Deprecate tf.train._ classes in TF 2.0 API in favor of tf.keras.optimizers._ ones.
PiperOrigin-RevId: 223171873
This commit is contained in:
parent
192d588eaf
commit
36a445c353
tensorflow
python/training
adadelta.pyadagrad.pyadagrad_da.pyadam.pyftrl.pygradient_descent.pymomentum.pyoptimizer.pyproximal_adagrad.pyrmsprop.py
tools
api/golden/v2
tensorflow.train.-adadelta-optimizer.pbtxttensorflow.train.-adagrad-d-a-optimizer.pbtxttensorflow.train.-adagrad-optimizer.pbtxttensorflow.train.-adam-optimizer.pbtxttensorflow.train.-ftrl-optimizer.pbtxttensorflow.train.-gradient-descent-optimizer.pbtxttensorflow.train.-momentum-optimizer.pbtxttensorflow.train.-optimizer.pbtxttensorflow.train.-proximal-adagrad-optimizer.pbtxttensorflow.train.-r-m-s-prop-optimizer.pbtxttensorflow.train.pbtxt
compatibility
@ -25,7 +25,7 @@ from tensorflow.python.training import training_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("train.AdadeltaOptimizer")
|
||||
@tf_export(v1=["train.AdadeltaOptimizer"])
|
||||
class AdadeltaOptimizer(optimizer.Optimizer):
|
||||
"""Optimizer that implements the Adadelta algorithm.
|
||||
|
||||
|
@ -28,7 +28,7 @@ from tensorflow.python.training import training_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("train.AdagradOptimizer")
|
||||
@tf_export(v1=["train.AdagradOptimizer"])
|
||||
class AdagradOptimizer(optimizer.Optimizer):
|
||||
"""Optimizer that implements the Adagrad algorithm.
|
||||
|
||||
|
@ -26,7 +26,7 @@ from tensorflow.python.training import training_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("train.AdagradDAOptimizer")
|
||||
@tf_export(v1=["train.AdagradDAOptimizer"])
|
||||
class AdagradDAOptimizer(optimizer.Optimizer):
|
||||
"""Adagrad Dual Averaging algorithm for sparse linear models.
|
||||
|
||||
|
@ -29,7 +29,7 @@ from tensorflow.python.training import training_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("train.AdamOptimizer")
|
||||
@tf_export(v1=["train.AdamOptimizer"])
|
||||
class AdamOptimizer(optimizer.Optimizer):
|
||||
"""Optimizer that implements the Adam algorithm.
|
||||
|
||||
|
@ -25,7 +25,7 @@ from tensorflow.python.training import training_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("train.FtrlOptimizer")
|
||||
@tf_export(v1=["train.FtrlOptimizer"])
|
||||
class FtrlOptimizer(optimizer.Optimizer):
|
||||
"""Optimizer that implements the FTRL algorithm.
|
||||
|
||||
|
@ -26,7 +26,7 @@ from tensorflow.python.training import training_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("train.GradientDescentOptimizer")
|
||||
@tf_export(v1=["train.GradientDescentOptimizer"])
|
||||
class GradientDescentOptimizer(optimizer.Optimizer):
|
||||
"""Optimizer that implements the gradient descent algorithm.
|
||||
"""
|
||||
|
@ -25,7 +25,7 @@ from tensorflow.python.training import training_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("train.MomentumOptimizer")
|
||||
@tf_export(v1=["train.MomentumOptimizer"])
|
||||
class MomentumOptimizer(optimizer.Optimizer):
|
||||
"""Optimizer that implements the Momentum algorithm.
|
||||
|
||||
|
@ -214,7 +214,7 @@ def _get_processor(v):
|
||||
raise NotImplementedError("Trying to optimize unsupported type ", v)
|
||||
|
||||
|
||||
@tf_export("train.Optimizer")
|
||||
@tf_export(v1=["train.Optimizer"])
|
||||
class Optimizer(
|
||||
# Optimizers inherit from CheckpointableBase rather than Checkpointable
|
||||
# since they do most of their dependency management themselves (slot
|
||||
|
@ -26,7 +26,7 @@ from tensorflow.python.training import training_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("train.ProximalAdagradOptimizer")
|
||||
@tf_export(v1=["train.ProximalAdagradOptimizer"])
|
||||
class ProximalAdagradOptimizer(optimizer.Optimizer):
|
||||
# pylint: disable=line-too-long
|
||||
"""Optimizer that implements the Proximal Adagrad algorithm.
