diff --git a/tensorflow/python/feature_column/feature_column_test.py b/tensorflow/python/feature_column/feature_column_test.py index 3a38f86b95f..755df6060d3 100644 --- a/tensorflow/python/feature_column/feature_column_test.py +++ b/tensorflow/python/feature_column/feature_column_test.py @@ -3827,7 +3827,6 @@ class VocabularyListCategoricalColumnTest(test.TestCase): 'aaa': parsing_ops.VarLenFeature(dtypes.int64) }, column._parse_example_spec) - @test_util.run_deprecated_v1 def test_all_constructor_args(self): column = fc._categorical_column_with_vocabulary_list( key='aaa', @@ -3839,7 +3838,6 @@ class VocabularyListCategoricalColumnTest(test.TestCase): 'aaa': parsing_ops.VarLenFeature(dtypes.int32) }, column._parse_example_spec) - @test_util.run_deprecated_v1 def test_deep_copy(self): original = fc._categorical_column_with_vocabulary_list( key='aaa', vocabulary_list=(12, 24, 36), dtype=dtypes.int32) @@ -3974,41 +3972,41 @@ class VocabularyListCategoricalColumnTest(test.TestCase): dense_shape=[1, 2]), features['aaa'].eval()) - @test_util.run_deprecated_v1 def test_get_sparse_tensors(self): - column = fc._categorical_column_with_vocabulary_list( - key='aaa', vocabulary_list=('omar', 'stringer', 'marlo')) - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=('marlo', 'skywalker', 'omar'), - dense_shape=(2, 2)) - id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array((2, -1, 0), dtype=np.int64), - dense_shape=inputs.dense_shape), - id_weight_pair.id_tensor.eval()) + with ops.Graph().as_default(): + column = fc._categorical_column_with_vocabulary_list( + key='aaa', vocabulary_list=('omar', 'stringer', 'marlo')) + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=('marlo', 'skywalker', 'omar'), + dense_shape=(2, 2)) + id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array((2, -1, 0), dtype=np.int64), + dense_shape=inputs.dense_shape), + id_weight_pair.id_tensor.eval()) - @test_util.run_deprecated_v1 def test_transform_feature(self): - column = fc._categorical_column_with_vocabulary_list( - key='aaa', vocabulary_list=('omar', 'stringer', 'marlo')) - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=('marlo', 'skywalker', 'omar'), - dense_shape=(2, 2)) - id_tensor = _transform_features({'aaa': inputs}, [column])[column] - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array((2, -1, 0), dtype=np.int64), - dense_shape=inputs.dense_shape), self.evaluate(id_tensor)) + with ops.Graph().as_default(): + column = fc._categorical_column_with_vocabulary_list( + key='aaa', vocabulary_list=('omar', 'stringer', 'marlo')) + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=('marlo', 'skywalker', 'omar'), + dense_shape=(2, 2)) + id_tensor = _transform_features({'aaa': inputs}, [column])[column] + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array((2, -1, 0), dtype=np.int64), + dense_shape=inputs.dense_shape), self.evaluate(id_tensor)) def test_get_sparse_tensors_weight_collections(self): column = fc._categorical_column_with_vocabulary_list( @@ -4026,134 +4024,129 @@ class VocabularyListCategoricalColumnTest(test.TestCase): ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)) self.assertCountEqual([], ops.get_collection('my_weights')) - @test_util.run_deprecated_v1 def test_get_sparse_tensors_dense_input(self): - column = fc._categorical_column_with_vocabulary_list( - key='aaa', vocabulary_list=('omar', 'stringer', 'marlo')) - id_weight_pair = column._get_sparse_tensors( - _LazyBuilder({ - 'aaa': (('marlo', ''), ('skywalker', 'omar')) - })) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=np.array((2, -1, 0), dtype=np.int64), - dense_shape=(2, 2)), - id_weight_pair.id_tensor.eval()) + with ops.Graph().as_default(): + column = fc._categorical_column_with_vocabulary_list( + key='aaa', vocabulary_list=('omar', 'stringer', 'marlo')) + id_weight_pair = column._get_sparse_tensors( + _LazyBuilder({'aaa': (('marlo', ''), ('skywalker', 'omar'))})) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=np.array((2, -1, 0), dtype=np.int64), + dense_shape=(2, 