MaxPool2D and AveragePool2D tests for XNNPACK delegate
PiperOrigin-RevId: 306569189 Change-Id: I049b590b9954ad53d04429c1a105317260d8cca4
This commit is contained in:
parent
7741464810
commit
373ae1b68c
|
@ -28,6 +28,21 @@ cc_library(
|
|||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "xnnpack_delegate_test_mode",
|
||||
srcs = ["xnnpack_delegate.cc"],
|
||||
hdrs = ["xnnpack_delegate.h"],
|
||||
copts = ["-DXNNPACK_DELEGATE_TEST_MODE=1"],
|
||||
linkstatic = True,
|
||||
deps = [
|
||||
"//tensorflow/lite:kernel_api",
|
||||
"//tensorflow/lite:util",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/schema:schema_fbs",
|
||||
"@XNNPACK",
|
||||
],
|
||||
)
|
||||
|
||||
############################## Integration tests ###############################
|
||||
|
||||
cc_library(
|
||||
|
@ -42,6 +57,51 @@ cc_library(
|
|||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "pool_2d_tester",
|
||||
testonly = 1,
|
||||
srcs = ["pool_2d_tester.cc"],
|
||||
hdrs = ["pool_2d_tester.h"],
|
||||
deps = [
|
||||
"//tensorflow/lite:framework",
|
||||
"//tensorflow/lite:schema_fbs_version",
|
||||
"//tensorflow/lite/kernels:builtin_ops",
|
||||
"//tensorflow/lite/schema:schema_fbs",
|
||||
"@com_google_googletest//:gtest",
|
||||
"@flatbuffers",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "average_pool_2d_test",
|
||||
srcs = ["average_pool_2d_test.cc"],
|
||||
linkopts = select({
|
||||
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||
"//conditions:default": [],
|
||||
}),
|
||||
deps = [
|
||||
":pool_2d_tester",
|
||||
":test_main",
|
||||
":xnnpack_delegate_test_mode",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "max_pool_2d_test",
|
||||
srcs = ["max_pool_2d_test.cc"],
|
||||
linkopts = select({
|
||||
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||
"//conditions:default": [],
|
||||
}),
|
||||
deps = [
|
||||
":pool_2d_tester",
|
||||
":test_main",
|
||||
":xnnpack_delegate_test_mode",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "conv_2d_test",
|
||||
srcs = ["conv_2d_test.cc"],
|
||||
|
|
|
@ -0,0 +1,370 @@
|
|||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <random>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/delegates/xnnpack/pool_2d_tester.h"
|
||||
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
TEST(AveragePool2D, EqualPoolAndStrideWithSamePadding) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
const int32_t pool_height = pool_rng();
|
||||
const int32_t pool_width = pool_rng();
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_height)
|
||||
.PoolingWidth(pool_width)
|
||||
.StrideHeight(pool_height)
|
||||
.StrideWidth(pool_width)
|
||||
.SamePadding()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, EqualPoolAndStrideWithValidPadding) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
const int32_t pool_height = pool_rng();
|
||||
const int32_t pool_width = pool_rng();
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_height)
|
||||
.PoolingWidth(pool_width)
|
||||
.StrideHeight(pool_height)
|
||||
.StrideWidth(pool_width)
|
||||
.ValidPadding()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, LargePoolSmallStrideWithSamePadding) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(4, 7), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.SamePadding()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, LargePoolSmallStrideWithValidPadding) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(4, 7), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.ValidPadding()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, GlobalPooling) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
const int32_t height = input_rng();
|
||||
const int32_t width = input_rng();
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(height)
|
||||
.InputWidth(width)
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(height)
|
||||
.PoolingWidth(width)
|
||||
.ValidPadding()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, ReluActivation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.ReluActivation()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, Relu6Activation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.Relu6Activation()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, ReluMinus1To1Activation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.ReluMinus1To1Activation()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, DISABLED_TanhActivation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.TanhActivation()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, DISABLED_SignBitActivation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.SignBitActivation()
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(AveragePool2D, MultiThreading) {
|
||||
TfLiteXNNPackDelegateOptions delegate_options =
|
||||
TfLiteXNNPackDelegateOptionsDefault();
|
||||
delegate_options.num_threads = 2;
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.Test(BuiltinOperator_AVERAGE_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
|
@ -0,0 +1,370 @@
|