|
||||
|
@ -50,7 +50,7 @@ from tensorflow.python.training import training_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("train.RMSPropOptimizer")
|
||||
@tf_export(v1=["train.RMSPropOptimizer"])
|
||||
class RMSPropOptimizer(optimizer.Optimizer):
|
||||
"""Optimizer that implements the RMSProp algorithm.
|
||||
|
||||
|
@ -1,51 +0,0 @@
|
||||
path: "tensorflow.train.AdadeltaOptimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.adadelta.AdadeltaOptimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'epsilon\', \'use_locking\', \'name\'], varargs=None, keywords=None, defaults=[\'0.001\', \'0.95\', \'1e-08\', \'False\', \'Adadelta\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
path: "tensorflow.train.AdagradDAOptimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.adagrad_da.AdagradDAOptimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'learning_rate\', \'global_step\', \'initial_gradient_squared_accumulator_value\', \'l1_regularization_strength\', \'l2_regularization_strength\', \'use_locking\', \'name\'], varargs=None, keywords=None, defaults=[\'0.1\', \'0.0\', \'0.0\', \'False\', \'AdagradDA\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
path: "tensorflow.train.AdagradOptimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.adagrad.AdagradOptimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'learning_rate\', \'initial_accumulator_value\', \'use_locking\', \'name\'], varargs=None, keywords=None, defaults=[\'0.1\', \'False\', \'Adagrad\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
path: "tensorflow.train.AdamOptimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.adam.AdamOptimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'learning_rate\', \'beta1\', \'beta2\', \'epsilon\', \'use_locking\', \'name\'], varargs=None, keywords=None, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-08\', \'False\', \'Adam\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
path: "tensorflow.train.FtrlOptimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.ftrl.FtrlOptimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'learning_rate\', \'learning_rate_power\', \'initial_accumulator_value\', \'l1_regularization_strength\', \'l2_regularization_strength\', \'use_locking\', \'name\', \'accum_name\', \'linear_name\', \'l2_shrinkage_regularization_strength\'], varargs=None, keywords=None, defaults=[\'-0.5\', \'0.1\', \'0.0\', \'0.0\', \'False\', \'Ftrl\', \'None\', \'None\', \'0.0\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
path: "tensorflow.train.GradientDescentOptimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.gradient_descent.GradientDescentOptimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'learning_rate\', \'use_locking\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'GradientDescent\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
path: "tensorflow.train.MomentumOptimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.momentum.MomentumOptimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'learning_rate\', \'momentum\', \'use_locking\', \'name\', \'use_nesterov\'], varargs=None, keywords=None, defaults=[\'False\', \'Momentum\', \'False\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,50 +0,0 @@
|
||||
path: "tensorflow.train.Optimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'use_locking\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
path: "tensorflow.train.ProximalAdagradOptimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.proximal_adagrad.ProximalAdagradOptimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'learning_rate\', \'initial_accumulator_value\', \'l1_regularization_strength\', \'l2_regularization_strength\', \'use_locking\', \'name\'], varargs=None, keywords=None, defaults=[\'0.1\', \'0.0\', \'0.0\', \'False\', \'ProximalAdagrad\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
path: "tensorflow.train.RMSPropOptimizer"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.training.rmsprop.RMSPropOptimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.optimizer.Optimizer\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.checkpointable.base.CheckpointableBase\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "GATE_GRAPH"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_NONE"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member {