2)), id_weight_pair.id_tensor.eval()) - @test_util.run_deprecated_v1 def test_get_sparse_tensors_default_value_in_vocabulary(self): - column = fc._categorical_column_with_vocabulary_list( - key='aaa', - vocabulary_list=('omar', 'stringer', 'marlo'), - default_value=2) - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=('marlo', 'skywalker', 'omar'), - dense_shape=(2, 2)) - id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array((2, 2, 0), dtype=np.int64), - dense_shape=inputs.dense_shape), - id_weight_pair.id_tensor.eval()) + with ops.Graph().as_default(): + column = fc._categorical_column_with_vocabulary_list( + key='aaa', + vocabulary_list=('omar', 'stringer', 'marlo'), + default_value=2) + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=('marlo', 'skywalker', 'omar'), + dense_shape=(2, 2)) + id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array((2, 2, 0), dtype=np.int64), + dense_shape=inputs.dense_shape), + id_weight_pair.id_tensor.eval()) - @test_util.run_deprecated_v1 def test_get_sparse_tensors_with_oov_buckets(self): - column = fc._categorical_column_with_vocabulary_list( - key='aaa', - vocabulary_list=('omar', 'stringer', 'marlo'), - num_oov_buckets=100) - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1), (1, 2)), - values=('marlo', 'skywalker', 'omar', 'heisenberg'), - dense_shape=(2, 3)) - id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array((2, 33, 0, 62), dtype=np.int64), - dense_shape=inputs.dense_shape), - id_weight_pair.id_tensor.eval()) + with ops.Graph().as_default(): + column = fc._categorical_column_with_vocabulary_list( + key='aaa', + vocabulary_list=('omar', 'stringer', 'marlo'), + num_oov_buckets=100) + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1), (1, 2)), + values=('marlo', 'skywalker', 'omar', 'heisenberg'), + dense_shape=(2, 3)) + id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array((2, 33, 0, 62), dtype=np.int64), + dense_shape=inputs.dense_shape), + id_weight_pair.id_tensor.eval()) - @test_util.run_deprecated_v1 def test_get_sparse_tensors_int32(self): - column = fc._categorical_column_with_vocabulary_list( - key='aaa', - vocabulary_list=np.array((30, 35, 11, 23, 22), dtype=np.int32), - dtype=dtypes.int32) - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1), (2, 2)), - values=np.array((11, 100, 30, 22), dtype=np.int32), - dense_shape=(3, 3)) - id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array((2, -1, 0, 4), dtype=np.int64), - dense_shape=inputs.dense_shape), - id_weight_pair.id_tensor.eval()) + with ops.Graph().as_default(): + column = fc._categorical_column_with_vocabulary_list( + key='aaa', + vocabulary_list=np.array((30, 35, 11, 23, 22), dtype=np.int32), + dtype=dtypes.int32) + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1), (2, 2)), + values=np.array((11, 100, 30, 22), dtype=np.int32), + dense_shape=(3, 3)) + id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array((2, -1, 0, 4), dtype=np.int64), + dense_shape=inputs.dense_shape), + id_weight_pair.id_tensor.eval()) - @test_util.run_deprecated_v1 def test_get_sparse_tensors_int32_dense_input(self): - default_value = -100 - column = fc._categorical_column_with_vocabulary_list( - key='aaa', - vocabulary_list=np.array((30, 35, 11, 23, 22), dtype=np.int32), - dtype=dtypes.int32, - default_value=default_value) - id_weight_pair = column._get_sparse_tensors( - _LazyBuilder({ - 'aaa': - np.array( - ((11, -1, -1), (100, 30, -1), (-1, -1, 22)), dtype=np.int32) - })) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1), (2, 2)), - values=np.array((2, default_value, 0, 4), dtype=np.int64), - dense_shape=(3, 3)), - id_weight_pair.id_tensor.eval()) + with ops.Graph().as_default(): + default_value = -100 + column = fc._categorical_column_with_vocabulary_list( + key='aaa', + vocabulary_list=np.array((30, 35, 11, 23, 22), dtype=np.int32), + dtype=dtypes.int32, + default_value=default_value) + id_weight_pair = column._get_sparse_tensors( + _LazyBuilder({ + 'aaa': + np.array(((11, -1, -1), (100, 30, -1), (-1, -1, 