(zero_point);
|
||||||
|
|
||||||
|
const ae_p16x2s* input_data_ptr = (const ae_p16x2s*)(input_data - 2);
|
||||||
|
|
||||||
|
ae_p24x2s scale_multiplier_24x2 = AE_MOVPA24(scale_multiplier);
|
||||||
|
|
||||||
|
int iters = flat_size / 2;
|
||||||
|
for (int i = 0; i < iters; i++) {
|
||||||
|
// Load two 16bit pairs into the 2x24bit register PR:
|
||||||
|
// Values need to be right shifted 8 bits to align from upper 16bits to a
|
||||||
|
// 24bit value:
|
||||||
|
ae_p24x2s inputs_24x2;
|
||||||
|
AE_LP16X2F_IU(inputs_24x2, input_data_ptr, 4);
|
||||||
|
inputs_24x2 = AE_P24X2S_SRAI(inputs_24x2, 8);
|
||||||
|
|
||||||
|
// Q0.23 * Q16.0 == Q16.23
|
||||||
|
{
|
||||||
|
ae_q56s sum_56 = AE_MULP24S_HH(scale_multiplier_24x2, inputs_24x2);
|
||||||
|
|
||||||
|
// Q16.23 -> Q16.0
|
||||||
|
// Shift right only 7 bits (23 - 16). This truncated shift aligns the
|
||||||
|
// 16bit value at the truncation line for 32bit in the QR register. The
|
||||||
|
// lower 16 bits will be used for rounding in AE_ROUNDSQ32SYM.
|
||||||
|
sum_56 = AE_Q56S_SRAI(sum_56, 7);
|
||||||
|
|
||||||
|
// Round and truncate 32 bits
|
||||||
|
sum_56 = AE_ROUNDSQ32SYM(sum_56);
|
||||||
|
|
||||||
|
// Add offset (zero_point_56 is already aligned at 32bits.
|
||||||
|
sum_56 = AE_ADDQ56(sum_56, zero_point_56);
|
||||||
|
|
||||||
|
// Saturate:
|
||||||
|
sum_56 = AE_MINQ56S(sum_56, max_val_56);
|
||||||
|
sum_56 = AE_MAXQ56S(sum_56, min_val_56);
|
||||||
|
|
||||||
|
output_data[i * 2] = static_cast<int16_t>(AE_TRUNCA32Q48(sum_56));
|
||||||
|
}
|
||||||
|
{
|
||||||
|
ae_q56s sum_56 = AE_MULP24S_LL(scale_multiplier_24x2, inputs_24x2);
|
||||||
|
|
||||||
|
// Q16.23 -> Q16.0
|
||||||
|
// Shift right only 7 bits (23 - 16). This truncated shift aligns the
|
||||||
|
// 16bit value at the truncation line for 32bit in the QR register. The
|
||||||
|
// lower 16 bits will be used for rounding in AE_ROUNDSQ32SYM.
|
||||||
|
sum_56 = AE_Q56S_SRAI(sum_56, 23 - 16);
|
||||||
|
|
||||||
|
// Round and truncate 32 bits
|
||||||
|
sum_56 = AE_ROUNDSQ32SYM(sum_56);
|
||||||
|
|
||||||
|
// Add offset (zero_point_56 is already aligned at 32bits.
|
||||||
|
sum_56 = AE_ADDQ56(sum_56, zero_point_56);
|
||||||
|
|
||||||
|
// Saturate:
|
||||||
|
sum_56 = AE_MINQ56S(sum_56, max_val_56);
|
||||||
|
sum_56 = AE_MAXQ56S(sum_56, min_val_56);
|
||||||
|
|
||||||
|
output_data[i * 2 + 1] = static_cast<int16_t>(AE_TRUNCA32Q48(sum_56));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||||
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||||
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
auto* op_data = static_cast<OpData*>(node->user_data);
|
||||||
|
|
||||||
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
||||||
|
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||||
|
|
||||||
|
// TODO(b/155682734): Fix dangerous input/output scale ratio assumptions.
|
||||||
|
op_data->scale_multiplier =
|
||||||
|
CreateQConstantForInt24(0, input->params.scale / output->params.scale);
|
||||||
|
|
||||||
|
op_data->zero_point = output->params.zero_point;
|
||||||
|
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
auto* op_data = static_cast<OpData*>(node->user_data);
|
||||||
|
|
||||||
|
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||||
|
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||||
|
|
||||||
|
tflite::QuantizationParams op_params;
|
||||||
|
op_params.zero_point = op_data->zero_point;
|
||||||
|
|
||||||
|
if (input->type != kTfLiteInt16 && output->type != kTfLiteInt8) {
|
||||||
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||||
|
TfLiteTypeGetName(input->type),
|
||||||
|
TfLiteTypeGetName(output->type));
|
||||||
|
return kTfLiteError;
|
||||||
|
}
|
||||||
|
|
||||||
|
AffineQuantize(op_data->scale_multiplier, op_data->zero_point,
|
||||||
|
tflite::micro::GetTensorShape(input),
|
||||||
|
tflite::micro::GetTensorData<int16_t>(input),
|
||||||
|
tflite::micro::GetTensorShape(output),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(output));
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
TfLiteRegistration Register_QUANTIZE() {
|
||||||
|
return {/*init=*/Init,
|
||||||
|
/*free=*/nullptr,
|
||||||
|
/*prepare=*/Prepare,
|
||||||
|
/*invoke=*/Eval,
|
||||||
|
/*profiling_string=*/nullptr,
|
||||||
|
/*builtin_code=*/0,
|
||||||
|
/*custom_name=*/nullptr,
|
||||||
|
/*version=*/0};
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace tflite
|
208
tensorflow/lite/micro/kernels/xtensa/softmax.cc
Normal file
208
tensorflow/lite/micro/kernels/xtensa/softmax.cc
Normal file
@ -0,0 +1,208 @@
|
|||||||
|
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
|
||||||
|
|
||||||
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||||
|
#include "tensorflow/lite/c/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||||
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/op_macros.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
struct OpData {
|
||||||
|
uint16_t* exp_lut;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Number of unique int8_t and int16_t values. Used in exponent lookup table
|
||||||
|
// computation.