|
||||
name: "GATE_OP"
|
||||
mtype: "<type \'int\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'learning_rate\', \'decay\', \'momentum\', \'epsilon\', \'use_locking\', \'centered\', \'name\'], varargs=None, keywords=None, defaults=[\'0.9\', \'0.0\', \'1e-10\', \'False\', \'False\', \'RMSProp\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply_gradients"
|
||||
argspec: "args=[\'self\', \'grads_and_vars\', \'global_step\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_gradients"
|
||||
argspec: "args=[\'self\', \'loss\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'None\', \'False\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_name"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot"
|
||||
argspec: "args=[\'self\', \'var\', \'name\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_slot_names"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "minimize"
|
||||
argspec: "args=[\'self\', \'loss\', \'global_step\', \'var_list\', \'gate_gradients\', \'aggregation_method\', \'colocate_gradients_with_ops\', \'name\', \'grad_loss\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'1\', \'None\', \'False\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "variables"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,21 +1,5 @@
|
||||
path: "tensorflow.train"
|
||||
tf_module {
|
||||
member {
|
||||
name: "AdadeltaOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "AdagradDAOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "AdagradOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "AdamOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "BytesList"
|
||||
mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>"
|
||||
@ -88,18 +72,10 @@ tf_module {
|
||||
name: "FloatList"
|
||||
mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>"
|
||||
}
|
||||
member {
|
||||
name: "FtrlOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "GlobalStepWaiterHook"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "GradientDescentOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Int64List"
|
||||
mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>"
|
||||
@ -112,10 +88,6 @@ tf_module {
|
||||
name: "LoggingTensorHook"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "MomentumOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "MonitoredSession"
|
||||
mtype: "<type \'type\'>"
|
||||
@ -128,22 +100,10 @@ tf_module {
|
||||
name: "NanTensorHook"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Optimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "ProximalAdagradOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "ProximalGradientDescentOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "RMSPropOptimizer"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Scaffold"
|
||||
mtype: "<type \'type\'>"
|
||||
|
@ -581,10 +581,20 @@ renames = {
|
||||
'tf.to_int64': 'tf.compat.v1.to_int64',
|
||||
'tf.trace': 'tf.linalg.trace',
|
||||
'tf.train.LooperThread': 'tf.compat.v1.train.LooperThread',
|
||||
'tf.train.AdadeltaOptimizer': 'tf.compat.v1.train.AdadeltaOptimizer',
|
||||
'tf.train.AdagradDAOptimizer': 'tf.compat.v1.train.AdagradDAOptimizer',
|
||||
'tf.train.AdagradOptimizer': 'tf.compat.v1.train.AdagradOptimizer',
|
||||
'tf.train.AdamOptimizer': 'tf.compat.v1.train.AdamOptimizer',
|
||||
'tf.train.FtrlOptimizer': 'tf.compat.v1.train.FtrlOptimizer',
|
||||
'tf.train.GradientDescentOptimizer': 'tf.compat.v1.train.GradientDescentOptimizer',
|
||||
'tf.train.MomentumOptimizer': 'tf.compat.v1.train.MomentumOptimizer',
|
||||
'tf.train.MonitoredTrainingSession': 'tf.compat.v1.train.MonitoredTrainingSession',
|
||||
'tf.train.NewCheckpointReader': 'tf.compat.v1.train.NewCheckpointReader',
|
||||
'tf.train.Optimizer': 'tf.compat.v1.train.Optimizer',
|
||||
'tf.train.ProfilerHook': 'tf.compat.v1.train.ProfilerHook',
|
||||
'tf.train.ProximalAdagradOptimizer': 'tf.compat.v1.train.ProximalAdagradOptimizer',
|
||||
'tf.train.QueueRunner': 'tf.compat.v1.train.QueueRunner',
|
||||
'tf.train.RMSPropOptimizer': 'tf.compat.v1.train.RMSPropOptimizer',
|
||||
'tf.train.Saver': 'tf.compat.v1.train.Saver',
|
||||
'tf.train.SaverDef': 'tf.compat.v1.train.SaverDef',
|
||||
'tf.train.SyncReplicasOptimizer': 'tf.compat.v1.train.SyncReplicasOptimizer',
|
||||
|
Loading…
Reference in New Issue
Block a user