22)), + dtype=np.int32) + })) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1), (2, 2)), + values=np.array((2, default_value, 0, 4), dtype=np.int64), + dense_shape=(3, 3)), id_weight_pair.id_tensor.eval()) - @test_util.run_deprecated_v1 def test_get_sparse_tensors_int32_with_oov_buckets(self): - column = fc._categorical_column_with_vocabulary_list( - key='aaa', - vocabulary_list=np.array((30, 35, 11, 23, 22), dtype=np.int32), - dtype=dtypes.int32, - num_oov_buckets=100) - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1), (2, 2)), - values=(11, 100, 30, 22), - dense_shape=(3, 3)) - id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array((2, 60, 0, 4), dtype=np.int64), - dense_shape=inputs.dense_shape), - id_weight_pair.id_tensor.eval()) + with ops.Graph().as_default(): + column = fc._categorical_column_with_vocabulary_list( + key='aaa', + vocabulary_list=np.array((30, 35, 11, 23, 22), dtype=np.int32), + dtype=dtypes.int32, + num_oov_buckets=100) + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1), (2, 2)), + values=(11, 100, 30, 22), + dense_shape=(3, 3)) + id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array((2, 60, 0, 4), dtype=np.int64), + dense_shape=inputs.dense_shape), + id_weight_pair.id_tensor.eval()) - @test_util.run_deprecated_v1 def test_linear_model(self): wire_column = fc._categorical_column_with_vocabulary_list( key='aaa', @@ -4179,7 +4172,6 @@ class VocabularyListCategoricalColumnTest(test.TestCase): # 'skywalker' -> 3, 'omar' -> 0: wire_var[3] + wire_var[0] = 4+1 = 5 self.assertAllClose(((3.,), (5.,)), self.evaluate(predictions)) - @test_util.run_deprecated_v1 def test_keras_linear_model(self): wire_column = fc._categorical_column_with_vocabulary_list( key='aaa', @@ -4223,7 +4215,6 @@ class IdentityCategoricalColumnTest(test.TestCase): with self.assertRaisesRegex(ValueError, 'key must be a string.'): fc._categorical_column_with_identity(key=('aaa',), num_buckets=3) - @test_util.run_deprecated_v1 def test_deep_copy(self): original = fc._categorical_column_with_identity(key='aaa', num_buckets=3) for column in (original, copy.deepcopy(original)): @@ -4282,39 +4273,39 @@ class IdentityCategoricalColumnTest(test.TestCase): dense_shape=[1, 2]), features['aaa'].eval()) - @test_util.run_deprecated_v1 def test_get_sparse_tensors(self): - column = fc._categorical_column_with_identity(key='aaa', num_buckets=3) - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=(0, 1, 0), - dense_shape=(2, 2)) - id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array((0, 1, 0), dtype=np.int64), - dense_shape=inputs.dense_shape), - id_weight_pair.id_tensor.eval()) + with ops.Graph().as_default(): + column = fc._categorical_column_with_identity(key='aaa', num_buckets=3) + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=(0, 1, 0), + dense_shape=(2, 2)) + id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array((0, 1, 0), dtype=np.int64), + dense_shape=inputs.dense_shape), + id_weight_pair.id_tensor.eval()) - @test_util.run_deprecated_v1 def test_transform_feature(self): - column = fc._categorical_column_with_identity(key='aaa', num_buckets=3) - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=(0, 1, 0), - dense_shape=(2, 2)) - id_tensor = _transform_features({'aaa': inputs}, [column])[column] - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array((0, 1, 0), dtype=np.int64), - dense_shape=inputs.dense_shape), self.evaluate(id_tensor)) + with ops.Graph().as_default(): + column = fc._categorical_column_with_identity(key='aaa', num_buckets=3) + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=(0, 1, 0), + dense_shape=(2, 2)) + id_tensor = _transform_features({'aaa': inputs}, [column])[column] + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array((0, 1, 0), dtype=np.int64), + dense_shape=inputs.dense_shape), self.evaluate(id_tensor)) def test_get_sparse_tensors_weight_collections(self): column = fc._categorical_column_with_identity(key='aaa', num_buckets=3) @@ -4331,139 +4322,139 @@ class IdentityCategoricalColumnTest(test.TestCase): ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)) self.assertCountEqual([], ops.get_collection('my_weights')) - @test_util.run_deprecated_v1 def test_get_sparse_tensors_dense_input(self): - column = fc._categorical_column_with_identity(key='aaa', num_buckets=3) - id_weight_pair = column._get_sparse_tensors( - _LazyBuilder({ - 'aaa': ((0, -1), (1, 0)) - })) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=np.array((0, 1, 0), dtype=np.int64), - dense_shape=(2, 2)), - id_weight_pair.id_tensor.eval()) - - @test_util.run_deprecated_v1 - def test_get_sparse_tensors_with_inputs_too_big(self): - # Inputs. - vocabulary_size = 2 - sparse_input = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), values=(2, 1, 0), dense_shape=(2, 2)) - - # Embedding variable. - embedding_dimension = 2 - embedding_values = ( - (1., 2.), # id 0 - (3., 5.), # id 1 - ) - - def _initializer(shape, dtype, partition_info=None): - del shape, dtype, partition_info - return embedding_values - - # Build columns. - categorical_column = fc._categorical_column_with_identity( - key='aaa', num_buckets=vocabulary_size) - embedding_column = fc._embedding_column( - categorical_column, - dimension=embedding_dimension, - initializer=_initializer) - - # Provide sparse input and get dense result. - embedding_lookup = embedding_column._get_dense_tensor( - _LazyBuilder({'aaa': sparse_input})) - - with _initialized_session(): - with self.assertRaisesRegex(errors.OpError, - r'indices\[0\] .* 2 .* \[0, 2\)'): - self.evaluate(embedding_lookup) - - @test_util.run_deprecated_v1 - def test_get_sparse_tensors_with_inputs_too_small(self): - # Inputs. - vocabulary_size = 2 - sparse_input = sparse_tensor.SparseTensorValue( - indices=((0, 0), (0, 0), (1, 1), (1, 2)), - values=(-9, 0, -6, 1), - dense_shape=(2, 4)) - - # Embedding variable. - embedding_dimension = 2 - embedding_values = ( - (1., 2.), # id 0 - (3., 5.), # id 1 - ) - - def _initializer(shape, dtype, partition_info=None): - del shape, dtype, partition_info - return embedding_values - - # Build columns. - categorical_column = fc._categorical_column_with_identity( - key='aaa', num_buckets=vocabulary_size) - embedding_column = fc._embedding_column( - categorical_column, - dimension=embedding_dimension, - initializer=_initializer) - - # Provide sparse input and get dense result. - embedding_lookup = embedding_column._get_dense_tensor( - _LazyBuilder({'aaa': sparse_input})) - expected_lookups = ((1., 2.), (3., 5)) - with _initialized_session(): - self.assertAllEqual(expected_lookups, self.evaluate(embedding_lookup)) - - @test_util.run_deprecated_v1 - def test_get_sparse_tensors_with_default_value(self): - column = fc._categorical_column_with_identity( - key='aaa', num_buckets=4, default_value=3) - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=(1, -1, 99), - dense_shape=(2, 2)) - id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array((1, 3, 3), dtype=np.int64), - dense_shape=inputs.dense_shape), - id_weight_pair.id_tensor.eval()) - - @test_util.run_deprecated_v1 - def test_get_sparse_tensors_with_default_value_and_placeholder_inputs(self): - column = fc._categorical_column_with_identity( - key='aaa', num_buckets=4, default_value=3) - input_indices = array_ops.placeholder(dtype=dtypes.int64) - input_values = array_ops.placeholder(dtype=dtypes.int32) - input_shape = array_ops.placeholder(dtype=dtypes.int64) - inputs = sparse_tensor.SparseTensorValue( - indices=input_indices, - values=input_values, - dense_shape=input_shape) - id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) - self.assertIsNone(id_weight_pair.weight_tensor) - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=np.array(((0, 0), (1, 0), (1, 1)), dtype=np.int64), - values=np.array((1, 3, 3), dtype=np.int64), - dense_shape=np.array((2, 2), dtype=np.int64)), - id_weight_pair.id_tensor.eval(feed_dict={ - input_indices: ((0, 0), (1, 0), (1, 1)), - input_values: (1, -1, 99), - input_shape: (2, 2), + with ops.Graph().as_default(): + column = fc._categorical_column_with_identity(key='aaa', num_buckets=3) + id_weight_pair = column._get_sparse_tensors( + _LazyBuilder({ + 'aaa': ((0, -1), (1, 0)) })) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=np.array((0, 1, 0), dtype=np.int64), + dense_shape=(2, 2)), + id_weight_pair.id_tensor.eval()) + + def test_get_sparse_tensors_with_inputs_too_big(self): + with ops.Graph().as_default(): + # Inputs. + vocabulary_size = 2 + sparse_input = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), values=(2, 1, 0), + dense_shape=(2, 2)) + + # Embedding variable. + embedding_dimension = 2 + embedding_values = ( + (1., 2.), # id 0 + (3., 5.), # id 1 + ) + + def _initializer(shape, dtype, partition_info=None): + del shape, dtype, partition_info + return embedding_values + + # Build columns. + categorical_column = fc._categorical_column_with_identity( + key='aaa', num_buckets=vocabulary_size) + embedding_column = fc._embedding_column( + categorical_column, + dimension=embedding_dimension, + initializer=_initializer) + + # Provide sparse input and get dense result. + embedding_lookup = embedding_column._get_dense_tensor( + _LazyBuilder({'aaa': sparse_input})) + + with _initialized_session(): + with self.assertRaisesRegex(errors.OpError, + r'indices\[0\] .* 2 .* \[0, 2\)'): + self.evaluate(embedding_lookup) + + def test_get_sparse_tensors_with_inputs_too_small(self): + with ops.Graph().as_default(): + # Inputs. + vocabulary_size = 2 + sparse_input = sparse_tensor.SparseTensorValue( + indices=((0, 0), (0, 0), (1, 1), (1, 2)), + values=(-9, 0, -6, 1), + dense_shape=(2, 4)) + + # Embedding variable. + embedding_dimension = 2 + embedding_values = ( + (1., 2.), # id 0 + (3., 5.), # id 1 + ) + + def _initializer(shape, dtype, partition_info=None): + del shape, dtype, partition_info + return embedding_values + + # Build columns. + categorical_column = fc._categorical_column_with_identity( + key='aaa', num_buckets=vocabulary_size) + embedding_column = fc._embedding_column( + categorical_column, + dimension=embedding_dimension, + initializer=_initializer) + + # Provide sparse input and get dense result. + embedding_lookup = embedding_column._get_dense_tensor( + _LazyBuilder({'aaa': sparse_input})) + expected_lookups = ((1., 2.), (3., 5)) + with _initialized_session(): + self.assertAllEqual(expected_lookups, self.evaluate(embedding_lookup)) + + def test_get_sparse_tensors_with_default_value(self): + with ops.Graph().as_default(): + column = fc._categorical_column_with_identity( + key='aaa', num_buckets=4, default_value=3) + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=(1, -1, 99), + dense_shape=(2, 2)) + id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array((1, 3, 3), dtype=np.int64), + dense_shape=inputs.dense_shape), + id_weight_pair.id_tensor.eval()) + + def test_get_sparse_tensors_with_default_value_and_placeholder_inputs(self): + with ops.Graph().as_default(): + column = fc._categorical_column_with_identity( + key='aaa', num_buckets=4, default_value=3) + input_indices = array_ops.placeholder(dtype=dtypes.int64) + input_values = array_ops.placeholder(dtype=dtypes.int32) + input_shape = array_ops.placeholder(dtype=dtypes.int64) + inputs = sparse_tensor.SparseTensorValue( + indices=input_indices, + values=input_values, + dense_shape=input_shape) + id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs})) + self.assertIsNone(id_weight_pair.weight_tensor) + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=np.array(((0, 0), (1, 0), (1, 1)), dtype=np.int64), + values=np.array((1, 3, 3), dtype=np.int64), + dense_shape=np.array((2, 2), dtype=np.int64)), + id_weight_pair.id_tensor.eval(feed_dict={ + input_indices: ((0, 0), (1, 0), (1, 1)), + input_values: (1, -1, 99), + input_shape: (2, 2), + })) - @test_util.run_deprecated_v1 def test_linear_model(self): column = fc._categorical_column_with_identity(key='aaa', num_buckets=3) self.assertEqual(3, column._num_buckets) @@ -4485,7 +4476,6 @@ class IdentityCategoricalColumnTest(test.TestCase): # weight_var[2] + weight_var[1] = 