- Adding V2 API for MeanSquaredError loss.
- Deprecating V1 losses APIs. PiperOrigin-RevId: 222910192
This commit is contained in:
parent
958859263d
commit
35dcdd967e
tensorflow
python
tools/api/golden
@ -115,8 +115,28 @@ class Loss(object):
|
||||
NotImplementedError('Must be implemented in subclasses.')
|
||||
|
||||
|
||||
@tf_export('losses.MeanSquaredError', 'keras.losses.MeanSquaredError')
|
||||
class MeanSquaredError(Loss):
|
||||
"""Computes the mean of squares of errors between labels and predictions."""
|
||||
"""Computes the mean of squares of errors between labels and predictions.
|
||||
|
||||
For example, if `y_true` is [0., 0., 1., 1.] and `y_pred` is [1., 1., 1., 0.]
|
||||
then the mean squared error value is 3/4 (0.75).
|
||||
|
||||
Usage:
|
||||
|
||||
```python
|
||||
mse = tf.losses.MeanSquaredError()
|
||||
loss = mse([0., 0., 1., 1.], [1., 1., 1., 0.])
|
||||
print('Loss: ', loss.numpy()) # Loss: 0.75
|
||||
```
|
||||
|
||||
Usage with tf.keras API:
|
||||
|
||||
```python
|
||||
model = keras.models.Model(inputs, outputs)
|
||||
model.compile('sgd', loss=tf.losses.MeanSquaredError())
|
||||
```
|
||||
"""
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
"""Invokes the `MeanSquaredError` instance.
|
||||
|
@ -133,7 +133,7 @@ def _num_elements(losses):
|
||||
return math_ops.cast(array_ops.size(losses, name=scope), dtype=losses.dtype)
|
||||
|
||||
|
||||
@tf_export("losses.compute_weighted_loss")
|
||||
@tf_export(v1=["losses.compute_weighted_loss"])
|
||||
def compute_weighted_loss(
|
||||
losses, weights=1.0, scope=None, loss_collection=ops.GraphKeys.LOSSES,
|
||||
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
|
||||
@ -203,7 +203,7 @@ def compute_weighted_loss(
|
||||
return loss
|
||||
|
||||
|
||||
@tf_export("losses.absolute_difference")
|
||||
@tf_export(v1=["losses.absolute_difference"])
|
||||
def absolute_difference(
|
||||
labels, predictions, weights=1.0, scope=None,
|
||||
loss_collection=ops.GraphKeys.LOSSES,
|
||||
@ -256,7 +256,7 @@ def absolute_difference(
|
||||
losses, weights, scope, loss_collection, reduction=reduction)
|
||||
|
||||
|
||||
@tf_export("losses.cosine_distance")
|
||||
@tf_export(v1=["losses.cosine_distance"])
|
||||
@deprecated_args(None, "dim is deprecated, use axis instead", "dim")
|
||||
def cosine_distance(
|
||||
labels, predictions, axis=None, weights=1.0, scope=None,
|
||||
@ -312,7 +312,7 @@ def cosine_distance(
|
||||
losses, weights, scope, loss_collection, reduction=reduction)
|
||||
|
||||
|
||||
@tf_export("losses.hinge_loss")
|
||||
@tf_export(v1=["losses.hinge_loss"])
|
||||
def hinge_loss(labels, logits, weights=1.0, scope=None,
|
||||
loss_collection=ops.GraphKeys.LOSSES,
|
||||
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
|
||||
@ -362,7 +362,7 @@ def hinge_loss(labels, logits, weights=1.0, scope=None,
|
||||
losses, weights, scope, loss_collection, reduction=reduction)
|
||||
|
||||
|
||||
@tf_export("losses.huber_loss")
|
||||
@tf_export(v1=["losses.huber_loss"])
|
||||
def huber_loss(labels, predictions, weights=1.0, delta=1.0, scope=None,
|
||||
loss_collection=ops.GraphKeys.LOSSES,
|
||||
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
|
||||
@ -440,7 +440,7 @@ def huber_loss(labels, predictions, weights=1.0, delta=1.0, scope=None,
|
||||
losses, weights, scope, loss_collection, reduction=reduction)
|
||||
|
||||
|
||||
@tf_export("losses.log_loss")
|
||||
@tf_export(v1=["losses.log_loss"])
|
||||
def log_loss(labels, predictions, weights=1.0, epsilon=1e-7, scope=None,
|
||||
loss_collection=ops.GraphKeys.LOSSES,
|
||||
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
|
||||
@ -497,7 +497,7 @@ def log_loss(labels, predictions, weights=1.0, epsilon=1e-7, scope=None,
