Move the learning_rate_decay code to keras to break the reverse dependency.
PiperOrigin-RevId: 303778035 Change-Id: Ic3f3f2d91e815e8db75655488824ef0c7725f4b6
This commit is contained in:
parent
fd0c36cf58
commit
322cfa2290
tensorflow/python
@ -5206,7 +5206,7 @@ py_library(
|
||||
"//tensorflow/python/distribute:reduce_util",
|
||||
"//tensorflow/python/eager:backprop",
|
||||
"//tensorflow/python/eager:context",
|
||||
"//tensorflow/python/keras/optimizer_v2:learning_rate_schedule",
|
||||
"//tensorflow/python/keras/optimizer_v2:legacy_learning_rate_decay",
|
||||
"//tensorflow/python/ops/losses",
|
||||
"//third_party/py/numpy",
|
||||
"@six_archive//:six",
|
||||
@ -6602,7 +6602,6 @@ cuda_py_tests(
|
||||
"training/device_setter_test.py",
|
||||
"training/ftrl_test.py",
|
||||
"training/gradient_descent_test.py",
|
||||
"training/learning_rate_decay_test.py",
|
||||
"training/momentum_test.py",
|
||||
"training/optimizer_test.py",
|
||||
"training/proximal_adagrad_test.py",
|
||||
|
@ -66,6 +66,20 @@ py_library(
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "legacy_learning_rate_decay",
|
||||
srcs = ["legacy_learning_rate_decay.py"],
|
||||
srcs_version = "PY2AND3",
|
||||
deps = [
|
||||
":learning_rate_schedule",
|
||||
"//tensorflow/python:dtypes",
|
||||
"//tensorflow/python:framework_ops",
|
||||
"//tensorflow/python:math_ops",
|
||||
"//tensorflow/python:tf_export",
|
||||
"//tensorflow/python/eager:context",
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "adagrad_test",
|
||||
size = "medium",
|
||||
@ -245,6 +259,21 @@ cuda_py_test(
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "legacy_learning_rate_decay_test",
|
||||
size = "medium",
|
||||
srcs = ["legacy_learning_rate_decay_test.py"],
|
||||
deps = [
|
||||
":legacy_learning_rate_decay",
|
||||
"//tensorflow/python:framework_test_lib",
|
||||
"//tensorflow/python:platform_test",
|
||||
"//tensorflow/python:resource_variable_ops",
|
||||
"//tensorflow/python:training_lib",
|
||||
"//tensorflow/python:variables",
|
||||
"//tensorflow/python/eager:context",
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "rmsprop_test",
|
||||
size = "medium",
|
||||
|
@ -0,0 +1,771 @@
|
||||
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Various learning rate decay functions."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import functools
|
||||
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export(v1=["train.exponential_decay"])
|
||||
def exponential_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
decay_rate,
|
||||
staircase=False,
|
||||
name=None):
|
||||
"""Applies exponential decay to the learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies an exponential decay function
|
||||
to a provided initial learning rate. It requires a `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate *
|
||||
decay_rate ^ (global_step / decay_steps)
|
||||
```
|
||||
|
||||
If the argument `staircase` is `True`, then `global_step / decay_steps` is an
|
||||
integer division and the decayed learning rate follows a staircase function.
|
||||
|
||||
Example: decay every 100000 steps with a base of 0.96:
|
||||
|
||||
```python
|
||||
...