|||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <random>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/delegates/xnnpack/pool_2d_tester.h"
|
||||
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
TEST(MaxPool2D, EqualPoolAndStrideWithSamePadding) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
const int32_t pool_height = pool_rng();
|
||||
const int32_t pool_width = pool_rng();
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_height)
|
||||
.PoolingWidth(pool_width)
|
||||
.StrideHeight(pool_height)
|
||||
.StrideWidth(pool_width)
|
||||
.SamePadding()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, EqualPoolAndStrideWithValidPadding) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
const int32_t pool_height = pool_rng();
|
||||
const int32_t pool_width = pool_rng();
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_height)
|
||||
.PoolingWidth(pool_width)
|
||||
.StrideHeight(pool_height)
|
||||
.StrideWidth(pool_width)
|
||||
.ValidPadding()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, LargePoolSmallStrideWithSamePadding) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(4, 7), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.SamePadding()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, LargePoolSmallStrideWithValidPadding) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(4, 7), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.ValidPadding()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, GlobalPooling) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
const int32_t height = input_rng();
|
||||
const int32_t width = input_rng();
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(height)
|
||||
.InputWidth(width)
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(height)
|
||||
.PoolingWidth(width)
|
||||
.ValidPadding()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, ReluActivation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.ReluActivation()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, Relu6Activation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.Relu6Activation()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, ReluMinus1To1Activation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.ReluMinus1To1Activation()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, DISABLED_TanhActivation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.TanhActivation()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, DISABLED_SignBitActivation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.SignBitActivation()
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(MaxPool2D, MultiThreading) {
|
||||
TfLiteXNNPackDelegateOptions delegate_options =
|
||||
TfLiteXNNPackDelegateOptionsDefault();
|
||||
delegate_options.num_threads = 2;
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng));
|
||||
auto pool_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng));
|
||||
auto stride_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 16), std::ref(rng));
|
||||
|
||||
Pool2DTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(input_rng())
|
||||
.InputWidth(input_rng())
|
||||
.Channels(channel_rng())
|
||||
.PoolingHeight(pool_rng())
|
||||
.PoolingWidth(pool_rng())
|
||||
.StrideHeight(stride_rng())
|
||||
.StrideWidth(stride_rng())
|
||||
.Test(BuiltinOperator_MAX_POOL_2D, xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
|
@ -0,0 +1,196 @@
|
|||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/delegates/xnnpack/pool_2d_tester.h"
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/interpreter.h"
|
||||
#include "tensorflow/lite/kernels/register.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
void Pool2DTester::Test(tflite::BuiltinOperator pool_op,
|
||||
TfLiteDelegate* delegate) const {
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto range_rng = std::bind(
|
||||
std::uniform_real_distribution<float>(-25.0f, 25.0f), std::ref(rng));
|
||||
|
||||
std::vector<char> buffer = CreateTfLiteModel(pool_op);
|
||||
const tflite::Model* model = tflite::GetModel(buffer.data());
|
||||
|
||||
std::unique_ptr<tflite::Interpreter> delegate_interpreter;
|
||||
ASSERT_EQ(tflite::InterpreterBuilder(
|
||||
model, tflite::ops::builtin::BuiltinOpResolver())(
|
||||
&delegate_interpreter),
|
||||
kTfLiteOk);
|
||||
std::unique_ptr<tflite::Interpreter> default_interpreter;
|
||||
ASSERT_EQ(tflite::InterpreterBuilder(
|
||||
model, tflite::ops::builtin::BuiltinOpResolver())(
|
||||
&default_interpreter),
|
||||
kTfLiteOk);
|
||||
|
||||
ASSERT_TRUE(delegate_interpreter);
|
||||
ASSERT_TRUE(default_interpreter);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
||||
|
||||
float* default_input_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->inputs()[0]);
|
||||
for (int32_t i = 0; i < BatchSize(); i++) {
|
||||
for (int32_t c = 0; c < Channels(); c++) {
|
||||
// Use the same range of all-positive or all-negative values to generate
|
||||
// all pixels within the same batch index & channel, but different ranges
|
||||
// for different channels or batches. This ensures that no catastrophic
|
||||
// cancellation occur, but test covers both positive and negative inputs.
