Merge pull request #11349 from chris-chris/patch/170707-misspell
Fix misspells :)
This commit is contained in:
commit
37d00efb0a
@ -440,7 +440,7 @@ Status ParallelCpuExecutable::ExecuteComputeFunctions(
|
||||
// TODO(b/27458679) Manage scheduling based on in-flight concurrency limits.
|
||||
// For example, if we expect a library conv/matmul call to run at max
|
||||
// concurrency, we should not dispatch runnable instructions until the
|
||||
// libary call is finished (to avoid expensive cache invalidation).
|
||||
// library call is finished (to avoid expensive cache invalidation).
|
||||
Executor executor(functions, run_options, &pending, &results,
|
||||
buffer_pointers.data(), profile_counters.data(),
|
||||
assignment_.get());
|
||||
|
@ -495,7 +495,7 @@ TEST_F(HloAliasAnalysisTest, NestedWhiles) {
|
||||
};
|
||||
// Build separate condition computations so the call graph is flat. The
|
||||
// callgraph is always flattened in the compiler pipeline, and the flattened
|
||||
// callgraph enables representive interference analysis.
|
||||
// callgraph enables representative interference analysis.
|
||||
HloComputation* condition1 =
|
||||
module_->AddEmbeddedComputation(build_cond_computation());
|
||||
HloComputation* condition2 =
|
||||
|
@ -106,7 +106,7 @@ void CategoricalFeatureColumnHandler::GenerateFeatureSplitCandidates(
|
||||
NodeStats left_node_stats(learner_config, left_gradient_stats);
|
||||
NodeStats right_node_stats(learner_config, right_gradient_stats);
|
||||
|
||||
// Generate split candiate and update best split candidate for the
|
||||
// Generate split candidate and update best split candidate for the
|
||||
// current root if needed.
|
||||
FeatureSplitCandidate split_candidate(
|
||||
slot_id_,
|
||||
|
@ -93,7 +93,7 @@ void DenseQuantizedFeatureColumnHandler::GenerateFeatureSplitCandidates(
|
||||
NodeStats left_node_stats(learner_config, left_gradient_stats);
|
||||
NodeStats right_node_stats(learner_config, right_gradient_stats);
|
||||
|
||||
// Generate split candiate.
|
||||
// Generate split candidate.
|
||||
const float threshold = dense_quantiles_(bucket_id);
|
||||
FeatureSplitCandidate split_candidate(
|
||||
slot_id_, CreateDenseSplitNode(dense_feature_column_, threshold),
|
||||
|
@ -109,7 +109,7 @@ void SparseQuantizedFeatureColumnHandler::GenerateFeatureSplitCandidates(
|
||||
NodeStats left_node_stats(learner_config, left_gradient_stats);
|
||||
NodeStats right_node_stats(learner_config, right_gradient_stats);
|
||||
|
||||
// Generate split candiate.
|
||||
// Generate split candidate.
|
||||
const float threshold = sparse_quantiles_(bucket_id);
|
||||
FeatureSplitCandidate split_candidate(
|
||||
slot_id_,
|
||||
@ -147,7 +147,7 @@ void SparseQuantizedFeatureColumnHandler::GenerateFeatureSplitCandidates(
|
||||
NodeStats left_node_stats(learner_config, left_gradient_stats);
|
||||
NodeStats right_node_stats(learner_config, right_gradient_stats);
|
||||
|
||||
// Generate split candiate.
|
||||
// Generate split candidate.
|
||||
const float threshold = sparse_quantiles_(bucket_id - 1);
|
||||
FeatureSplitCandidate split_candidate(
|
||||
slot_id_,
|
||||
|
@ -800,7 +800,7 @@ class WALSModel(object):
|
||||
regularization: A tensor (scalar) that contains the normalized
|
||||
regularization term for the minibatch loss corresponding to sp_input.
|
||||
sum_weights: The sum of the weights corresponding to sp_input. This
|
||||
can be used with unregularized loss to caluclate the root weighted
|
||||
can be used with unregularized loss to calculate the root weighted
|
||||
squared error.
|
||||
"""
|
||||
assert isinstance(sp_input, sparse_tensor.SparseTensor)
|
||||
|
@ -689,11 +689,11 @@ class InputStatisticsFromMiniBatch(object):
|
||||
values = features[TrainEvalFeatures.VALUES]
|
||||
else:
|
||||
# times and values may not be available, for example during prediction. We
|
||||
# still need to retreive our variables so that they can be read from, even
|
||||
# still need to retrieve our variables so that they can be read from, even
|
||||
# if we're not going to update them.
|
||||
times = None
|
||||
values = None
|
||||
# Create/retreive variables representing input statistics, initialized
|
||||
# Create/retrieve variables representing input statistics, initialized
|
||||
# without data to avoid deadlocking if variables are initialized before
|
||||
# queue runners are started.
|
||||
with variable_scope.variable_scope("input_statistics"):
|
||||
|
@ -196,7 +196,7 @@ class ChainingStateManager(_OverridableStateManager):
|
||||
return time // self._state_saving_interval
|
||||
|
||||
def _get_cached_states(self, times):
|
||||
"""Retreive cached states for a batch of times."""