3+2 = 5 self.assertAllClose(((1.,), (5.,)), self.evaluate(predictions)) - @test_util.run_deprecated_v1 def test_keras_linear_model(self): column = fc._categorical_column_with_identity(key='aaa', num_buckets=3) self.assertEqual(3, column._num_buckets) @@ -4637,7 +4627,6 @@ class IndicatorColumnTest(test.TestCase): with self.cached_session(): self.assertAllEqual([[0., 1., 1., 0.]], self.evaluate(output)) - @test_util.run_deprecated_v1 def test_deep_copy(self): a = fc._categorical_column_with_hash_bucket('a', 4) column = fc._indicator_column(a) @@ -4670,66 +4659,66 @@ class IndicatorColumnTest(test.TestCase): dense_shape=[1, 2]), features['aaa'].eval()) - @test_util.run_deprecated_v1 def test_transform(self): - a = fc._categorical_column_with_vocabulary_list( - key='aaa', vocabulary_list=('omar', 'stringer', 'marlo')) - a_indicator = fc._indicator_column(a) - features = { - 'aaa': sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=('marlo', 'skywalker', 'omar'), - dense_shape=(2, 2)) - } - indicator_tensor = _transform_features(features, [a_indicator])[a_indicator] - with _initialized_session(): - self.assertAllEqual([[0, 0, 1], [1, 0, 0]], - self.evaluate(indicator_tensor)) + with ops.Graph().as_default(): + a = fc._categorical_column_with_vocabulary_list( + key='aaa', vocabulary_list=('omar', 'stringer', 'marlo')) + a_indicator = fc._indicator_column(a) + features = { + 'aaa': sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=('marlo', 'skywalker', 'omar'), + dense_shape=(2, 2)) + } + indicator_tensor = _transform_features(features, + [a_indicator])[a_indicator] + with _initialized_session(): + self.assertAllEqual([[0, 0, 1], [1, 0, 0]], + self.evaluate(indicator_tensor)) - @test_util.run_deprecated_v1 def test_transform_with_weighted_column(self): - # Github issue 12557 - ids = fc._categorical_column_with_vocabulary_list( - key='ids', vocabulary_list=('a', 'b', 'c')) - weights = fc._weighted_categorical_column(ids, 'weights') - indicator = fc._indicator_column(weights) - features = { - 'ids': constant_op.constant([['c', 'b', 'a', 'c']]), - 'weights': constant_op.constant([[2., 4., 6., 1.]]) - } - indicator_tensor = _transform_features(features, [indicator])[indicator] - with _initialized_session(): - self.assertAllEqual([[6., 4., 3.]], self.evaluate(indicator_tensor)) + with ops.Graph().as_default(): + # Github issue 12557 + ids = fc._categorical_column_with_vocabulary_list( + key='ids', vocabulary_list=('a', 'b', 'c')) + weights = fc._weighted_categorical_column(ids, 'weights') + indicator = fc._indicator_column(weights) + features = { + 'ids': constant_op.constant([['c', 'b', 'a', 'c']]), + 'weights': constant_op.constant([[2., 4., 6., 1.]]) + } + indicator_tensor = _transform_features(features, [indicator])[indicator] + with _initialized_session(): + self.assertAllEqual([[6., 4., 3.]], self.evaluate(indicator_tensor)) - @test_util.run_deprecated_v1 def test_transform_with_missing_value_in_weighted_column(self): - # Github issue 12583 - ids = fc._categorical_column_with_vocabulary_list( - key='ids', vocabulary_list=('a', 'b', 'c')) - weights = fc._weighted_categorical_column(ids, 'weights') - indicator = fc._indicator_column(weights) - features = { - 'ids': constant_op.constant([['c', 'b', 'unknown']]), - 'weights': constant_op.constant([[2., 4., 6.]]) - } - indicator_tensor = _transform_features(features, [indicator])[indicator] - with _initialized_session(): - self.assertAllEqual([[0., 4., 2.]], self.evaluate(indicator_tensor)) + with ops.Graph().as_default(): + # Github issue 12583 + ids = fc._categorical_column_with_vocabulary_list( + key='ids', vocabulary_list=('a', 'b', 'c')) + weights = fc._weighted_categorical_column(ids, 'weights') + indicator = fc._indicator_column(weights) + features = { + 'ids': constant_op.constant([['c', 'b', 'unknown']]), + 'weights': constant_op.constant([[2., 4., 6.]]) + } + indicator_tensor = _transform_features(features, [indicator])[indicator] + with _initialized_session(): + self.assertAllEqual([[0., 4., 