diff --git a/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py b/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py index 3485e7afbf1..efe35ca096f 100644 --- a/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py +++ b/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py @@ -103,7 +103,7 @@ def train(): with tf.name_scope('dropout'): keep_prob = tf.placeholder(tf.float32) tf.summary.scalar('dropout_keep_probability', keep_prob) - dropped = tf.nn.dropout(hidden1, keep_prob) + dropped = tf.nn.dropout(hidden1, rate=(1 - keep_prob)) # Do not apply softmax activation yet, see below. y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity) diff --git a/tensorflow/python/grappler/hierarchical_controller.py b/tensorflow/python/grappler/hierarchical_controller.py index c8f2f4245bb..e39988d96b5 100644 --- a/tensorflow/python/grappler/hierarchical_controller.py +++ b/tensorflow/python/grappler/hierarchical_controller.py @@ -883,7 +883,7 @@ class HierarchicalController(Controller): actions.read(i - 1)) ) if self.hparams.keep_prob is not None: - signal = nn_ops.dropout(signal, self.hparams.keep_prob) + signal = nn_ops.dropout(signal, rate=(1 - self.hparams.keep_prob)) next_c, next_h = lstm(signal, prev_c, prev_h, w_lstm, forget_bias) query = math_ops.matmul(next_h, attn_w_2) query = array_ops.reshape( diff --git a/tensorflow/python/ops/nn_test.py b/tensorflow/python/ops/nn_test.py index df07721e5d3..9979ad9fff0 100644 --- a/tensorflow/python/ops/nn_test.py +++ b/tensorflow/python/ops/nn_test.py @@ -313,7 +313,7 @@ class DropoutTest(test_lib.TestCase): num_iter = 10 for keep_prob in [0.1, 0.5, 0.8]: t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32) - dropout = nn_ops.dropout(t, keep_prob) + dropout = nn_ops.dropout(t, rate=(1 - keep_prob)) final_count = 0 self.assertEqual([x_dim, y_dim], dropout.get_shape()) for _ in xrange(0, num_iter): @@ -340,7 +340,7 @@ class DropoutTest(test_lib.TestCase): num_iter = 10 for keep_prob in [0.1, 0.5, 0.8]: t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32) - dropout = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, 1]) + dropout = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim, 1]) self.assertEqual([x_dim, y_dim], dropout.get_shape()) final_count = 0 for _ in xrange(0, num_iter): @@ -364,7 +364,7 @@ class DropoutTest(test_lib.TestCase): num_iter = 10 for keep_prob in [0.1, 0.5, 0.8]: t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32) - dropout = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, 1]) + dropout = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim, 1]) self.assertEqual([x_dim, y_dim], dropout.get_shape()) for _ in xrange(0, num_iter): value = self.evaluate(dropout) @@ -409,7 +409,9 @@ class DropoutTest(test_lib.TestCase): keep_prob = 0.5 x = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32) dropout_x = nn_ops.dropout( - x, keep_prob, noise_shape=array_ops.placeholder(dtypes.int32)) + x, + rate=(1 - keep_prob), + noise_shape=array_ops.placeholder(dtypes.int32)) self.assertEqual(x.get_shape(), dropout_x.get_shape()) def testPartialShapedDropout(self): @@ -419,7 +421,7 @@ class DropoutTest(test_lib.TestCase): for keep_prob in [0.1, 0.5, 0.8]: t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32) # Set noise_shape=[None, 1] which means [x_dim, 1]. - dropout = nn_ops.dropout(t, keep_prob, noise_shape=[None, 1]) + dropout = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[None, 1]) self.assertEqual([x_dim, y_dim], dropout.get_shape()) final_count = 0 for _ in xrange(0, num_iter): @@ -478,22 +480,23 @@ class DropoutTest(test_lib.TestCase): keep_prob = 0.5 t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32) with self.assertRaises(ValueError): - _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, y_dim + 10]) + _ = nn_ops.dropout( + t, rate=(1 - keep_prob), noise_shape=[x_dim, y_dim + 10]) with self.assertRaises(ValueError): - _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, y_dim, 5]) + _ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim, y_dim, 5]) with self.assertRaises(ValueError): - _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim + 3]) + _ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim + 3]) with self.assertRaises(ValueError): - _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim]) + _ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim]) # test that broadcasting proceeds - _ = nn_ops.dropout(t, keep_prob, noise_shape=[y_dim]) - _ = nn_ops.dropout(t, keep_prob, noise_shape=[1, y_dim]) - _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, 1]) - _ = nn_ops.dropout(t, keep_prob, noise_shape=[1, 1]) + _ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[y_dim]) + _ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[1, y_dim]) + _ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim, 1]) + _ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[1, 1]) def testNoDropoutFast(self): x = array_ops.zeros((5,)) - y = nn_ops.dropout(x, keep_prob=1) + y = nn_ops.dropout(x, rate=0) self.assertTrue(x is y) y = nn_ops.dropout_v2(x, rate=0)