|
||||||
|
constexpr int kInt8Range =
|
||||||
|
std::numeric_limits<int8_t>::max() - std::numeric_limits<int8_t>::min() + 1;
|
||||||
|
constexpr int kInt16Range = std::numeric_limits<int16_t>::max() -
|
||||||
|
std::numeric_limits<int16_t>::min() + 1;
|
||||||
|
// Each 16-bit precalculated exponent is expressed as a Q0.16 fixedpoint
|
||||||
|
// value. We special-case e^0 since 1.0 requires 1 integer bit to
|
||||||
|
// express.
|
||||||
|
constexpr int kExpFractionalBits = 16;
|
||||||
|
// e^0 expressed as Q1.15 exceeds the int16_t range, so it must be handled
|
||||||
|
// specially.
|
||||||
|
constexpr int kMaxExponentValue = (1 << kExpFractionalBits);
|
||||||
|
|
||||||
|
// Quantized softmax with int8_t input and int16_t output.
|
||||||
|
// Passing OpData by value does not have much savings in this op, but following
|
||||||
|
// that as a best practice, at least for the xtensa kernels. See b/155656675 for
|
||||||
|
// more details.
|
||||||
|
TfLiteStatus Softmax(OpData op_data, const RuntimeShape& input_shape,
|
||||||
|
const int8_t* input_data, const RuntimeShape& output_shape,
|
||||||
|
int16_t* output_data) {
|
||||||
|
// The last dimension is depth. Outer size is the total input size
|
||||||
|
// divided by depth.
|
||||||
|
const int trailing_dim = input_shape.DimensionsCount() - 1;
|
||||||
|
const int outer_size =
|
||||||
|
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
|
||||||
|
const int depth =
|
||||||
|
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
|
||||||
|
|
||||||
|
for (int i = 0; i < outer_size; ++i) {
|
||||||
|
int8_t max_in_row = std::numeric_limits<int8_t>::min();
|
||||||
|
for (int c = 0; c < depth; ++c) {
|
||||||
|
max_in_row = std::max(max_in_row, input_data[i * depth + c]);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t sum_of_exps = 0;
|
||||||
|
for (int c = 0; c < depth; ++c) {
|
||||||
|
TFLITE_DCHECK(max_in_row >= input_data[i * depth + c]);
|
||||||
|
uint8_t input_diff = max_in_row - input_data[i * depth + c];
|
||||||
|
|
||||||
|
sum_of_exps +=
|
||||||
|
input_diff == 0 ? kMaxExponentValue : op_data.exp_lut[input_diff];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Ensure we cannot overflow the full_range_output value. We need to
|
||||||
|
// guarantee that kInt16Range * max(input_data) / sum_of_exps < kInt16Range.
|
||||||
|
TFLITE_DCHECK(sum_of_exps >= kMaxExponentValue);
|
||||||
|
|
||||||
|
for (int c = 0; c < depth; ++c) {
|
||||||
|
uint8_t input_diff = max_in_row - input_data[i * depth + c];
|
||||||
|
// Special case for diff == 0
|
||||||
|
uint32_t unscaled_output =
|
||||||
|
input_diff == 0 ? kMaxExponentValue : op_data.exp_lut[input_diff];
|
||||||
|
int64_t scaled_output = static_cast<int64_t>(unscaled_output) *
|
||||||
|
static_cast<int64_t>(kInt16Range);
|
||||||
|
int32_t full_range_output =
|
||||||
|
scaled_output / sum_of_exps + std::numeric_limits<int16_t>::min();
|
||||||
|
// Round up if remainder exceeds half of the divider value.
|
||||||
|
uint32_t remainder = scaled_output % sum_of_exps;
|
||||||
|
if (remainder * 2 >= sum_of_exps) {
|
||||||
|
full_range_output++;
|
||||||
|
}
|
||||||
|
output_data[i * depth + c] = static_cast<int16_t>(std::max(
|
||||||
|
std::min(full_range_output,
|
||||||
|
static_cast<int32_t>(std::numeric_limits<int16_t>::max())),
|
||||||
|
static_cast<int32_t>(std::numeric_limits<int16_t>::min())));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus CalculateSoftmaxOpData(TfLiteContext* context,
|
||||||
|
const TfLiteTensor* input,
|
||||||
|
TfLiteTensor* output,
|
||||||
|
const TfLiteSoftmaxParams* params,
|
||||||
|
OpData* op_data) {
|
||||||
|
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
|
||||||
|
if (input->type == kTfLiteUInt8) {
|
||||||
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
|
||||||
|
} else {
|
||||||
|
if (output->type == kTfLiteInt16) {
|
||||||
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point,
|
||||||
|
std::numeric_limits<int16_t>::min());
|
||||||
|
// NOTE: Current int16_t softmax output does not require symmetric
|
||||||
|
// scaling
|
||||||
|
// - so no need to verify scale here.