2.]], self.evaluate(indicator_tensor)) - @test_util.run_deprecated_v1 def test_transform_with_missing_value_in_categorical_column(self): - # Github issue 12583 - ids = fc._categorical_column_with_vocabulary_list( - key='ids', vocabulary_list=('a', 'b', 'c')) - indicator = fc._indicator_column(ids) - features = { - 'ids': constant_op.constant([['c', 'b', 'unknown']]), - } - indicator_tensor = _transform_features(features, [indicator])[indicator] - with _initialized_session(): - self.assertAllEqual([[0., 1., 1.]], self.evaluate(indicator_tensor)) + with ops.Graph().as_default(): + # Github issue 12583 + ids = fc._categorical_column_with_vocabulary_list( + key='ids', vocabulary_list=('a', 'b', 'c')) + indicator = fc._indicator_column(ids) + features = { + 'ids': constant_op.constant([['c', 'b', 'unknown']]), + } + indicator_tensor = _transform_features(features, [indicator])[indicator] + with _initialized_session(): + self.assertAllEqual([[0., 1., 1.]], self.evaluate(indicator_tensor)) - @test_util.run_deprecated_v1 def test_linear_model(self): animal = fc._indicator_column( fc._categorical_column_with_identity('animal', num_buckets=4)) @@ -4749,7 +4738,6 @@ class IndicatorColumnTest(test.TestCase): weight_var.assign([[1.], [2.], [3.], [4.]]).eval() self.assertAllClose([[2. + 3.]], self.evaluate(predictions)) - @test_util.run_deprecated_v1 def test_keras_linear_model(self): animal = fc._indicator_column( fc._categorical_column_with_identity('animal', num_buckets=4)) @@ -4769,7 +4757,6 @@ class IndicatorColumnTest(test.TestCase): weight_var.assign([[1.], [2.], [3.], [4.]]).eval() self.assertAllClose([[2. + 3.]], self.evaluate(predictions)) - @test_util.run_deprecated_v1 def test_input_layer(self): animal = fc._indicator_column( fc._categorical_column_with_identity('animal', num_buckets=4)) @@ -6279,7 +6266,6 @@ class SharedEmbeddingColumnTest(test.TestCase, parameterized.TestCase): class WeightedCategoricalColumnTest(test.TestCase): - @test_util.run_deprecated_v1 def test_defaults(self): column = fc._weighted_categorical_column( categorical_column=fc._categorical_column_with_identity( @@ -6293,7 +6279,6 @@ class WeightedCategoricalColumnTest(test.TestCase): 'values': parsing_ops.VarLenFeature(dtypes.float32) }, column._parse_example_spec) - @test_util.run_deprecated_v1 def test_deep_copy(self): """Tests deepcopy of categorical_column_with_hash_bucket.""" original = fc._weighted_categorical_column( @@ -6392,95 +6377,94 @@ class WeightedCategoricalColumnTest(test.TestCase): dense_shape=[1, 2]), features['weights'].eval()) - @test_util.run_deprecated_v1 def test_transform_features(self): - column = fc._weighted_categorical_column( - categorical_column=fc._categorical_column_with_identity( - key='ids', num_buckets=3), - weight_feature_key='values') - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=(0, 1, 0), - dense_shape=(2, 2)) - weights = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=(0.5, 1.0, 0.1), - dense_shape=(2, 2)) - id_tensor, weight_tensor = _transform_features({ - 'ids': inputs, - 'values': weights, - }, (column,))[column] - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array(inputs.values, dtype=np.int64), - dense_shape=inputs.dense_shape), self.evaluate(id_tensor)) - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=weights.indices, - values=np.array(weights.values, dtype=np.float32), - dense_shape=weights.dense_shape), self.evaluate(weight_tensor)) + with ops.Graph().as_default(): + column = fc._weighted_categorical_column( + categorical_column=fc._categorical_column_with_identity( + key='ids', num_buckets=3), + weight_feature_key='values') + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=(0, 1, 0), + dense_shape=(2, 2)) + weights = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=(0.5, 1.0, 0.1), + dense_shape=(2, 2)) + id_tensor, weight_tensor = _transform_features({ + 'ids': inputs, + 