|
||||
"""Retrieve cached states for a batch of times."""
|
||||
read_chunk_numbers = self._get_chunk_number(times)
|
||||
looked_up_state = list(self._cached_states.lookup(
|
||||
math_ops.cast(read_chunk_numbers, dtypes.int64)))
|
||||
@ -242,7 +242,7 @@ class ChainingStateManager(_OverridableStateManager):
|
||||
# written to the next bucket). This assumes fixed missing times (i.e. if we
|
||||
# were presented with times [10, 50] we will never see times [30, 50]).
|
||||
#
|
||||
# TODO(allenl): Retreive the highest time less than the current time rather
|
||||
# TODO(allenl): Retrieve the highest time less than the current time rather
|
||||
# than relying on fixed bucketing.
|
||||
write_chunk_numbers = math_ops.maximum(
|
||||
self._get_chunk_number(array_ops.concat(
|
||||
|
@ -150,7 +150,7 @@ class StateInterpolatingAnomalyDetector(FilteringStepPostprocessor):
|
||||
This is simply Bayes' theorem, where p(data | anomaly) is the
|
||||
alternative/anomaly distribution, p(data | not anomaly) is the model's
|
||||
predicted distribution, and anomaly_prior_probability is the prior probability
|
||||
of an anomaly occuring (user-specified, defaulting to 1%).
|
||||
of an anomaly occurring (user-specified, defaulting to 1%).
|
||||
|
||||
Rather than computing p(anomaly | data) directly, we use the odds ratio:
|
||||
|
||||
|
@ -70,7 +70,7 @@ class StructuralEnsemble(state_space_model.StateSpaceIndependentEnsemble):
|
||||
|
||||
`observation_noise`, `level_noise`, `trend noise`, `seasonality_noise`, and
|
||||
`transient` are (typically scalar) Gaussian random variables whose variance is
|
||||
learned from data, and that variance is not time dependant in this
|
||||
learned from data, and that variance is not time dependent in this
|
||||
implementation. Level noise is optional due to its similarity with observation
|
||||
noise in some cases. Seasonality is enforced by constraining a full cycle of
|
||||
seasonal variables to have zero expectation, allowing seasonality to adapt
|
||||
|
@ -298,7 +298,7 @@ class InfeedQueue(object):
|
||||
input_tensors is a list of lists of Tensors whose types and shapes are used
|
||||
to set the queue configuration. The length of the outer list is the number
|
||||
of shards required, and each inner list is the tuple of Tensors to use to
|
||||
determine the types and shapes of the correponding shard. This method
|
||||
determine the types and shapes of the corresponding shard. This method
|
||||
depends on the shard dimension, and calling it freezes the shard policy.
|
||||
|
||||
Args:
|
||||
|
@ -73,7 +73,7 @@ bool ConsumeEquals(StringPiece* description) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Split `*orig` into two pieces at the first occurence of `split_ch`.
|
||||
// Split `*orig` into two pieces at the first occurrence of `split_ch`.
|
||||
// Returns whether `split_ch` was found. Afterwards, `*before_split`
|
||||
// contains the maximum prefix of the input `*orig` that doesn't
|
||||
// contain `split_ch`, and `*orig` contains everything after the
|
||||
|
@ -66,7 +66,7 @@ target 'YourProjectName'
|
||||
```
|
||||
|
||||
- Then you run ```pod install``` to download and install the
|
||||
TensorFlow-experimental pod, and finaly perform
|
||||
TensorFlow-experimental pod, and finally perform
|
||||
```open YourProjectName.xcworkspace``` and add your code.
|
||||
|
||||
- In your apps "Build Settings", make sure to add $(inherited) to sections
|
||||
|
@ -180,7 +180,7 @@ def assert_same_structure(nest1, nest2, check_types=True):
|
||||
nest1: an arbitrarily nested structure.
|
||||
nest2: an arbitrarily nested structure.
|
||||
check_types: if `True` (default) types of sequences are checked as
|
||||
well, incuding the keys of dictionaries. If set to `False`, for example
|
||||
well, including the keys of dictionaries. If set to `False`, for example
|
||||
a list and a tuple of objects will look the same if they have the same
|
||||
size.
|
||||
|
||||
|
@ -54,7 +54,7 @@ class _Errors(object):
|
||||
"""Add an error to the collection.
|
||||
|
||||
Args:
|
||||
full_name: The path to the file in which the error occured.
|
||||
full_name: The path to the file in which the error occurred.
|
||||
message: The message to display with the error.
|
||||
"""
|
||||
self._errors.append((full_name, message))
|
||||
|
Loading…
x
Reference in New Issue
Block a user