Add activations to frozen_keras which will be needed by layers.
PiperOrigin-RevId: 300134428 Change-Id: I314f38d53afd30b4536b2dcb6d0a02a6d11cd1cb
This commit is contained in:
parent
d92b75135f
commit
3299b778c3
@ -19,6 +19,18 @@ py_library(
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "activations",
|
||||
srcs = ["activations.py"],
|
||||
deps = [
|
||||
":backend",
|
||||
"//tensorflow/python:math_ops",
|
||||
"//tensorflow/python:nn",
|
||||
"//tensorflow/python/frozen_keras/utils:generic_utils",
|
||||
"@six_archive//:six",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "backend",
|
||||
srcs = ["backend.py"],
|
||||
|
453
tensorflow/python/frozen_keras/activations.py
Normal file
453
tensorflow/python/frozen_keras/activations.py
Normal file
@ -0,0 +1,453 @@
|
||||
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Built-in activation functions."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import six
|
||||
|
||||
from tensorflow.python.frozen_keras import backend as K
|
||||
from tensorflow.python.frozen_keras.utils.generic_utils import deserialize_keras_object
|
||||
from tensorflow.python.frozen_keras.utils.generic_utils import serialize_keras_object
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.ops import nn
|
||||
|
||||
# b/123041942
|
||||
# In TF 2.x, if the `tf.nn.softmax` is used as an activation function in Keras
|
||||
# layers, it gets serialized as 'softmax_v2' instead of 'softmax' as the
|
||||
# internal method name is returned in serialization. This results in errors in
|
||||
# model exporting and loading as Keras can't find any activation function with
|
||||
# the name of `softmax_v2`.
|
||||
|
||||
# This dict maps the activation function name from its v2 version to its
|
||||
# canonical name.
|
||||
_TF_ACTIVATIONS_V2 = {
|
||||
'softmax_v2': 'softmax',
|
||||
}
|
||||
|
||||
|
||||
def softmax(x, axis=-1):
|
||||
"""Softmax converts a real vector to a vector of categorical probabilities.
|
||||
|
||||
The elements of the output vector are in range (0, 1) and sum to 1.
|
||||
|
||||
Each vector is handled independently. The `axis` argument sets which axis
|
||||
of the input the function is applied along.
|
||||
|
||||
Softmax is often used as the activation for the last
|
||||
layer of a classification network because the result could be interpreted as
|
||||
a probability distribution.
|
||||
|
||||
The softmax of each vector x is calculated by `exp(x)/tf.reduce_sum(exp(x))`.
|
||||
The input values in are the log-odds of the resulting probability.
|
||||
|
||||
Arguments:
|
||||
x : Input tensor.
|
||||
axis: Integer, axis along which the softmax normalization is applied.
|
||||
|
||||
Returns:
|
||||
Tensor, output of softmax transformation (all values are non-negative
|
||||
and sum to 1).
|
||||
|
||||
Raises:
|
||||
ValueError: In case `dim(x) == 1`.
|
||||
"""
|
||||
ndim = K.ndim(x)
|
||||
if ndim == 2:
|
||||
return nn.softmax(x)
|
||||
elif ndim > 2:
|
||||
e = math_ops.exp(x - math_ops.reduce_max(x, axis=axis, keepdims=True))
|
||||
s = math_ops.reduce_sum(e, axis=axis, keepdims=True)
|
||||
return e / s
|
||||
else:
|
||||
raise ValueError('Cannot apply softmax to a tensor that is 1D. '
|
||||
'Received input: %s' % (x,))
|
||||
|
||||
|
||||
def elu(x, alpha=1.0):
|
||||
"""Exponential linear unit.
|
||||
|
||||
Arguments:
|
||||
x: Input tensor.
|
||||
alpha: A scalar, slope of negative section.
|
||||
|
||||
Returns:
|
||||
The exponential linear activation: `x` if `x > 0` and
|
||||
`alpha * (exp(x)-1)` if `x < 0`.
|
||||
|
||||
Reference:
|
||||
- [Fast and Accurate Deep Network Learning by Exponential
|
||||
Linear Units (ELUs)](https://arxiv.org/abs/1511.07289)
|
||||
"""
|
||||
return K.elu(x, alpha)
|
||||
|
||||
|
||||
def selu(x):
|
||||
"""Scaled Exponential Linear Unit (SELU).
|
||||
|
||||
The Scaled Exponential Linear Unit (SELU) activation function is:
|
||||
`scale * x` if `x > 0` and `scale * alpha * (exp(x) - 1)` if `x < 0`
|
||||
where `alpha` and `scale` are pre-defined constants
|
||||
(`alpha = 1.67326324`
|
||||
and `scale = 1.05070098`).