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
starter_learning_rate = 0.1
|
||||
learning_rate = tf.compat.v1.train.exponential_decay(starter_learning_rate,
|
||||
global_step,
|
||||
100000, 0.96, staircase=True)
|
||||
# Passing global_step to minimize() will increment it at each step.
|
||||
learning_step = (
|
||||
tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
|
||||
.minimize(...my loss..., global_step=global_step)
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation. Must not be negative.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Must
|
||||
be positive. See the decay computation above.
|
||||
decay_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The decay rate.
|
||||
staircase: Boolean. If `True` decay the learning rate at discrete intervals
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'ExponentialDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.ExponentialDecay(
|
||||
learning_rate, decay_steps, decay_rate, staircase=staircase, name=name)
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.piecewise_constant_decay", "train.piecewise_constant"])
|
||||
def piecewise_constant(x, boundaries, values, name=None):
|
||||
"""Piecewise constant from boundaries and interval values.
|
||||
|
||||
Example: use a learning rate that's 1.0 for the first 100001 steps, 0.5
|
||||
for the next 10000 steps, and 0.1 for any additional steps.
|
||||
|
||||
```python
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
boundaries = [100000, 110000]
|
||||
values = [1.0, 0.5, 0.1]
|
||||
learning_rate = tf.compat.v1.train.piecewise_constant(global_step, boundaries,
|
||||
values)
|
||||
|
||||
# Later, whenever we perform an optimization step, we increment global_step.
|
||||
```
|
||||
|
||||
Args:
|
||||
x: A 0-D scalar `Tensor`. Must be one of the following types: `float32`,
|
||||
`float64`, `uint8`, `int8`, `int16`, `int32`, `int64`.
|
||||
boundaries: A list of `Tensor`s or `int`s or `float`s with strictly
|
||||
increasing entries, and with all elements having the same type as `x`.
|
||||
values: A list of `Tensor`s or `float`s or `int`s that specifies the values
|
||||
for the intervals defined by `boundaries`. It should have one more element
|
||||
than `boundaries`, and all elements should have the same type.
|
||||
name: A string. Optional name of the operation. Defaults to
|
||||
'PiecewiseConstant'.
|
||||
|
||||
Returns:
|
||||
A 0-D Tensor. Its value is `values[0]` when `x <= boundaries[0]`,
|
||||
`values[1]` when `x > boundaries[0]` and `x <= boundaries[1]`, ...,
|
||||
and values[-1] when `x > boundaries[-1]`.
|
||||
|
||||
Raises:
|
||||
ValueError: if types of `x` and `boundaries` do not match, or types of all
|
||||
`values` do not match or
|
||||
the number of elements in the lists does not match.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
boundaries = ops.convert_n_to_tensor(boundaries)
|
||||
values = ops.convert_n_to_tensor(values)
|
||||
x_recomp = ops.convert_to_tensor(x)
|
||||
# Avoid explicit conversion to x's dtype. This could result in faulty
|
||||
# comparisons, for example if floats are converted to integers.
|
||||
for i, b in enumerate(boundaries):
|
||||
if b.dtype.base_dtype != x_recomp.dtype.base_dtype:
|
||||
# We can promote int32 boundaries to int64 without loss of precision.
|
||||
# This covers the most common case where the user passes in boundaries
|
||||
# as an array of Python integers.
|
||||
if (b.dtype.base_dtype == dtypes.int32 and
|
||||
x_recomp.dtype.base_dtype == dtypes.int64):
|
||||
b = math_ops.cast(b, x_recomp.dtype.base_dtype)
|
||||
boundaries[i] = b
|
||||
else:
|
||||
raise ValueError(
|
||||
"Boundaries (%s) must have the same dtype as x (%s)." %
|
||||
(b.dtype.base_dtype, x_recomp.dtype.base_dtype))
|
||||
for v in values[1:]:
|
||||
if v.dtype.base_dtype != values[0].dtype.base_dtype:
|
||||
raise ValueError(
|
||||
"Values must have elements all with the same dtype (%s vs %s)." %
|
||||
(values[0].dtype.base_dtype, v.dtype.base_dtype))
|
||||
decayed_lr = learning_rate_schedule.PiecewiseConstantDecay(
|
||||
boundaries, values, name=name)
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(x)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, x)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.polynomial_decay"])
|
||||
def polynomial_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
end_learning_rate=0.0001,
|
||||
power=1.0,
|
||||
cycle=False,
|
||||
name=None):
|
||||
"""Applies a polynomial decay to the learning rate.
