Add test case for checking multiple metric instances with default parameters.

PiperOrigin-RevId: 246208421
This commit is contained in:
Pavithra Vijay 2019-05-01 15:14:50 -07:00 committed by TensorFlower Gardener
parent 96f5824e31
commit 34f34bf7ed
2 changed files with 49 additions and 2 deletions
tensorflow/python/keras

View File

@ -158,8 +158,8 @@ class KerasSumTest(test.TestCase):
self.assertEqual(600., self.evaluate(restore_sum.result()))
@test_util.run_all_in_graph_and_eager_modes
class KerasMeanTest(test.TestCase):
@keras_parameterized.run_all_keras_modes
class KerasMeanTest(keras_parameterized.TestCase):
# TODO(b/120949004): Re-enable garbage collection check
# @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
@ -294,6 +294,43 @@ class KerasMeanTest(test.TestCase):
self.assertEqual(200., self.evaluate(restore_mean.result()))
self.assertEqual(3, self.evaluate(restore_mean.count))
def test_multiple_instances(self):
m = metrics.Mean()
m2 = metrics.Mean()
self.assertEqual(m.name, 'mean')
self.assertEqual(m2.name, 'mean')
self.assertEqual([v.name for v in m.variables],
testing_utils.get_expected_metric_variable_names(
['total', 'count']))
self.assertEqual([v.name for v in m2.variables],
testing_utils.get_expected_metric_variable_names(
['total', 'count'], name_suffix='_1'))
self.evaluate(variables.variables_initializer(m.variables))
self.evaluate(variables.variables_initializer(m2.variables))
# check initial state
self.assertEqual(self.evaluate(m.total), 0)
self.assertEqual(self.evaluate(m.count), 0)
self.assertEqual(self.evaluate(m2.total), 0)
self.assertEqual(self.evaluate(m2.count), 0)
# check __call__()
self.assertEqual(self.evaluate(m(100)), 100)
self.assertEqual(self.evaluate(m.total), 100)
self.assertEqual(self.evaluate(m.count), 1)
self.assertEqual(self.evaluate(m2.total), 0)
self.assertEqual(self.evaluate(m2.count), 0)
self.assertEqual(self.evaluate(m2([63, 10])), 36.5)
self.assertEqual(self.evaluate(m2.total), 73)
self.assertEqual(self.evaluate(m2.count), 2)
self.assertEqual(self.evaluate(m.result()), 100)
self.assertEqual(self.evaluate(m.total), 100)
self.assertEqual(self.evaluate(m.count), 1)
@test_util.run_all_in_graph_and_eager_modes
class KerasAccuracyTest(test.TestCase):

View File

@ -23,6 +23,7 @@ import threading
import numpy as np
from tensorflow.python import keras
from tensorflow.python import tf2
from tensorflow.python.eager import context
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
@ -682,3 +683,12 @@ def get_v2_optimizer(name, **kwargs):
raise ValueError(
'Could not find requested v2 optimizer: {}\nValid choices: {}'.format(
name, list(_V2_OPTIMIZER_MAP.keys())))
def get_expected_metric_variable_names(var_names, name_suffix=''):
"""Returns expected metric variable names given names and prefix/suffix."""
if tf2.enabled() or context.executing_eagerly():
# In V1 eager mode and V2 variable names are not made unique.
return [n + ':0' for n in var_names]
# In V1 graph mode variable names are made unique using a suffix.
return [n + name_suffix + ':0' for n in var_names]