Update generated Op docs.

Change: 111631697
This commit is contained in:
A. Unique TensorFlower 2016-01-07 13:26:53 -08:00 committed by Vijay Vasudevan
parent 3cdd5be407
commit 339db86e2b
4 changed files with 24 additions and 12 deletions
tensorflow/g3doc/api_docs/python

View File

@ -727,6 +727,7 @@ output[3, 2:, :, ...] = input[3, 2:, :, ...]
```
In contrast, if:
```prettyprint
# Given this:
batch_dim = 2

View File

@ -207,7 +207,7 @@ resized_image = tf.image.resize_images(image, 299, 299)
- - -
### `tf.image.resize_images(images, new_height, new_width, method=0)` {#resize_images}
### `tf.image.resize_images(images, new_height, new_width, method=0, align_corners=False)` {#resize_images}
Resize `images` to `new_width`, `new_height` using the specified `method`.
@ -233,6 +233,9 @@ the same as `new_width`, `new_height`. To avoid distortions see
* <b>`new_height`</b>: integer.
* <b>`new_width`</b>: integer.
* <b>`method`</b>: ResizeMethod. Defaults to `ResizeMethod.BILINEAR`.
* <b>`align_corners`</b>: bool. If true, exactly align all 4 cornets of the input and
output. Defaults to `false`. Only implemented for bilinear
interpolation method so far.
##### Raises:
@ -298,7 +301,7 @@ Input images can be of different types but output images are always float.
- - -
### `tf.image.resize_bilinear(images, size, name=None)` {#resize_bilinear}
### `tf.image.resize_bilinear(images, size, align_corners=None, name=None)` {#resize_bilinear}
Resize `images` to `size` using bilinear interpolation.
@ -311,6 +314,10 @@ Input images can be of different types but output images are always float.
4-D with shape `[batch, height, width, channels]`.
* <b>`size`</b>: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
new size for the images.
* <b>`align_corners`</b>: An optional `bool`. Defaults to `False`.
If true, rescale input by (new_height - 1) / (height - 1), which
exactly aligns the 4 corners of images and resized images. If false, rescale
by new_height / height. Treat similarly the width dimension.
* <b>`name`</b>: A name for the operation (optional).
##### Returns:
@ -685,7 +692,7 @@ Example:
# Decode an image and convert it to HSV.
rgb_image = tf.decode_png(..., channels=3)
rgb_image_float = tf.convert_image_dtype(rgb_image, tf.float32)
hsv_image = tf.hsv_to_rgb(rgb_image)
hsv_image = tf.rgb_to_hsv(rgb_image)
```
- - -
@ -788,7 +795,7 @@ Convert `image` to `dtype`, scaling its values if needed.
Images that are represented using floating point values are expected to have
values in the range [0,1). Image data stored in integer data types are
expected to have values in the range `[0,MAX]`, wbere `MAX` is the largest
expected to have values in the range `[0,MAX]`, where `MAX` is the largest
positive representable number for the data type.
This op converts between data types, scaling the values appropriately before
@ -921,7 +928,7 @@ channel and then adjusts each component `x` of each pixel to
Adjust the contrast of an image by a random factor.
Equivalent to `adjust_constrast()` but uses a `contrast_factor` randomly
Equivalent to `adjust_contrast()` but uses a `contrast_factor` randomly
picked in the interval `[lower, upper]`.
##### Args:
@ -1010,7 +1017,7 @@ picked in the interval `[-max_delta, max_delta]`.
### `tf.image.adjust_saturation(image, saturation_factor, name=None)` {#adjust_saturation}
Adjust staturation of an RGB image.
Adjust saturation of an RGB image.
This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the saturation channel,
@ -1073,7 +1080,7 @@ Linearly scales `image` to have zero mean and unit norm.
This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
of all values in image, and
`adjusted_stddev = max(stddev, 1.0/srqt(image.NumElements()))`.
`adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.
`stddev` is the standard deviation of all values in `image`. It is capped
away from zero to protect against division by 0 when handling uniform images.

View File

@ -408,7 +408,7 @@ Computes exponential of x element-wise. \\(y = e^x\\).
### `tf.log(x, name=None)` {#log}
Computes natural logrithm of x element-wise.
Computes natural logarithm of x element-wise.
I.e., \\(y = \log_e x\\).
@ -2018,7 +2018,7 @@ Computes the inverse permutation of a tensor.
This operation computes the inverse of an index permutation. It takes a 1-D
integer tensor `x`, which represents the indices of a zero-based array, and
swaps each value with its index position. In other words, for an ouput tensor
swaps each value with its index position. In other words, for an output tensor
`y` and an input tensor `x`, this operation computes the following:
`y[x[i]] = i for i in [0, 1, ..., len(x) - 1]`

View File

@ -298,6 +298,8 @@ Construct a new gradient descent optimizer.
Optimizer that implements the Adagrad algorithm.
See http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.
- - -
#### `tf.train.AdagradOptimizer.__init__(learning_rate, initial_accumulator_value=0.1, use_locking=False, name='Adagrad')` {#AdagradOptimizer.__init__}
@ -350,14 +352,14 @@ Construct a new Momentum optimizer.
Optimizer that implements the Adam algorithm.
See http://arxiv.org/pdf/1412.6980v7.pdf.
- - -
#### `tf.train.AdamOptimizer.__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')` {#AdamOptimizer.__init__}
Construct a new Adam optimizer.
Implementation is based on: http://arxiv.org/pdf/1412.6980v7.pdf
Initialization:
```
@ -461,6 +463,8 @@ using this function.
Optimizer that implements the RMSProp algorithm.
See http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
- - -
#### `tf.train.RMSPropOptimizer.__init__(learning_rate, decay=0.9, momentum=0.0, epsilon=1e-10, use_locking=False, name='RMSProp')` {#RMSPropOptimizer.__init__}
@ -893,7 +897,7 @@ ema = tf.train.ExponentialMovingAverage(decay=0.9999)
maintain_averages_op = ema.apply([var0, var1])
# Create an op that will update the moving averages after each training
# step. This is what we will use in place of the usuall trainig op.
# step. This is what we will use in place of the usual training op.
with tf.control_dependencies([opt_op]):
training_op = tf.group(maintain_averages_op)