|
||||
|
||||
It is commonly observed that a monotonically decreasing learning rate, whose
|
||||
degree of change is carefully chosen, results in a better performing model.
|
||||
This function applies a polynomial decay function to a provided initial
|
||||
`learning_rate` to reach an `end_learning_rate` in the given `decay_steps`.
|
||||
|
||||
It requires a `global_step` value to compute the decayed learning rate. You
|
||||
can just pass a TensorFlow variable that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
|
||||
```python
|
||||
global_step = min(global_step, decay_steps)
|
||||
decayed_learning_rate = (learning_rate - end_learning_rate) *
|
||||
(1 - global_step / decay_steps) ^ (power) +
|
||||
end_learning_rate
|
||||
|
||||
```
|
||||
|
||||
If `cycle` is True then a multiple of `decay_steps` is used, the first one
|
||||
that is bigger than `global_steps`.
|
||||
|
||||
```python
|
||||
decay_steps = decay_steps * ceil(global_step / decay_steps)
|
||||
decayed_learning_rate = (learning_rate - end_learning_rate) *
|
||||
(1 - global_step / decay_steps) ^ (power) +
|
||||
end_learning_rate
|
||||
|
||||
```
|
||||
|
||||
Example: decay from 0.1 to 0.01 in 10000 steps using sqrt (i.e. power=0.5):
|
||||
|
||||
```python
|
||||
...
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
starter_learning_rate = 0.1
|
||||
end_learning_rate = 0.01
|
||||
decay_steps = 10000
|
||||
learning_rate = tf.compat.v1.train.polynomial_decay(starter_learning_rate,
|
||||
global_step,
|
||||
decay_steps, end_learning_rate,
|
||||
power=0.5)
|
||||
# Passing global_step to minimize() will increment it at each step.
|
||||
learning_step = (
|
||||
tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
|
||||
.minimize(...my loss..., global_step=global_step)
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation. Must not be negative.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Must
|
||||
be positive. See the decay computation above.
|
||||
end_learning_rate: A scalar `float32` or `float64` `Tensor` or a Python
|
||||
number. The minimal end learning rate.
|
||||
power: A scalar `float32` or `float64` `Tensor` or a Python number. The
|
||||
power of the polynomial. Defaults to linear, 1.0.
|
||||
cycle: A boolean, whether or not it should cycle beyond decay_steps.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'PolynomialDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.PolynomialDecay(
|
||||
learning_rate,
|
||||
decay_steps,
|
||||
end_learning_rate=end_learning_rate,
|
||||
power=power,
|
||||
cycle=cycle,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.natural_exp_decay"])
|
||||
def natural_exp_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
decay_rate,
|
||||
staircase=False,
|
||||
name=None):
|
||||
"""Applies natural exponential decay to the initial learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies an exponential decay function
|
||||
to a provided initial learning rate. It requires an `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate * exp(-decay_rate * global_step /
|
||||
decay_step)
|
||||
```
|
||||
|
||||
or, if `staircase` is `True`, as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate * exp(-decay_rate * floor(global_step /
|
||||
decay_step))
|
||||
```
|
||||
|
||||
Example: decay exponentially with a base of 0.96:
|
||||
|
||||
```python
|
||||
...
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
learning_rate = 0.1
|
||||
decay_steps = 5
|
||||
k = 0.5
|
||||
learning_rate = tf.compat.v1.train.natural_exp_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps, k)
|
||||
|
||||
# Passing global_step to minimize() will increment it at each step.
|
||||
learning_step = (
|
||||
tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
|
||||
.minimize(...my loss..., global_step=global_step)
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A Python number. Global step to use for the decay computation.
|
||||
Must not be negative.
|
||||
decay_steps: How often to apply decay.
|
||||
decay_rate: A Python number. The decay rate.