|
||||
const float range = range_rng();
|
||||
auto value_rng =
|
||||
std::bind(std::uniform_real_distribution<float>(
|
||||
std::min(range, 0.0f), std::max(range, 0.0f)),
|
||||
std::ref(rng));
|
||||
for (int32_t y = 0; y < InputHeight(); y++) {
|
||||
for (int32_t x = 0; x < InputWidth(); x++) {
|
||||
const int32_t index =
|
||||
((i * InputHeight() + y) * InputWidth() + x) * Channels() + c;
|
||||
default_input_data[index] = value_rng();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float* xnnpack_input_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->inputs()[0]);
|
||||
std::copy(default_input_data,
|
||||
default_input_data +
|
||||
BatchSize() * InputHeight() * InputWidth() * Channels(),
|
||||
xnnpack_input_data);
|
||||
|
||||
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
||||
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
||||
|
||||
float* default_output_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->outputs()[0]);
|
||||
float* xnnpack_output_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->outputs()[0]);
|
||||
|
||||
for (int32_t i = 0; i < BatchSize(); i++) {
|
||||
for (int32_t y = 0; y < OutputHeight(); y++) {
|
||||
for (int32_t x = 0; x < OutputWidth(); x++) {
|
||||
for (int32_t c = 0; c < Channels(); c++) {
|
||||
const int32_t index =
|
||||
((i * OutputHeight() + y) * OutputWidth() + x) * Channels() + c;
|
||||
if (pool_op == BuiltinOperator_MAX_POOL_2D) {
|
||||
// MaxPooling results must be exact
|
||||
ASSERT_EQ(default_output_data[index], xnnpack_output_data[index])
|
||||
<< "batch " << i << " / " << BatchSize() << ", y position " << y
|
||||
<< " / " << OutputHeight() << ", x position " << x << " / "
|
||||
<< OutputWidth() << ", channel " << c << " / " << Channels();
|
||||
} else {
|
||||
ASSERT_NEAR(default_output_data[index], xnnpack_output_data[index],
|
||||
std::abs(default_output_data[index]) * 3.0e-6f)
|
||||
<< "batch " << i << " / " << BatchSize() << ", y position " << y
|
||||
<< " / " << OutputHeight() << ", x position " << x << " / "
|
||||
<< OutputWidth() << ", channel " << c << " / " << Channels();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<char> Pool2DTester::CreateTfLiteModel(
|
||||
tflite::BuiltinOperator pool_op) const {
|
||||
flatbuffers::FlatBufferBuilder builder;
|
||||
flatbuffers::Offset<tflite::OperatorCode> operator_code =
|
||||
CreateOperatorCode(builder, pool_op, 0);
|
||||
|
||||
flatbuffers::Offset<tflite::Pool2DOptions> pool_2d_options =
|
||||
CreatePool2DOptions(builder, Padding(), StrideWidth(), StrideHeight(),
|
||||
PoolingWidth(), PoolingHeight(), Activation());
|
||||
|
||||
const flatbuffers::Offset<tflite::Buffer> null_buffer =
|
||||
tflite::CreateBuffer(builder, builder.CreateVector({}));
|
||||
|
||||
const std::array<int32_t, 4> input_shape{
|
||||
{BatchSize(), InputHeight(), InputWidth(), Channels()}};
|
||||
const std::array<int32_t, 4> output_shape{
|
||||
{BatchSize(), OutputHeight(), OutputWidth(), Channels()}};
|
||||
|
||||
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
|
||||
tflite::CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(input_shape.data(), input_shape.size()),
|
||||
tflite::TensorType_FLOAT32),
|
||||
tflite::CreateTensor(builder,
|
||||
builder.CreateVector<int32_t>(output_shape.data(),
|
||||
output_shape.size()),
|
||||
tflite::TensorType_FLOAT32),
|
||||
}};
|
||||
|
||||
const std::array<int32_t, 1> op_inputs{{0}};
|
||||
const std::array<int32_t, 1> op_outputs{{1}};
|
||||
|
||||
flatbuffers::Offset<tflite::Operator> op = CreateOperator(
|
||||
builder, /*opcode_index=*/0,
|
||||
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
||||
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()),
|
||||
tflite::BuiltinOptions_Pool2DOptions, pool_2d_options.Union());
|
||||
|
||||
const std::array<int32_t, 1> subgraph_inputs{{0}};
|
||||
const std::array<int32_t, 1> subgraph_outputs{{1}};
|
||||
flatbuffers::Offset<tflite::SubGraph> subgraph = CreateSubGraph(
|
||||
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
||||
subgraph_inputs.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
||||
subgraph_outputs.size()),
|
||||