|
||||
|
||||
|
||||
# TODO(b/37208492): Add reduction arg.
|
||||
@tf_export("losses.mean_pairwise_squared_error")
|
||||
@tf_export(v1=["losses.mean_pairwise_squared_error"])
|
||||
def mean_pairwise_squared_error(
|
||||
labels, predictions, weights=1.0, scope=None,
|
||||
loss_collection=ops.GraphKeys.LOSSES):
|
||||
@ -593,7 +593,7 @@ def mean_pairwise_squared_error(
|
||||
return mean_loss
|
||||
|
||||
|
||||
@tf_export("losses.mean_squared_error")
|
||||
@tf_export(v1=["losses.mean_squared_error"])
|
||||
def mean_squared_error(
|
||||
labels, predictions, weights=1.0, scope=None,
|
||||
loss_collection=ops.GraphKeys.LOSSES,
|
||||
@ -646,7 +646,7 @@ def mean_squared_error(
|
||||
losses, weights, scope, loss_collection, reduction=reduction)
|
||||
|
||||
|
||||
@tf_export("losses.sigmoid_cross_entropy")
|
||||
@tf_export(v1=["losses.sigmoid_cross_entropy"])
|
||||
def sigmoid_cross_entropy(
|
||||
multi_class_labels, logits, weights=1.0, label_smoothing=0, scope=None,
|
||||
loss_collection=ops.GraphKeys.LOSSES,
|
||||
@ -710,7 +710,7 @@ def sigmoid_cross_entropy(
|
||||
losses, weights, scope, loss_collection, reduction=reduction)
|
||||
|
||||
|
||||
@tf_export("losses.softmax_cross_entropy")
|
||||
@tf_export(v1=["losses.softmax_cross_entropy"])
|
||||
def softmax_cross_entropy(
|
||||
onehot_labels, logits, weights=1.0, label_smoothing=0, scope=None,
|
||||
loss_collection=ops.GraphKeys.LOSSES,
|
||||
@ -832,7 +832,7 @@ def _remove_squeezable_dimensions(
|
||||
return labels, predictions, weights
|
||||
|
||||
|
||||
@tf_export("losses.sparse_softmax_cross_entropy")
|
||||
@tf_export(v1=["losses.sparse_softmax_cross_entropy"])
|
||||
def sparse_softmax_cross_entropy(
|
||||
labels, logits, weights=1.0, scope=None,
|
||||
loss_collection=ops.GraphKeys.LOSSES,
|
||||
|
@ -0,0 +1,22 @@
|
||||
path: "tensorflow.keras.losses.MeanSquaredError"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.losses.MeanSquaredError\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'sum_over_batch_size\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,5 +1,9 @@
|
||||
path: "tensorflow.keras.losses"
|
||||
tf_module {
|
||||
member {
|
||||
name: "MeanSquaredError"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "KLD"
|
||||
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
||||
|
@ -0,0 +1,22 @@
|
||||
path: "tensorflow.losses.MeanSquaredError"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.losses.MeanSquaredError\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'sum_over_batch_size\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,5 +1,9 @@
|
||||
path: "tensorflow.losses"
|
||||
tf_module {
|
||||
member {
|
||||
name: "MeanSquaredError"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Reduction"
|
||||
mtype: "<type \'type\'>"
|
||||
|
@ -0,0 +1,22 @@
|
||||
path: "tensorflow.keras.losses.MeanSquaredError"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.losses.MeanSquaredError\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'sum_over_batch_size\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,5 +1,9 @@
|
||||
path: "tensorflow.keras.losses"
|
||||
tf_module {
|
||||
member {
|
||||
name: "MeanSquaredError"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Reduction"
|
||||
mtype: "<type \'type\'>"
|
||||
|
@ -0,0 +1,22 @@
|
||||
path: "tensorflow.losses.MeanSquaredError"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.losses.MeanSquaredError\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'sum_over_batch_size\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
@ -1,25 +1,17 @@
|
||||
path: "tensorflow.losses"
|
||||
tf_module {
|
||||
member {
|
||||
name: "MeanSquaredError"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Reduction"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "absolute_difference"
|
||||
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_loss"
|
||||
argspec: "args=[\'loss\', \'loss_collection\'], varargs=None, keywords=None, defaults=[\'losses\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_weighted_loss"
|
||||
argspec: "args=[\'losses\', \'weights\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "cosine_distance"
|
||||
argspec: "args=[\'labels\', \'predictions\', \'axis\', \'weights\', \'scope\', \'loss_collection\', \'reduction\', \'dim\'], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "get_losses"
|
||||
argspec: "args=[\'scope\', \'loss_collection\'], varargs=None, keywords=None, defaults=[\'None\', \'losses\'], "
|
||||
@ -36,36 +28,4 @@ tf_module {
|
||||
name: "get_total_loss"
|
||||
argspec: "args=[\'add_regularization_losses\', \'name\'], varargs=None, keywords=None, defaults=[\'True\', \'total_loss\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "hinge_loss"
|
||||
argspec: "args=[\'labels\', \'logits\', \'weights\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "huber_loss"
|
||||
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'delta\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'1.0\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "log_loss"
|
||||
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'epsilon\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'1e-07\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "mean_pairwise_squared_error"
|
||||
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'scope\', \'loss_collection\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \'losses\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "mean_squared_error"
|
||||
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "sigmoid_cross_entropy"
|
||||
argspec: "args=[\'multi_class_labels\', \'logits\', \'weights\', \'label_smoothing\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'0\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "softmax_cross_entropy"
|
||||
argspec: "args=[\'onehot_labels\', \'logits\', \'weights\', \'label_smoothing\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'0\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "sparse_softmax_cross_entropy"
|
||||
argspec: "args=[\'labels\', \'logits\', \'weights\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \'losses\', \'weighted_sum_by_nonzero_weights\'], "
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user