|
||||
The SELU activation function multiplies `scale` > 1 with the
|
||||
`[elu](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/activations/elu)`
|
||||
(Exponential Linear Unit (ELU)) to ensure a slope larger than one
|
||||
for positive net inputs.
|
||||
|
||||
The values of `alpha` and `scale` are
|
||||
chosen so that the mean and variance of the inputs are preserved
|
||||
between two consecutive layers as long as the weights are initialized
|
||||
correctly (see [`lecun_normal` initialization]
|
||||
(https://www.tensorflow.org/api_docs/python/tf/keras/initializers/lecun_normal))
|
||||
and the number of inputs is "large enough"
|
||||
(see references for more information).
|
||||
|
||||
![]https://cdn-images-1.medium.com/max/1600/1*m0e8lZU_Zrkh4ESfQkY2Pw.png
|
||||
(Courtesy: Blog on Towards DataScience at
|
||||
https://towardsdatascience.com/selu-make-fnns-great-again-snn-8d61526802a9)
|
||||
|
||||
Example Usage:
|
||||
|
||||
>>> n_classes = 10 #10-class problem
|
||||
>>> from tensorflow.python.keras.layers import Dense
|
||||
>>> model = tf.keras.Sequential()
|
||||
>>> model.add(Dense(64, kernel_initializer='lecun_normal',
|
||||
... activation='selu', input_shape=(28, 28, 1)))
|
||||
>>> model.add(Dense(32, kernel_initializer='lecun_normal',
|
||||
... activation='selu'))
|
||||
>>> model.add(Dense(16, kernel_initializer='lecun_normal',
|
||||
... activation='selu'))
|
||||
>>> model.add(Dense(n_classes, activation='softmax'))
|
||||
|
||||
Arguments:
|
||||
x: A tensor or variable to compute the activation function for.
|
||||
|
||||
Returns:
|
||||
The scaled exponential unit activation: `scale * elu(x, alpha)`.
|
||||
|
||||
# Note
|
||||
- To be used together with the initialization "[lecun_normal]
|
||||
(https://www.tensorflow.org/api_docs/python/tf/keras/initializers/lecun_normal)".
|
||||
- To be used together with the dropout variant "[AlphaDropout]
|
||||
(https://www.tensorflow.org/api_docs/python/tf/keras/layers/AlphaDropout)".
|
||||
|
||||
References:
|
||||
[Self-Normalizing Neural Networks (Klambauer et al, 2017)]
|
||||
(https://arxiv.org/abs/1706.02515)
|
||||
"""
|
||||
return nn.selu(x)
|
||||
|
||||
|
||||
def softplus(x):
|
||||
"""Softplus activation function.
|
||||
|
||||
Arguments:
|
||||
x: Input tensor.
|
||||
|
||||
Returns:
|
||||
The softplus activation: `log(exp(x) + 1)`.
|
||||
"""
|
||||
return nn.softplus(x)
|
||||
|
||||
|
||||
def softsign(x):
|
||||
"""Softsign activation function.
|
||||
|
||||
Arguments:
|
||||
x: Input tensor.
|
||||
|
||||
Returns:
|
||||
The softsign activation: `x / (abs(x) + 1)`.
|
||||
"""
|
||||
return nn.softsign(x)
|
||||
|
||||
|
||||
def swish(x):
|
||||
"""Swish activation function.
|
||||
|
||||
Arguments:
|
||||
x: Input tensor.
|
||||
|
||||
Returns:
|
||||
The swish activation applied to `x`.
|
||||
"""
|
||||
return nn.swish(x)
|
||||
|
||||
|
||||
def relu(x, alpha=0., max_value=None, threshold=0):
|
||||
"""Applies the rectified linear unit activation function.
|
||||
|
||||
With default values, this returns the standard ReLU activation:
|
||||
`max(x, 0)`, the element-wise maximum of 0 and the input tensor.
|
||||
|
||||
Modifying default parameters allows you to use non-zero thresholds,
|
||||
change the max value of the activation,
|
||||
and to use a non-zero multiple of the input for values below the threshold.