builder.CreateVector(&op, 1));
|
||||
|
||||
flatbuffers::Offset<flatbuffers::String> description =
|
||||
builder.CreateString("Pool2D model");
|
||||
|
||||
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(
|
||||
builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1),
|
||||
builder.CreateVector(&subgraph, 1), description,
|
||||
builder.CreateVector(&null_buffer, 1));
|
||||
|
||||
builder.Finish(model_buffer);
|
||||
|
||||
return std::vector<char>(builder.GetBufferPointer(),
|
||||
builder.GetBufferPointer() + builder.GetSize());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
|
@ -0,0 +1,183 @@
|
|||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_POOL_2D_TESTER_H_
|
||||
#define TENSORFLOW_LITE_DELEGATES_XNNPACK_POOL_2D_TESTER_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/interpreter.h"
|
||||
#include "tensorflow/lite/kernels/register.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
class Pool2DTester {
|
||||
public:
|
||||
Pool2DTester() = default;
|
||||
Pool2DTester(const Pool2DTester&) = delete;
|
||||
Pool2DTester& operator=(const Pool2DTester&) = delete;
|
||||
|
||||
inline Pool2DTester& BatchSize(int32_t batch_size) {
|
||||
EXPECT_GT(batch_size, 0);
|
||||
batch_size_ = batch_size;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t BatchSize() const { return batch_size_; }
|
||||
|
||||
inline Pool2DTester& Channels(int32_t channels) {
|
||||
EXPECT_GT(channels, 0);
|
||||
channels_ = channels;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t Channels() const { return channels_; }
|
||||
|
||||
inline Pool2DTester& InputHeight(int32_t input_height) {
|
||||
EXPECT_GT(input_height, 0);
|
||||
input_height_ = input_height;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t InputHeight() const { return input_height_; }
|
||||
|
||||
inline Pool2DTester& InputWidth(int32_t input_width) {
|
||||
EXPECT_GT(input_width, 0);
|
||||
input_width_ = input_width;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t InputWidth() const { return input_width_; }
|
||||
|
||||
inline int32_t OutputWidth() const {
|
||||
if (Padding() == ::tflite::Padding_SAME) {
|
||||
return (InputWidth() - 1) / StrideWidth() + 1;
|
||||
} else {
|
||||
return (InputWidth() - PoolingWidth()) / StrideWidth() + 1;
|
||||
}
|
||||
}
|
||||
|
||||
inline int32_t OutputHeight() const {
|
||||
if (Padding() == ::tflite::Padding_SAME) {
|
||||
return (InputHeight() - 1) / StrideHeight() + 1;
|
||||
} else {
|
||||
return (InputHeight() - PoolingHeight()) / StrideHeight() + 1;
|
||||
}
|
||||
}
|
||||
|
||||
inline Pool2DTester& PoolingHeight(int32_t pooling_height) {
|
||||
EXPECT_GT(pooling_height, 0);
|
||||
pooling_height_ = pooling_height;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t PoolingHeight() const { return pooling_height_; }
|
||||
|
||||
inline Pool2DTester& PoolingWidth(int32_t pooling_width) {
|
||||
EXPECT_GT(pooling_width, 0);
|
||||
pooling_width_ = pooling_width;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t PoolingWidth() const { return pooling_width_; }
|
||||
|
||||
inline Pool2DTester& StrideHeight(int32_t stride_height) {
|
||||
EXPECT_GT(stride_height, 0);
|
||||
stride_height_ = stride_height;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t StrideHeight() const { return stride_height_; }
|
||||
|
||||
inline Pool2DTester& StrideWidth(int32_t stride_width) {
|
||||
EXPECT_GT(stride_width, 0);
|
||||
stride_width_ = stride_width;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t StrideWidth() const { return stride_width_; }
|
||||
|
||||
inline Pool2DTester& SamePadding() {
|
||||
padding_ = ::tflite::Padding_SAME;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Pool2DTester& ValidPadding() {
|
||||
padding_ = ::tflite::Padding_VALID;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Pool2DTester& ReluActivation() {
|
||||
activation_ = ::tflite::ActivationFunctionType_RELU;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Pool2DTester& Relu6Activation() {
|
||||
activation_ = ::tflite::ActivationFunctionType_RELU6;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Pool2DTester& ReluMinus1To1Activation() {
|
||||