|
||||||
|
} else {
|
||||||
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point,
|
||||||
|
std::numeric_limits<int8_t>::min());
|
||||||
|
TF_LITE_ENSURE(context, output->params.scale == 1.f / 256);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Precompute e^(-x * input_scale * beta) for every possible int8_t input.
|
||||||
|
// This computation is used for every iteration of Softmax. We must compute
|
||||||
|
// using pre-scaled inputs to avoid introducing additional error, while
|
||||||
|
// restricting our input range to the int8_t range. This is valid since beta
|
||||||
|
// and input scale are constant for a given op in the graph. Skip index 0
|
||||||
|
// since that is a special case which requires 1 integer bit instead of 0.
|
||||||
|
for (int i = 1; i <= kInt8Range; i++) {
|
||||||
|
float scaled_input = i * input->params.scale;
|
||||||
|
float exp_value =
|
||||||
|
std::exp((-scaled_input) * static_cast<float>(params->beta));
|
||||||
|
|
||||||
|
float exponent_scaled =
|
||||||
|
std::round(exp_value * static_cast<float>(1 << kExpFractionalBits));
|
||||||
|
op_data->exp_lut[i] = static_cast<uint16_t>(exponent_scaled);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
|
||||||
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||||
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
|
||||||
|
|
||||||
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||||
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||||
|
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||||
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
||||||
|
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
|
||||||
|
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
OpData* op_data = static_cast<OpData*>(node->user_data);
|
||||||
|
|
||||||
|
// Allocate an array to precompute exponents over all int8_t inputs, applying
|
||||||
|
// the scale and beta before calculating exp. It is mandatory to apply beta
|
||||||
|
// and scale here, since each softmax op may have different beta and scale
|
||||||
|
// values. Beta and scale will remain constant for a given softmax op.
|
||||||
|
op_data->exp_lut = static_cast<uint16_t*>(context->AllocatePersistentBuffer(
|
||||||
|
context, kInt8Range * sizeof(uint16_t)));
|
||||||
|
TF_LITE_ENSURE(context, op_data->exp_lut != nullptr);
|
||||||
|
|
||||||
|
TF_LITE_ENSURE_STATUS(
|
||||||
|
CalculateSoftmaxOpData(context, input, output, params, op_data));
|
||||||
|
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
auto* op_data = static_cast<OpData*>(node->user_data);
|
||||||
|
|
||||||
|
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||||
|
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||||
|
|
||||||
|
if (input->type == kTfLiteInt8 && output->type == kTfLiteInt16) {
|
||||||
|
return Softmax(*op_data, tflite::micro::GetTensorShape(input),
|
||||||
|
tflite::micro::GetTensorData<int8_t>(input),
|
||||||
|
tflite::micro::GetTensorShape(output),
|
||||||
|
tflite::micro::GetTensorData<int16_t>(output));
|
||||||
|
} else {
|
||||||
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||||
|
TfLiteTypeGetName(input->type), input->type);
|
||||||
|
return kTfLiteError;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
TfLiteRegistration Register_SOFTMAX() {
|
||||||
|
return {/*init=*/SoftmaxInit,
|
||||||
|
/*free=*/nullptr,
|
||||||
|
/*prepare=*/SoftmaxPrepare,
|
||||||
|
/*invoke=*/SoftmaxEval,
|
||||||
|
/*profiling_string=*/nullptr,
|
||||||
|
/*builtin_code=*/0,
|
||||||
|
/*custom_name=*/nullptr,
|
||||||
|
/*version=*/0};
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace tflite
|
420
tensorflow/lite/micro/kernels/xtensa/svdf.cc
Normal file
420
tensorflow/lite/micro/kernels/xtensa/svdf.cc
Normal file
@ -0,0 +1,420 @@
|
|||||||
|
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include <math.h>
|
||||||
|
#include <xtensa/tie/xt_hifi2.h>
|
||||||
|
|
||||||
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||||
|
#include "tensorflow/lite/c/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/common.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||||
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/kernels/op_macros.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/activation_utils.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||||
|
#include "tensorflow/lite/micro/kernels/xtensa_hifimini/fixedpoint_utils.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
struct OpData {
|
||||||
|
int32_t effective_scale_1_a;
|
||||||
|
int32_t effective_scale_2_a;
|
||||||
|
// b versions of each scale are kept at int since the numbers are just the
|
||||||
|
// shift value - typically between [-32, 32].
|
||||||
|
int effective_scale_1_b;
|
||||||
|
int effective_scale_2_b;
|
||||||
|
int scratch_tensor_index;
|
||||||
|
int scratch_output_tensor_index;
|
||||||
|
|
||||||
|
// Cached tensor zero point values for quantized operations.
|
||||||
|
int input_zero_point;
|
||||||
|
int output_zero_point;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Input tensors.