|
||||
|
||||
For example:
|
||||
|
||||
>>> foo = tf.constant([-10, -5, 0.0, 5, 10], dtype = tf.float32)
|
||||
>>> tf.keras.activations.relu(foo).numpy()
|
||||
array([ 0., 0., 0., 5., 10.], dtype=float32)
|
||||
>>> tf.keras.activations.relu(foo, alpha=0.5).numpy()
|
||||
array([-5. , -2.5, 0. , 5. , 10. ], dtype=float32)
|
||||
>>> tf.keras.activations.relu(foo, max_value=5).numpy()
|
||||
array([0., 0., 0., 5., 5.], dtype=float32)
|
||||
>>> tf.keras.activations.relu(foo, threshold=5).numpy()
|
||||
array([-0., -0., 0., 0., 10.], dtype=float32)
|
||||
|
||||
Arguments:
|
||||
x: Input `tensor` or `variable`.
|
||||
alpha: A `float` that governs the slope for values lower than the
|
||||
threshold.
|
||||
max_value: A `float` that sets the saturation threshold (the largest value
|
||||
the function will return).
|
||||
threshold: A `float` giving the threshold value of the activation function
|
||||
below which values will be damped or set to zero.
|
||||
|
||||
Returns:
|
||||
A `Tensor` representing the input tensor,
|
||||
transformed by the relu activation function.
|
||||
Tensor will be of the same shape and dtype of input `x`.
|
||||
"""
|
||||
return K.relu(x, alpha=alpha, max_value=max_value, threshold=threshold)
|
||||
|
||||
|
||||
def tanh(x):
|
||||
"""Hyperbolic tangent activation function.
|
||||
|
||||
For example:
|
||||
|
||||
>>> a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)
|
||||
>>> b = tf.keras.activations.tanh(a)
|
||||
>>> b.numpy()
|
||||
array([-0.9950547, -0.7615942, 0. , 0.7615942, 0.9950547],
|
||||
dtype=float32)
|
||||
|
||||
Arguments:
|
||||
x: Input tensor.
|
||||
|
||||
Returns:
|
||||
Tensor of same shape and dtype of input `x`, with tanh activation:
|
||||
`tanh(x) = sinh(x)/cosh(x) = ((exp(x) - exp(-x))/(exp(x) + exp(-x)))`.
|
||||
"""
|
||||
return nn.tanh(x)
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
"""Sigmoid activation function.
|
||||
|
||||
Applies the sigmoid activation function. The sigmoid function is defined as
|
||||
1 divided by (1 + exp(-x)). It's curve is like an "S" and is like a smoothed
|
||||
version of the Heaviside (Unit Step Function) function. For small values
|
||||
(<-5) the sigmoid returns a value close to zero and for larger values (>5)
|
||||
the result of the function gets close to 1.
|
||||
|
||||
Sigmoid is equivalent to a 2-element Softmax, where the second element is
|
||||
assumed to be zero.
|
||||
|
||||
For example:
|
||||
|
||||
>>> a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32)
|
||||
>>> b = tf.keras.activations.sigmoid(a)
|
||||
>>> b.numpy() >= 0.0
|
||||
array([ True, True, True, True, True])
|
||||
|
||||
Arguments:
|
||||
x: Input tensor.
|
||||
|
||||
Returns:
|
||||
Tensor with the sigmoid activation: `(1.0 / (1.0 + exp(-x)))`.
|
||||
Tensor will be of same shape and dtype of input `x`.
|
||||
"""
|
||||
return nn.sigmoid(x)
|
||||
|
||||
|
||||
def exponential(x):
|
||||
"""Exponential activation function.
|
||||
|
||||
For example:
|
||||
|
||||
>>> a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)
|
||||
>>> b = tf.keras.activations.exponential(a)
|
||||
>>> b.numpy()
|
||||
array([ 0.04978707, 0.36787945, 1. , 2.7182817 , 20.085537 ],
|
||||
dtype=float32)
|
||||
|
||||
Arguments:
|
||||
x: Input tensor.
|
||||
|
||||
Returns:
|
||||
Tensor with exponential activation: `exp(x)`. Tensor will be of same
|
||||
shape and dtype of input `x`.
|
||||
"""
|
||||
return math_ops.exp(x)
|
||||
|
||||
|
||||
def hard_sigmoid(x):
|
||||
"""Hard sigmoid activation function.
|
||||
|
||||
Faster to compute than sigmoid activation.
|
||||
|
||||
For example:
|
||||
|
||||
>>> a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)
|
||||
>>> b = tf.keras.activations.hard_sigmoid(a)
|
||||
>>> b.numpy()
|
||||
array([0. , 0.3, 0.5, 0.7, 1. ], dtype=float32)
|
||||
|
||||
Arguments:
|
||||
x: Input tensor.
|
||||
|
||||
Returns:
|
||||
The hard sigmoid activation:
|
||||
|
||||
- `0` if `x < -2.5`
|
||||
- `1` if `x > 2.5`
|
||||
- `0.2 * x + 0.5` if `-2.5 <= x <= 2.5`.