activation_ = ::tflite::ActivationFunctionType_RELU_N1_TO_1;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Pool2DTester& TanhActivation() {
|
||||
activation_ = ::tflite::ActivationFunctionType_TANH;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Pool2DTester& SignBitActivation() {
|
||||
activation_ = ::tflite::ActivationFunctionType_SIGN_BIT;
|
||||
return *this;
|
||||
}
|
||||
|
||||
void Test(tflite::BuiltinOperator pool_op, TfLiteDelegate* delegate) const;
|
||||
|
||||
private:
|
||||
std::vector<char> CreateTfLiteModel(tflite::BuiltinOperator pool_op) const;
|
||||
|
||||
inline ::tflite::Padding Padding() const { return padding_; }
|
||||
|
||||
inline ::tflite::ActivationFunctionType Activation() const {
|
||||
return activation_;
|
||||
}
|
||||
|
||||
int32_t batch_size_ = 1;
|
||||
int32_t channels_ = 1;
|
||||
int32_t input_height_ = 1;
|
||||
int32_t input_width_ = 1;
|
||||
int32_t pooling_height_ = 1;
|
||||
int32_t pooling_width_ = 1;
|
||||
int32_t stride_height_ = 1;
|
||||
int32_t stride_width_ = 1;
|
||||
::tflite::Padding padding_ = ::tflite::Padding_VALID;
|
||||
::tflite::ActivationFunctionType activation_ =
|
||||
::tflite::ActivationFunctionType_NONE;
|
||||
};
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_DELEGATES_XNNPACK_POOL_2D_TESTER_H_
|
|
@ -1278,6 +1278,20 @@ TfLiteIntArray* GetOpsToReplace(TfLiteContext* context) {
|
|||
|
||||
nodes_to_replace->data[nodes_to_replace->size++] = node_index;
|
||||
}
|
||||
|
||||
#ifdef XNNPACK_DELEGATE_TEST_MODE
|
||||
// In the test mode build (used by unit tests), XNNPACK delegate claims to
|
||||
// support all operators in the execution plan to disable fallback to the
|
||||
// default TensorFlow Lite kernels. Thus, if any of the ops in the model are
|
||||
// not supported by the delegate, they will cause a failure in
|
||||
// ::tflite::Interpreter::ModifyGraphWithDelegate, to be caught in the unit
|
||||
// tests.
|
||||
nodes_to_replace->size = execution_plan->size;
|
||||
std::copy(&execution_plan->data[0],
|
||||
&execution_plan->data[execution_plan->size],
|
||||
&nodes_to_replace->data[0]);
|
||||
#endif
|
||||
|
||||
return nodes_to_replace;
|
||||
}
|
||||
|
||||
|
|
|
@ -156,11 +156,11 @@ def tf_repositories(path_prefix = "", tf_repo_name = ""):
|
|||
|
||||
tf_http_archive(
|
||||
name = "XNNPACK",
|
||||
sha256 = "7019a386752afaa5dd941d17201c5ff863b6ff1e77539e8cfcff0d13647a9f4a",
|
||||
strip_prefix = "XNNPACK-68eef3f15735c07774b3722f7b1b1142cebc9fed",
|
||||
sha256 = "583e408c9ab9a6ec241a54e0775bc170ed2ea3d1073668c9379dbfe282fa8acc",
|
||||
strip_prefix = "XNNPACK-24d9a03a9ee036949f8c56878ecec17ab400fc23",
|
||||
urls = [
|
||||
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/68eef3f15735c07774b3722f7b1b1142cebc9fed.zip",
|
||||
"https://github.com/google/XNNPACK/archive/68eef3f15735c07774b3722f7b1b1142cebc9fed.zip",
|
||||
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/24d9a03a9ee036949f8c56878ecec17ab400fc23.zip",
|
||||
"https://github.com/google/XNNPACK/archive/24d9a03a9ee036949f8c56878ecec17ab400fc23.zip",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -176,11 +176,11 @@ def tf_repositories(path_prefix = "", tf_repo_name = ""):
|
|||
|
||||
tf_http_archive(
|
||||
name = "pthreadpool",
|
||||
sha256 = "f894d845cefc091291329712deec85ce7020546f6eaff200b690ae04b6094535",
|
||||
strip_prefix = "pthreadpool-bfa3b9ce6cb71dc8b792e39d24717320a4f92572",
|
||||
sha256 = "27c039e73846d0bdfe393833e91afafe45e61ba792cc60e1c62808090554ce4d",
|
||||
strip_prefix = "pthreadpool-a61ed1ab70389c62f6f699ca1a30a2421d3ea594",
|
||||
urls = [
|
||||
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/Maratyszcza/pthreadpool/archive/bfa3b9ce6cb71dc8b792e39d24717320a4f92572.zip",
|
||||
"https://github.com/Maratyszcza/pthreadpool/archive/bfa3b9ce6cb71dc8b792e39d24717320a4f92572.zip",
|
||||
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/Maratyszcza/pthreadpool/archive/a61ed1ab70389c62f6f699ca1a30a2421d3ea594.zip",
|
||||
"https://github.com/Maratyszcza/pthreadpool/archive/a61ed1ab70389c62f6f699ca1a30a2421d3ea594.zip",
|
||||
],
|
||||
)
|
||||
|
||||
|
|
Loading…
Reference in New Issue