|
||||||
|
constexpr int kInputTensor = 0;
|
||||||
|
constexpr int kWeightsFeatureTensor = 1;
|
||||||
|
constexpr int kWeightsTimeTensor = 2;
|
||||||
|
constexpr int kBiasTensor = 3;
|
||||||
|
// This is a variable tensor, and will be modified by this op.
|
||||||
|
constexpr int kInputActivationStateTensor = 4;
|
||||||
|
|
||||||
|
// Output tensor.
|
||||||
|
constexpr int kOutputTensor = 0;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This version of SVDF is specific to TFLite Micro. It contains only a full
|
||||||
|
* integer receipe with optimizations for the Xtensa HiFiMini platform.
|
||||||
|
*
|
||||||
|
* Note: passing OpData by value might seem like an oversight but it helps
|
||||||
|
* reduce the latency. See b/155656675 for more details.
|
||||||
|
*/
|
||||||
|
void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
|
||||||
|
const TfLiteEvalTensor* input_tensor,
|
||||||
|
const TfLiteEvalTensor* weights_feature_tensor,
|
||||||
|
const TfLiteEvalTensor* weights_time_tensor,
|
||||||
|
const TfLiteEvalTensor* bias_tensor,
|
||||||
|
const TfLiteSVDFParams* params,
|
||||||
|
TfLiteEvalTensor* activation_state_tensor,
|
||||||
|
TfLiteEvalTensor* output_tensor, OpData data) {
|
||||||
|
const int n_rank = params->rank;
|
||||||
|
const int n_batch = input_tensor->dims->data[0];
|
||||||
|
const int n_input = input_tensor->dims->data[1];
|
||||||
|
const int n_filter = weights_feature_tensor->dims->data[0];
|
||||||
|
const int n_unit = n_filter / n_rank;
|
||||||
|
const int n_memory = weights_time_tensor->dims->data[1];
|
||||||
|
|
||||||
|
TFLITE_DCHECK(context != nullptr);
|
||||||
|
TFLITE_DCHECK(context->GetScratchBuffer != nullptr);
|
||||||
|
|
||||||
|
int32_t* scratch_tensor = static_cast<int32_t*>(
|
||||||
|
context->GetScratchBuffer(context, data.scratch_tensor_index));
|
||||||
|
TFLITE_DCHECK(scratch_tensor != nullptr);
|
||||||
|
int32_t* scratch_output_tensor = static_cast<int32_t*>(
|
||||||
|
context->GetScratchBuffer(context, data.scratch_output_tensor_index));
|
||||||
|
TFLITE_DCHECK(scratch_output_tensor != nullptr);
|
||||||
|
|
||||||
|
// Shift states.
|
||||||
|
int16_t* const state_ptr =
|
||||||
|
tflite::micro::GetTensorData<int16_t>(activation_state_tensor);
|
||||||
|
|
||||||
|
// Left shift the activation_state.
|
||||||
|
{
|
||||||
|
int16_t* new_state_start = state_ptr;
|
||||||
|
const int16_t* old_state_start = state_ptr + 1;
|
||||||
|
const int16_t* old_state_end = state_ptr + n_batch * n_filter * n_memory;
|
||||||
|
while (old_state_start != old_state_end) {
|
||||||
|
*new_state_start++ = *old_state_start++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Note: no need to clear the latest activation, matmul is not accumulative.
|
||||||
|
|
||||||
|
// Feature matmul.
|
||||||
|
{
|
||||||
|
const int8_t* input = tflite::micro::GetTensorData<int8_t>(input_tensor);
|
||||||
|
const int8_t* weight_feature =
|
||||||
|
tflite::micro::GetTensorData<int8_t>(weights_feature_tensor);
|
||||||
|
int16_t* result_in_batch = state_ptr + (n_memory - 1);
|
||||||
|
|
||||||
|
ae_q56s output_int16_max_56 = AE_CVTQ48A32S(INT16_MAX);
|
||||||
|
ae_q56s output_int16_min_56 = AE_CVTQ48A32S(INT16_MIN);
|
||||||
|
ae_p24x2s input_zp_24x2 = AE_MOVPA24(data.input_zero_point);
|
||||||
|
|
||||||
|
for (int b = 0; b < n_batch; b++) {
|
||||||
|
const int8_t* weight_feature_ptr = weight_feature - 2;
|
||||||
|
|
||||||
|
for (int r = 0; r < n_filter; r++) {
|
||||||
|
ae_q56s dot_prod_56 = AE_ZEROQ56();
|
||||||
|
|
||||||
|
const int8_t* input_batch_ptr = input + b * n_input;
|
||||||
|
const int8_t* offset_input_batch_ptr = input_batch_ptr - 2;
|
||||||
|
|
||||||
|
int num_iters = n_input / 2;
|
||||||
|
for (int c = 0; c < num_iters; c++) {
|
||||||
|
// Load 2 sets of values:
|
||||||
|
ae_p24x2s weight_feature_ptr_24x2;
|
||||||
|
ae_p24x2s input_batch_ptr_24x2;
|
||||||
|
AE_LP8X2F_IU(weight_feature_ptr_24x2, weight_feature_ptr, 2);
|
||||||
|
AE_LP8X2F_IU(input_batch_ptr_24x2, offset_input_batch_ptr, 2);
|
||||||
|
|
||||||
|
// Right shift the signed 8bit values to expand to signed 24bit
|
||||||
|
// values:
|
||||||