'values': weights, + }, (column,))[column] + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array(inputs.values, dtype=np.int64), + dense_shape=inputs.dense_shape), self.evaluate(id_tensor)) + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=weights.indices, + values=np.array(weights.values, dtype=np.float32), + dense_shape=weights.dense_shape), self.evaluate(weight_tensor)) - @test_util.run_deprecated_v1 def test_transform_features_dense_input(self): - column = fc._weighted_categorical_column( - categorical_column=fc._categorical_column_with_identity( - key='ids', num_buckets=3), - weight_feature_key='values') - weights = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=(0.5, 1.0, 0.1), - dense_shape=(2, 2)) - id_tensor, weight_tensor = _transform_features({ - 'ids': ((0, -1), (1, 0)), - 'values': weights, - }, (column,))[column] - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=np.array((0, 1, 0), dtype=np.int64), - dense_shape=(2, 2)), self.evaluate(id_tensor)) - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=weights.indices, - values=np.array(weights.values, dtype=np.float32), - dense_shape=weights.dense_shape), self.evaluate(weight_tensor)) + with ops.Graph().as_default(): + column = fc._weighted_categorical_column( + categorical_column=fc._categorical_column_with_identity( + key='ids', num_buckets=3), + weight_feature_key='values') + weights = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=(0.5, 1.0, 0.1), + dense_shape=(2, 2)) + id_tensor, weight_tensor = _transform_features({ + 'ids': ((0, -1), (1, 0)), + 'values': weights, + }, (column,))[column] + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=np.array((0, 1, 0), dtype=np.int64), + dense_shape=(2, 2)), self.evaluate(id_tensor)) + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=weights.indices, + values=np.array(weights.values, dtype=np.float32), + dense_shape=weights.dense_shape), self.evaluate(weight_tensor)) - @test_util.run_deprecated_v1 def test_transform_features_dense_weights(self): - column = fc._weighted_categorical_column( - categorical_column=fc._categorical_column_with_identity( - key='ids', num_buckets=3), - weight_feature_key='values') - inputs = sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=(2, 1, 0), - dense_shape=(2, 2)) - id_tensor, weight_tensor = _transform_features({ - 'ids': inputs, - 'values': ((.5, 0.), (1., .1)), - }, (column,))[column] - with _initialized_session(): - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=inputs.indices, - values=np.array(inputs.values, dtype=np.int64), - dense_shape=inputs.dense_shape), self.evaluate(id_tensor)) - _assert_sparse_tensor_value( - self, - sparse_tensor.SparseTensorValue( - indices=((0, 0), (1, 0), (1, 1)), - values=np.array((.5, 1., .1), dtype=np.float32), - dense_shape=(2, 2)), self.evaluate(weight_tensor)) + with ops.Graph().as_default(): + column = fc._weighted_categorical_column( + categorical_column=fc._categorical_column_with_identity( + key='ids', num_buckets=3), + weight_feature_key='values') + inputs = sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=(2, 1, 0), + dense_shape=(2, 2)) + id_tensor, weight_tensor = _transform_features({ + 'ids': inputs, + 'values': ((.5, 0.), (1., .1)), + }, (column,))[column] + with _initialized_session(): + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=inputs.indices, + values=np.array(inputs.values, dtype=np.int64), + dense_shape=inputs.dense_shape), self.evaluate(id_tensor)) + _assert_sparse_tensor_value( + self, + sparse_tensor.SparseTensorValue( + indices=((0, 0), (1, 0), (1, 1)), + values=np.array((.5, 1., .1), dtype=np.float32), + dense_shape=(2, 2)), self.evaluate(weight_tensor)) - @test_util.run_deprecated_v1 def test_keras_linear_model(self): column = fc._weighted_categorical_column( categorical_column=fc._categorical_column_with_identity( @@ -6583,7 +6567,6 @@ class WeightedCategoricalColumnTest(test.TestCase): # = 3*1 + 2*.1 = 3+.2 = 3.2 self.assertAllClose(((.5,), (3.2,)), self.evaluate(predictions)) - @test_util.run_deprecated_v1 def test_linear_model(self): column = fc._weighted_categorical_column( categorical_column=fc._categorical_column_with_identity(