|
||||
"""
|
||||
return K.hard_sigmoid(x)
|
||||
|
||||
|
||||
def linear(x):
|
||||
"""Linear activation function.
|
||||
|
||||
For example:
|
||||
|
||||
>>> a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)
|
||||
>>> b = tf.keras.activations.linear(a)
|
||||
>>> b.numpy()
|
||||
array([-3., -1., 0., 1., 3.], dtype=float32)
|
||||
|
||||
Arguments:
|
||||
x: Input tensor.
|
||||
|
||||
Returns:
|
||||
the input unmodified.
|
||||
"""
|
||||
return x
|
||||
|
||||
|
||||
def serialize(activation):
|
||||
"""Returns name attribute (`__name__`) of function.
|
||||
|
||||
Arguments:
|
||||
activation : Function
|
||||
|
||||
Returns:
|
||||
String denoting the name attribute of the input function
|
||||
|
||||
For example:
|
||||
|
||||
>>> tf.keras.activations.serialize(tf.keras.activations.tanh)
|
||||
'tanh'
|
||||
>>> tf.keras.activations.serialize(tf.keras.activations.sigmoid)
|
||||
'sigmoid'
|
||||
>>> tf.keras.activations.serialize('abcd')
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: ('Cannot serialize', 'abcd')
|
||||
|
||||
Raises:
|
||||
ValueError: The input function is not a valid one.
|
||||
"""
|
||||
if (hasattr(activation, '__name__') and
|
||||
activation.__name__ in _TF_ACTIVATIONS_V2):
|
||||
return _TF_ACTIVATIONS_V2[activation.__name__]
|
||||
return serialize_keras_object(activation)
|
||||
|
||||
|
||||
def deserialize(name, custom_objects=None):
|
||||
"""Returns activation function denoted by input string.
|
||||
|
||||
Arguments:
|
||||
x : String
|
||||
|
||||
Returns:
|
||||
TensorFlow Activation function denoted by input string.
|
||||
|
||||
For example:
|
||||
|
||||
>>> tf.keras.activations.deserialize('linear')
|
||||
<function linear at 0x1239596a8>
|
||||
>>> tf.keras.activations.deserialize('sigmoid')
|
||||
<function sigmoid at 0x123959510>
|
||||
>>> tf.keras.activations.deserialize('abcd')
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Unknown activation function:abcd
|
||||
|
||||
Args:
|
||||
name: The name of the activation function.
|
||||
custom_objects: A {name:value} dictionary for activations not build into
|
||||
keras.
|
||||
|
||||
Raises:
|
||||
ValueError: `Unknown activation function` if the input string does not
|
||||
denote any defined Tensorflow activation function.
|
||||
"""
|
||||
return deserialize_keras_object(
|
||||
name,
|
||||
module_objects=globals(),
|
||||
custom_objects=custom_objects,
|
||||
printable_module_name='activation function')
|
||||
|
||||
|
||||
def get(identifier):
|
||||
"""Returns function.
|
||||
|
||||
Arguments:
|
||||
identifier: Function or string
|
||||
|
||||
Returns:
|
||||
Activation function denoted by input:
|
||||
- `Linear activation function` if input is `None`.
|
||||
- Function corresponding to the input string or input function.
|
||||
|
||||
For example:
|
||||
|
||||
>>> tf.keras.activations.get('softmax')
|
||||
<function softmax at 0x1222a3d90>
|
||||
>>> tf.keras.activations.get(tf.keras.activations.softmax)
|
||||
<function softmax at 0x1222a3d90>
|
||||
>>> tf.keras.activations.get(None)
|
||||
<function linear at 0x1239596a8>
|
||||
>>> tf.keras.activations.get(abs)
|
||||
<built-in function abs>
|
||||
>>> tf.keras.activations.get('abcd')
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Unknown activation function:abcd
|
||||
|
||||
Raises:
|
||||
ValueError: Input is an unknown function or string, i.e., the input does
|
||||
not denote any defined function.
|
||||
"""
|
||||
if identifier is None:
|
||||
return linear
|
||||
if isinstance(identifier, six.string_types):
|
||||
identifier = str(identifier)
|
||||
return deserialize(identifier)
|
||||
elif callable(identifier):
|
||||
return identifier
|
||||
elif isinstance(identifier, dict):
|
||||
return deserialize_keras_object(
|
||||
identifier, printable_module_name='activation')
|
||||
else:
|
||||
raise TypeError(
|
||||
'Could not interpret activation function identifier: {}'.format(
|
||||
repr(identifier)))
|
Loading…
x
Reference in New Issue
Block a user