|
weight_feature_ptr_24x2 = AE_P24X2S_SRAI(weight_feature_ptr_24x2, 16);
|
||||||
|
input_batch_ptr_24x2 = AE_P24X2S_SRAI(input_batch_ptr_24x2, 16);
|
||||||
|
|
||||||
|
// First subtract input_zp from input_batch_ptr_24x2:
|
||||||
|
input_batch_ptr_24x2 =
|
||||||
|
AE_SUBSP24S(input_batch_ptr_24x2, input_zp_24x2);
|
||||||
|
|
||||||
|
// Multiply accum:
|
||||||
|
AE_MULAAP24S_HH_LL(dot_prod_56, weight_feature_ptr_24x2,
|
||||||
|
input_batch_ptr_24x2);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Left shift 48bit value into 24bit space and place on the PR register:
|
||||||
|
dot_prod_56 = AE_Q56S_SLAI(dot_prod_56, 24);
|
||||||
|
ae_p24x2s dot_prod_24x2 = AE_TRUNCP24Q48(dot_prod_56);
|
||||||
|
|
||||||
|
dot_prod_56 = MultiplyByQuantizedMultiplier(
|
||||||
|
dot_prod_24x2, data.effective_scale_1_a, data.effective_scale_1_b);
|
||||||
|
|
||||||
|
// Cap min/max and convert to int32_t:
|
||||||
|
dot_prod_56 = AE_MAXQ56S(dot_prod_56, output_int16_min_56);
|
||||||
|
dot_prod_56 = AE_MINQ56S(dot_prod_56, output_int16_max_56);
|
||||||
|
// Truncate immediately since the QR register is already 32 bit aligned:
|
||||||
|
// This assumes state is symmetrically quantized. Otherwise last bit of
|
||||||
|
// state should be initialized to its zero point and accumulate the
|
||||||
|
// dot_prod.
|
||||||
|
// Equivalent as the following:
|
||||||
|
// result_in_batch = zero point, which happens to be zero.
|
||||||
|
// result_in_batch += dot_prod_56.
|
||||||
|
*result_in_batch = AE_TRUNCA32Q48(dot_prod_56);
|
||||||
|
result_in_batch += n_memory;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Time.
|
||||||
|
{
|
||||||
|
for (int b = 0; b < n_batch; ++b) {
|
||||||
|
int32_t* scratch_ptr_batch = scratch_tensor + b * n_filter;
|
||||||
|
|
||||||
|
// Perform batched vector dot product:
|
||||||
|
const int16_t* vector1_ptr =
|
||||||
|
tflite::micro::GetTensorData<int16_t>(weights_time_tensor);
|
||||||
|
const int16_t* vector2_ptr = state_ptr + b * n_memory * n_filter;
|
||||||
|
|
||||||
|
const ae_p16x2s* offset_vector1 =
|
||||||
|
reinterpret_cast<const ae_p16x2s*>(vector1_ptr - 2);
|
||||||
|
const ae_p16x2s* offset_vector2 =
|
||||||
|
reinterpret_cast<const ae_p16x2s*>(vector2_ptr - 2);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_filter; i++) {
|
||||||
|
*scratch_ptr_batch = 0;
|
||||||
|
|
||||||
|
ae_q56s sum_56 = AE_ZEROQ56();
|
||||||
|
int num_iters = n_memory / 2;
|
||||||
|
for (int j = 0; j < num_iters; j++) {
|
||||||
|
ae_p24x2s vector1_24x2;
|
||||||
|
ae_p24x2s vector2_24x2;
|
||||||
|
AE_LP16X2F_IU(vector1_24x2, offset_vector1, 4);
|
||||||
|
AE_LP16X2F_IU(vector2_24x2, offset_vector2, 4);
|
||||||
|
AE_MULAAP24S_HH_LL(sum_56, vector1_24x2, vector2_24x2);
|
||||||
|
}
|
||||||
|
// Truncate directly since values are already 32bit aligned:
|
||||||
|
*scratch_ptr_batch = AE_TRUNCA32Q48(sum_56);
|
||||||
|
scratch_ptr_batch++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reduce, add bias, rescale, activation.
|
||||||
|
{
|
||||||
|
// Add bias.
|
||||||
|
if (bias_tensor) {
|
||||||
|
// Vector batch assign:
|
||||||
|
const int32_t* bias_data =
|
||||||
|
tflite::micro::GetTensorData<int32_t>(bias_tensor);
|
||||||
|
for (int i = 0; i < n_batch; ++i) {
|
||||||
|
int32_t* output_ptr = scratch_output_tensor + i * n_unit;
|
||||||
|
const int32_t* bias_ptr = bias_data;
|
||||||
|
for (int j = 0; j < n_unit; ++j) {
|
||||||
|
*output_ptr++ = *bias_ptr++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
int32_t* output_ptr = scratch_output_tensor;
|
||||||
|
for (int i = 0; i < n_batch * n_unit; ++i) {
|
||||||
|
*output_ptr++ = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reduce.
|
||||||
|
for (int b = 0; b < n_batch; ++b) {
|
||||||
|
int32_t* output_temp_ptr = scratch_output_tensor + b * n_unit;
|
||||||
|
int32_t* scratch_ptr_batch = scratch_tensor + b * n_filter;
|
||||||
|
|
||||||
|
// Reduction sum vector
|
||||||
|
for (int i = 0; i < n_unit; ++i) {
|
||||||
|
for (int j = 0; j < n_rank; ++j) {
|
||||||
|
output_temp_ptr[i] += *scratch_ptr_batch++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Rescale.