|
||||
staircase: Whether to apply decay in a discrete staircase, as opposed to
|
||||
continuous, fashion.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'ExponentialTimeDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
natural_exp_rate = math_ops.exp(math_ops.negative(decay_rate))
|
||||
decayed_lr = learning_rate_schedule.ExponentialDecay(
|
||||
learning_rate,
|
||||
decay_steps,
|
||||
natural_exp_rate,
|
||||
staircase=staircase,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.inverse_time_decay"])
|
||||
def inverse_time_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
decay_rate,
|
||||
staircase=False,
|
||||
name=None):
|
||||
"""Applies inverse time decay to the initial learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies an inverse decay function
|
||||
to a provided initial learning rate. It requires an `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate / (1 + decay_rate * global_step /
|
||||
decay_step)
|
||||
```
|
||||
|
||||
or, if `staircase` is `True`, as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step /
|
||||
decay_step))
|
||||
```
|
||||
|
||||
Example: decay 1/t with a rate of 0.5:
|
||||
|
||||
```python
|
||||
...
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
learning_rate = 0.1
|
||||
decay_steps = 1.0
|
||||
decay_rate = 0.5
|
||||
learning_rate = tf.compat.v1.train.inverse_time_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps, decay_rate)
|
||||
|
||||
# Passing global_step to minimize() will increment it at each step.
|
||||
learning_step = (
|
||||
tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
|
||||
.minimize(...my loss..., global_step=global_step)
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A Python number. Global step to use for the decay computation.
|
||||
Must not be negative.
|
||||
decay_steps: How often to apply decay.
|
||||
decay_rate: A Python number. The decay rate.
|
||||
staircase: Whether to apply decay in a discrete staircase, as opposed to
|
||||
continuous, fashion.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'InverseTimeDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.InverseTimeDecay(
|
||||
learning_rate, decay_steps, decay_rate, staircase=staircase, name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.cosine_decay"])
|
||||
def cosine_decay(learning_rate, global_step, decay_steps, alpha=0.0, name=None):
|
||||
"""Applies cosine decay to the learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies a cosine decay function
|
||||
to a provided initial learning rate. It requires a `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
```python
|
||||
global_step = min(global_step, decay_steps)
|
||||
cosine_decay = 0.5 * (1 + cos(pi * global_step / decay_steps))
|
||||
decayed = (1 - alpha) * cosine_decay + alpha
|
||||
decayed_learning_rate = learning_rate * decayed
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
decay_steps = 1000
|
||||
lr_decayed = cosine_decay(learning_rate, global_step, decay_steps)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Number
|
||||
of steps to decay over.
|
||||
alpha: A scalar `float32` or `float64` Tensor or a Python number. Minimum
|
||||
learning rate value as a fraction of learning_rate.
|
||||
name: String. Optional name of the operation. Defaults to 'CosineDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
References:
|
||||
Stochastic Gradient Descent with Warm Restarts:
|
||||
[Loshchilov et al., 2017]
|
||||
(https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx)
|
||||
([pdf](https://openreview.net/pdf?id=Skq89Scxx))
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.CosineDecay(
|
||||
learning_rate, decay_steps, alpha=alpha, name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.cosine_decay_restarts"])
|
||||
def cosine_decay_restarts(learning_rate,
|
||||
global_step,
|
||||
first_decay_steps,
|
||||
t_mul=2.0,
|
||||
m_mul=1.0,
|
||||
alpha=0.0,
|
||||
name=None):
|
||||
"""Applies cosine decay with restarts to the learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies a cosine decay function with
|
||||
restarts to a provided initial learning rate. It requires a `global_step`
|
||||
value to compute the decayed learning rate. You can just pass a TensorFlow
|
||||
variable that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate while taking into account
|
||||
possible warm restarts. The learning rate multiplier first decays
|
||||
from 1 to `alpha` for `first_decay_steps` steps. Then, a warm
|
||||
restart is performed. Each new warm restart runs for `t_mul` times more steps
|
||||
and with `m_mul` times smaller initial learning rate.
