Add test case for checking multiple metric instances with default parameters.
PiperOrigin-RevId: 246208421
This commit is contained in:
parent
96f5824e31
commit
34f34bf7ed
tensorflow/python/keras
@ -158,8 +158,8 @@ class KerasSumTest(test.TestCase):
|
|||||||
self.assertEqual(600., self.evaluate(restore_sum.result()))
|
self.assertEqual(600., self.evaluate(restore_sum.result()))
|
||||||
|
|
||||||
|
|
||||||
@test_util.run_all_in_graph_and_eager_modes
|
@keras_parameterized.run_all_keras_modes
|
||||||
class KerasMeanTest(test.TestCase):
|
class KerasMeanTest(keras_parameterized.TestCase):
|
||||||
|
|
||||||
# TODO(b/120949004): Re-enable garbage collection check
|
# TODO(b/120949004): Re-enable garbage collection check
|
||||||
# @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
|
# @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
|
||||||
@ -294,6 +294,43 @@ class KerasMeanTest(test.TestCase):
|
|||||||
self.assertEqual(200., self.evaluate(restore_mean.result()))
|
self.assertEqual(200., self.evaluate(restore_mean.result()))
|
||||||
self.assertEqual(3, self.evaluate(restore_mean.count))
|
self.assertEqual(3, self.evaluate(restore_mean.count))
|
||||||
|
|
||||||
|
def test_multiple_instances(self):
|
||||||
|
m = metrics.Mean()
|
||||||
|
m2 = metrics.Mean()
|
||||||
|
|
||||||
|
self.assertEqual(m.name, 'mean')
|
||||||
|
self.assertEqual(m2.name, 'mean')
|
||||||
|
|
||||||
|
self.assertEqual([v.name for v in m.variables],
|
||||||
|
testing_utils.get_expected_metric_variable_names(
|
||||||
|
['total', 'count']))
|
||||||
|
self.assertEqual([v.name for v in m2.variables],
|
||||||
|
testing_utils.get_expected_metric_variable_names(
|
||||||
|
['total', 'count'], name_suffix='_1'))
|
||||||
|
|
||||||
|
self.evaluate(variables.variables_initializer(m.variables))
|
||||||
|
self.evaluate(variables.variables_initializer(m2.variables))
|
||||||
|
|
||||||
|
# check initial state
|
||||||
|
self.assertEqual(self.evaluate(m.total), 0)
|
||||||
|
self.assertEqual(self.evaluate(m.count), 0)
|
||||||
|
self.assertEqual(self.evaluate(m2.total), 0)
|
||||||
|
self.assertEqual(self.evaluate(m2.count), 0)
|
||||||
|
|
||||||
|
# check __call__()
|
||||||
|
self.assertEqual(self.evaluate(m(100)), 100)
|
||||||
|
self.assertEqual(self.evaluate(m.total), 100)
|
||||||
|
self.assertEqual(self.evaluate(m.count), 1)
|
||||||
|
self.assertEqual(self.evaluate(m2.total), 0)
|
||||||
|
self.assertEqual(self.evaluate(m2.count), 0)
|
||||||
|
|
||||||
|
self.assertEqual(self.evaluate(m2([63, 10])), 36.5)
|
||||||
|
self.assertEqual(self.evaluate(m2.total), 73)
|
||||||
|
self.assertEqual(self.evaluate(m2.count), 2)
|
||||||
|
self.assertEqual(self.evaluate(m.result()), 100)
|
||||||
|
self.assertEqual(self.evaluate(m.total), 100)
|
||||||
|
self.assertEqual(self.evaluate(m.count), 1)
|
||||||
|
|
||||||
|
|
||||||
@test_util.run_all_in_graph_and_eager_modes
|
@test_util.run_all_in_graph_and_eager_modes
|
||||||
class KerasAccuracyTest(test.TestCase):
|
class KerasAccuracyTest(test.TestCase):
|
||||||
|
@ -23,6 +23,7 @@ import threading
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from tensorflow.python import keras
|
from tensorflow.python import keras
|
||||||
|
from tensorflow.python import tf2
|
||||||
from tensorflow.python.eager import context
|
from tensorflow.python.eager import context
|
||||||
from tensorflow.python.framework import tensor_shape
|
from tensorflow.python.framework import tensor_shape
|
||||||
from tensorflow.python.framework import test_util
|
from tensorflow.python.framework import test_util
|
||||||
@ -682,3 +683,12 @@ def get_v2_optimizer(name, **kwargs):
|
|||||||
raise ValueError(
|
raise ValueError(
|
||||||
'Could not find requested v2 optimizer: {}\nValid choices: {}'.format(
|
'Could not find requested v2 optimizer: {}\nValid choices: {}'.format(
|
||||||
name, list(_V2_OPTIMIZER_MAP.keys())))
|
name, list(_V2_OPTIMIZER_MAP.keys())))
|
||||||
|
|
||||||
|
|
||||||
|
def get_expected_metric_variable_names(var_names, name_suffix=''):
|
||||||
|
"""Returns expected metric variable names given names and prefix/suffix."""
|
||||||
|
if tf2.enabled() or context.executing_eagerly():
|
||||||
|
# In V1 eager mode and V2 variable names are not made unique.
|
||||||
|
return [n + ':0' for n in var_names]
|
||||||
|
# In V1 graph mode variable names are made unique using a suffix.
|
||||||
|
return [n + name_suffix + ':0' for n in var_names]
|
||||||
|
Loading…
Reference in New Issue
Block a user