|
||||||
|
ae_q56s output_int8_max_56 = AE_CVTQ48A32S(INT8_MAX);
|
||||||
|
ae_q56s output_int8_min_56 = AE_CVTQ48A32S(INT8_MIN);
|
||||||
|
ae_q56s output_zp_56 = AE_CVTQ48A32S(data.output_zero_point);
|
||||||
|
for (int i = 0; i < n_batch * n_unit; ++i) {
|
||||||
|
ae_q56s x_56 = MultiplyByQuantizedMultiplierResult48Bit(
|
||||||
|
scratch_output_tensor[i], data.effective_scale_2_a,
|
||||||
|
data.effective_scale_2_b);
|
||||||
|
// Add output adjustment:
|
||||||
|
x_56 = AE_ADDQ56(x_56, output_zp_56);
|
||||||
|
// Cap min/max and convert to int32_t (already aligned to 32bit):
|
||||||
|
x_56 = AE_MAXQ56S(x_56, output_int8_min_56);
|
||||||
|
x_56 = AE_MINQ56S(x_56, output_int8_max_56);
|
||||||
|
tflite::micro::GetTensorData<int8_t>(output_tensor)[i] =
|
||||||
|
static_cast<int8_t>(AE_TRUNCA32Q48(x_56));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||||
|
TFLITE_DCHECK(context != nullptr);
|
||||||
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||||
|
const auto* params = static_cast<const TfLiteSVDFParams*>(node->builtin_data);
|
||||||
|
|
||||||
|
// Validate Tensor Inputs (dtype depends on quantization):
|
||||||
|
// [0] = Input, {2, batch_size, input_size}
|
||||||
|
// [1] = Weights Feature, {2, num_filters, input_size}
|
||||||
|
// [2] = Weights Time, {2, num_filters, memory_size}
|
||||||
|
// [3] = Bias (optional), {1, num_units}
|
||||||
|
// [4] = Activation State (variable),
|
||||||
|
// {2, batch_size, memory_size * num_filters}
|
||||||
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||||
|
const TfLiteTensor* weights_feature =
|
||||||
|
GetInput(context, node, kWeightsFeatureTensor);
|
||||||
|
const TfLiteTensor* weights_time =
|
||||||
|
GetInput(context, node, kWeightsTimeTensor);
|
||||||
|
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
|
||||||
|
const TfLiteTensor* activation_state =
|
||||||
|
GetInput(context, node, kInputActivationStateTensor);
|
||||||
|
|
||||||
|
// Define input constants based on input tensor definition above:
|
||||||
|
const int rank = params->rank;
|
||||||
|
const int input_size = input->dims->data[1];
|
||||||
|
const int batch_size = input->dims->data[0];
|
||||||
|
// Ensure the input size is a multiple of two. This is necessary since
|
||||||
|
// optimized kernels access the memory in chunks of two, and all accesses
|
||||||
|
// must be aligned to 16 bits.
|
||||||
|
// TODO(b/153202598): Remove when padding is allowed in TFLite tensors.
|
||||||
|
TF_LITE_ENSURE_EQ(context, input_size % 2, 0);
|
||||||
|
|
||||||
|
const int num_filters = weights_feature->dims->data[0];
|
||||||
|
TF_LITE_ENSURE_EQ(context, num_filters % rank, 0);
|
||||||
|
const int num_units = num_filters / rank;
|
||||||
|
const int memory_size = weights_time->dims->data[1];
|
||||||
|
|
||||||
|
if (input->type != kTfLiteInt8) {
|
||||||
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||||
|
TfLiteTypeGetName(input->type), input->type);
|
||||||
|
return kTfLiteError;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Validate Input Tensor:
|
||||||
|
TF_LITE_ENSURE(context, input->type == kTfLiteInt8);
|
||||||
|
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 2);
|
||||||
|
|
||||||
|
// Validate Tensor Output:
|
||||||
|
// [0] = float/int8_t, {2, batch_size, num_units}
|
||||||
|
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
|
||||||
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||||
|
TF_LITE_ENSURE_EQ(context, NumDimensions(output), 2);
|
||||||
|
TF_LITE_ENSURE_EQ(context, output->dims->data[0], batch_size);
|
||||||
|
TF_LITE_ENSURE_EQ(context, output->dims->data[1], num_units);
|
||||||
|
|
||||||
|
// Validate Weights Feature Input Tensor:
|
||||||
|
TF_LITE_ENSURE_EQ(context, NumDimensions(weights_feature), 2);
|
||||||
|
TF_LITE_ENSURE_EQ(context, weights_feature->dims->data[1], input_size);
|
||||||
|
|
||||||
|
// Validate Weights Time Input Tensor:
|
||||||
|
TF_LITE_ENSURE_EQ(context, NumDimensions(weights_time), 2);
|
||||||
|
TF_LITE_ENSURE_EQ(context, weights_time->dims->data[0], num_filters);
|
||||||
|
TF_LITE_ENSURE_EQ(context, weights_time->dims->data[1], memory_size);
|
||||||