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
first_decay_steps = 1000
|
||||
lr_decayed = cosine_decay_restarts(learning_rate, global_step,
|
||||
first_decay_steps)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation.
|
||||
first_decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
|
||||
Number of steps to decay over.
|
||||
t_mul: A scalar `float32` or `float64` `Tensor` or a Python number. Used to
|
||||
derive the number of iterations in the i-th period
|
||||
m_mul: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
Used to derive the initial learning rate of the i-th period:
|
||||
alpha: A scalar `float32` or `float64` Tensor or a Python number. Minimum
|
||||
learning rate value as a fraction of the learning_rate.
|
||||
name: String. Optional name of the operation. Defaults to 'SGDRDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
References:
|
||||
Stochastic Gradient Descent with Warm Restarts:
|
||||
[Loshchilov et al., 2017]
|
||||
(https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx)
|
||||
([pdf](https://openreview.net/pdf?id=Skq89Scxx))
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.CosineDecayRestarts(
|
||||
learning_rate,
|
||||
first_decay_steps,
|
||||
t_mul=t_mul,
|
||||
m_mul=m_mul,
|
||||
alpha=alpha,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.linear_cosine_decay"])
|
||||
def linear_cosine_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
num_periods=0.5,
|
||||
alpha=0.0,
|
||||
beta=0.001,
|
||||
name=None):
|
||||
"""Applies linear cosine decay to the learning rate.
|
||||
|
||||
Note that linear cosine decay is more aggressive than cosine decay and
|
||||
larger initial learning rates can typically be used.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies a linear cosine decay function
|
||||
to a provided initial learning rate. It requires a `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
```python
|
||||
global_step = min(global_step, decay_steps)
|
||||
linear_decay = (decay_steps - global_step) / decay_steps)
|
||||
cosine_decay = 0.5 * (
|
||||
1 + cos(pi * 2 * num_periods * global_step / decay_steps))
|
||||
decayed = (alpha + linear_decay) * cosine_decay + beta
|
||||
decayed_learning_rate = learning_rate * decayed
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
decay_steps = 1000
|
||||
lr_decayed = linear_cosine_decay(learning_rate, global_step, decay_steps)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Number
|
||||
of steps to decay over.
|
||||
num_periods: Number of periods in the cosine part of the decay. See
|
||||
computation above.
|
||||
alpha: See computation above.
|
||||
beta: See computation above.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'LinearCosineDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
References:
|
||||
Neural Optimizer Search with Reinforcement Learning:
|
||||
[Bello et al., 2017](http://proceedings.mlr.press/v70/bello17a.html)
|
||||
([pdf](http://proceedings.mlr.press/v70/bello17a/bello17a.pdf))
|
||||
Stochastic Gradient Descent with Warm Restarts:
|
||||
[Loshchilov et al., 2017]
|
||||
(https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx)
|
||||
([pdf](https://openreview.net/pdf?id=Skq89Scxx))
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.LinearCosineDecay(
|
||||
learning_rate,
|
||||
decay_steps,
|
||||
num_periods=num_periods,
|
||||
alpha=alpha,
|
||||
beta=beta,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.noisy_linear_cosine_decay"])
|
||||
def noisy_linear_cosine_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
initial_variance=1.0,
|
||||
variance_decay=0.55,
|
||||
num_periods=0.5,
|
||||
alpha=0.0,
|
||||
beta=0.001,
|
||||
name=None):
|
||||
"""Applies noisy linear cosine decay to the learning rate.
|
||||
|
||||
Note that linear cosine decay is more aggressive than cosine decay and
|
||||
larger initial learning rates can typically be used.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies a noisy linear
|
||||
cosine decay function to a provided initial learning rate.
|
||||
It requires a `global_step` value to compute the decayed learning rate.