|
|
||||||
|
// Validate Optional Bias Input Tensor:
|
||||||
|
if (bias != nullptr) {
|
||||||
|
TF_LITE_ENSURE_EQ(context, bias->dims->data[0], num_units);
|
||||||
|
TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteInt32);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Validate Activation State Input Tensor:
|
||||||
|
TF_LITE_ENSURE_EQ(context, NumDimensions(activation_state), 2);
|
||||||
|
TF_LITE_ENSURE_EQ(context, activation_state->dims->data[0], batch_size);
|
||||||
|
TF_LITE_ENSURE_EQ(context, activation_state->dims->data[1],
|
||||||
|
memory_size * num_filters);
|
||||||
|
|
||||||
|
TF_LITE_ENSURE_EQ(context, node->inputs->size, 5);
|
||||||
|
TF_LITE_ENSURE_EQ(context, weights_feature->type, kTfLiteInt8);
|
||||||
|
TF_LITE_ENSURE_EQ(context, weights_time->type, kTfLiteInt16);
|
||||||
|
TF_LITE_ENSURE_EQ(context, activation_state->type, kTfLiteInt16);
|
||||||
|
|
||||||
|
// Validate output tensor:
|
||||||
|
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
|
||||||
|
|
||||||
|
const double effective_scale_1 =
|
||||||
|
static_cast<double>(input->params.scale * weights_feature->params.scale /
|
||||||
|
activation_state->params.scale);
|
||||||
|
const double effective_scale_2 =
|
||||||
|
static_cast<double>(activation_state->params.scale *
|
||||||
|
weights_time->params.scale / output->params.scale);
|
||||||
|
|
||||||
|
TF_LITE_ENSURE_EQ(context, static_cast<double>(bias->params.scale),
|
||||||
|
static_cast<double>(activation_state->params.scale *
|
||||||
|
weights_time->params.scale));
|
||||||
|
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
OpData* data = static_cast<OpData*>(node->user_data);
|
||||||
|
|
||||||
|
QuantizeMultiplierForInt24(effective_scale_1, &data->effective_scale_1_a,
|
||||||
|
&data->effective_scale_1_b);
|
||||||
|
QuantizeMultiplierForInt24(effective_scale_2, &data->effective_scale_2_a,
|
||||||
|
&data->effective_scale_2_b);
|
||||||
|
|
||||||
|
data->input_zero_point = input->params.zero_point;
|
||||||
|
data->output_zero_point = output->params.zero_point;
|
||||||
|
|
||||||
|
const TfLiteStatus scratch_status = context->RequestScratchBufferInArena(
|
||||||
|
context, batch_size * num_filters * sizeof(int32_t),
|
||||||
|
&(data->scratch_tensor_index));
|
||||||
|
TF_LITE_ENSURE_OK(context, scratch_status);
|
||||||
|
const TfLiteStatus scratch_output_status =
|
||||||
|
context->RequestScratchBufferInArena(
|
||||||
|
context, batch_size * num_units * sizeof(int32_t),
|
||||||
|
&(data->scratch_output_tensor_index));
|
||||||
|
TF_LITE_ENSURE_OK(context, scratch_output_status);
|
||||||
|
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||||
|
auto* params = static_cast<TfLiteSVDFParams*>(node->builtin_data);
|
||||||
|
|
||||||
|
const TfLiteEvalTensor* input =
|
||||||
|
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||||
|
const TfLiteEvalTensor* weights_feature =
|
||||||
|
tflite::micro::GetEvalInput(context, node, kWeightsFeatureTensor);
|
||||||
|
const TfLiteEvalTensor* weights_time =
|
||||||
|
tflite::micro::GetEvalInput(context, node, kWeightsTimeTensor);
|
||||||
|
const TfLiteEvalTensor* bias =
|
||||||
|
(NumInputs(node) == 5)
|
||||||
|
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
|
||||||
|
: nullptr;
|
||||||
|
TfLiteEvalTensor* activation_state = tflite::micro::GetMutableEvalInput(
|
||||||
|
context, node, kInputActivationStateTensor);
|
||||||
|
TfLiteEvalTensor* output =
|
||||||
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||||
|
|
||||||
|
TFLITE_DCHECK(node->user_data != nullptr);
|
||||||
|
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||||
|
|
||||||
|
EvalIntegerSVDF(context, node, input, weights_feature, weights_time, bias,
|
||||||
|
params, activation_state, output, data);
|
||||||
|
return kTfLiteOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
TfLiteRegistration Register_SVDF() {
|
||||||
|
return {/*init=*/Init,
|
||||||
|
/*free=*/nullptr,
|
||||||
|
/*prepare=*/Prepare,
|
||||||
|
/*invoke=*/Eval,
|
||||||
|
/*profiling_string=*/nullptr,
|
||||||
|
/*builtin_code=*/0,
|
||||||
|
/*custom_name=*/nullptr,
|
||||||
|
/*version=*/0};
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace tflite
|
39
tensorflow/lite/micro/testing/test_xtensa_binary.sh
Executable file
39
tensorflow/lite/micro/testing/test_xtensa_binary.sh
Executable file
@ -0,0 +1,39 @@
|
|||||||
|
#!/bin/bash -e
|
||||||
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
#
|
||||||
|
# Tests an Xtensa binary by parsing the log output.
|
||||||
|
#
|
||||||
|
# First argument is the binary location.
|
||||||
|
#
|
||||||
|
# Second argument is a regular expression that's required to be in the output
|
||||||
|
# logs for the test to pass.
|
||||||
|
|
||||||
|
declare -r ROOT_DIR=`pwd`
|
||||||
|
declare -r TEST_TMPDIR=/tmp/test_xtensa_binary/
|
||||||
|
declare -r MICRO_LOG_PATH=${TEST_TMPDIR}/$1
|
||||||
|
declare -r MICRO_LOG_FILENAME=${MICRO_LOG_PATH}/logs.txt
|
||||||
|
mkdir -p ${MICRO_LOG_PATH}
|
||||||
|
|
||||||
|
xt-run $1 2>&1 | tee ${MICRO_LOG_FILENAME}
|
||||||
|
|
||||||
|
if grep -q "$2" ${MICRO_LOG_FILENAME}
|
||||||
|
then
|
||||||
|
echo "$1: PASS"
|
||||||
|
exit 0
|
||||||
|
else
|
||||||
|
echo "$1: FAIL - '$2' not found in logs."
|
||||||
|
exit 1
|
||||||
|
fi
|
3
tensorflow/lite/micro/tools/make/ext_libs/xtensa.inc
Normal file
3
tensorflow/lite/micro/tools/make/ext_libs/xtensa.inc
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
# Every optimized kernel implementation directory (i.e.
|
||||||
|
# micro/kernels/<optimized_kernel_dir>/ must have a corresponding
|
||||||
|
# micro/tools/make/ext_libs/<optimized_kernel_dir>.inc
|
58
tensorflow/lite/micro/tools/make/targets/xtensa_makefile.inc
Normal file
58
tensorflow/lite/micro/tools/make/targets/xtensa_makefile.inc
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
# Settings for Xtensa toolchain for the hifimini kernels.
|
||||||
|
# REQUIRED:
|
||||||
|
# Environment variables:
|
||||||
|
# - XTENSA_BASE must be set to location of
|
||||||
|
# the Xtensa developer tools installation directory.
|
||||||
|
# Command line arguments:
|
||||||
|
# - XTENSA_TOOLS_VERSION: For example: RI-2019.2-linux
|
||||||
|
# - XTENSA_CORE: The name of the Xtensa core to use
|
||||||
|
# For example: hifimini
|
||||||
|
|
||||||
|
TARGET_ARCH :=
|
||||||
|
|
||||||
|
ifndef XTENSA_BASE
|
||||||
|
$(error XTENSA_BASE is undefined)
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifndef XTENSA_TOOLS_VERSION
|
||||||
|
$(error XTENSA_TOOLS_VERSION is undefined)
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifndef XTENSA_CORE
|
||||||
|
$(error XTENSA_CORE is undefined)
|
||||||
|
endif
|
||||||
|
|
||||||
|
PLATFORM_FLAGS = \
|
||||||
|
-DTF_LITE_MCU_DEBUG_LOG \
|
||||||
|
-DTF_LITE_USE_CTIME \
|
||||||
|
--xtensa-core=$(XTENSA_CORE) \
|
||||||
|
-mcoproc \
|
||||||
|
-DXTENSA \
|
||||||
|
-DMAX_RFFT_PWR=9 \
|
||||||
|
-DMIN_RFFT_PWR=MAX_RFFT_PWR
|
||||||
|
|
||||||
|
|
||||||
|
export PATH := $(XTENSA_BASE)/tools/$(XTENSA_TOOLS_VERSION)/XtensaTools/bin:$(PATH)
|
||||||
|
TARGET_TOOLCHAIN_PREFIX := xt-
|
||||||
|
CXX_TOOL := clang++
|
||||||
|
CC_TOOL := clang
|
||||||
|
|
||||||
|
CXXFLAGS += $(PLATFORM_FLAGS)
|
||||||
|
CCFLAGS += $(PLATFORM_FLAGS)
|
||||||
|
|
||||||
|
# TODO(b/150240249): Do not remove -fno-rtti once that works for the Xtensa toolchain.
|
||||||
|
CXXFLAGS := $(filter-out -fno-rtti, $(CXXFLAGS))
|
||||||
|
|
||||||
|
TEST_SCRIPT := tensorflow/lite/micro/testing/test_xtensa_binary.sh
|
||||||
|
|
||||||
|
# TODO(b/156962140): This manually maintained list of excluded examples is
|
||||||
|
# quite error prone.
|
||||||
|
EXCLUDED_EXAMPLE_TESTS := \
|
||||||
|
tensorflow/lite/micro/examples/image_recognition_experimental/Makefile.inc \
|
||||||
|
tensorflow/lite/micro/examples/magic_wand/Makefile.inc \
|
||||||
|
tensorflow/lite/micro/examples/micro_speech/Makefile.inc \
|
||||||
|
tensorflow/lite/micro/examples/network_tester/Makefile.inc \
|
||||||
|
tensorflow/lite/micro/examples/person_detection/Makefile.inc \
|
||||||
|
tensorflow/lite/micro/examples/person_detection_experimental/Makefile.inc
|
||||||
|
MICRO_LITE_EXAMPLE_TESTS := $(filter-out $(EXCLUDED_EXAMPLE_TESTS), $(MICRO_LITE_EXAMPLE_TESTS))
|
||||||
|
|
Loading…
Reference in New Issue
Block a user