|
||||
You can just pass a TensorFlow variable that you increment at each
|
||||
training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
```python
|
||||
global_step = min(global_step, decay_steps)
|
||||
linear_decay = (decay_steps - global_step) / decay_steps)
|
||||
cosine_decay = 0.5 * (
|
||||
1 + cos(pi * 2 * num_periods * global_step / decay_steps))
|
||||
decayed = (alpha + linear_decay + eps_t) * cosine_decay + beta
|
||||
decayed_learning_rate = learning_rate * decayed
|
||||
```
|
||||
where eps_t is 0-centered gaussian noise with variance
|
||||
initial_variance / (1 + global_step) ** variance_decay
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
decay_steps = 1000
|
||||
lr_decayed = noisy_linear_cosine_decay(
|
||||
learning_rate, global_step, decay_steps)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Number
|
||||
of steps to decay over.
|
||||
initial_variance: initial variance for the noise. See computation above.
|
||||
variance_decay: decay for the noise's variance. See computation above.
|
||||
num_periods: Number of periods in the cosine part of the decay. See
|
||||
computation above.
|
||||
alpha: See computation above.
|
||||
beta: See computation above.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'NoisyLinearCosineDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
References:
|
||||
Neural Optimizer Search with Reinforcement Learning:
|
||||
[Bello et al., 2017](http://proceedings.mlr.press/v70/bello17a.html)
|
||||
([pdf](http://proceedings.mlr.press/v70/bello17a/bello17a.pdf))
|
||||
Stochastic Gradient Descent with Warm Restarts:
|
||||
[Loshchilov et al., 2017]
|
||||
(https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx)
|
||||
([pdf](https://openreview.net/pdf?id=Skq89Scxx))
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.NoisyLinearCosineDecay(
|
||||
learning_rate,
|
||||
decay_steps,
|
||||
initial_variance=initial_variance,
|
||||
variance_decay=variance_decay,
|
||||
num_periods=num_periods,
|
||||
alpha=alpha,
|
||||
beta=beta,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
@ -22,11 +22,11 @@ import math
|
||||
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.keras.optimizer_v2 import legacy_learning_rate_decay as learning_rate_decay
|
||||
# Import resource_variable_ops for the variables-to-tensor implicit conversion.
|
||||
from tensorflow.python.ops import resource_variable_ops # pylint: disable=unused-import
|
||||
from tensorflow.python.ops import variables
|
||||
from tensorflow.python.platform import googletest
|
||||
from tensorflow.python.training import learning_rate_decay
|
||||
|
||||
|
||||
class LRDecayTest(test_util.TensorFlowTestCase):
|
@ -17,755 +17,16 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import functools
|
||||
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
from tensorflow.python.keras.optimizer_v2 import legacy_learning_rate_decay as learning_rate_decay
|
||||
|
||||
|
||||
@tf_export(v1=["train.exponential_decay"])
|
||||
def exponential_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
decay_rate,
|
||||
staircase=False,
|
||||
name=None):
|
||||
"""Applies exponential decay to the learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies an exponential decay function
|
||||
to a provided initial learning rate. It requires a `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate *
|
||||
decay_rate ^ (global_step / decay_steps)
|
||||
```
|
||||
|
||||
If the argument `staircase` is `True`, then `global_step / decay_steps` is an
|
||||
integer division and the decayed learning rate follows a staircase function.
|
||||
|
||||
Example: decay every 100000 steps with a base of 0.96:
|
||||
|
||||
```python
|
||||
...
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
starter_learning_rate = 0.1
|
||||
learning_rate = tf.compat.v1.train.exponential_decay(starter_learning_rate,
|
||||
global_step,
|
||||
100000, 0.96, staircase=True)
|
||||
# Passing global_step to minimize() will increment it at each step.
|
||||
learning_step = (
|
||||
tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
|
||||
.minimize(...my loss..., global_step=global_step)
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation. Must not be negative.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Must
|
||||
be positive. See the decay computation above.
|
||||
decay_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The decay rate.
|
||||
staircase: Boolean. If `True` decay the learning rate at discrete intervals
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'ExponentialDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.ExponentialDecay(
|
||||
learning_rate, decay_steps, decay_rate, staircase=staircase, name=name)
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.piecewise_constant_decay", "train.piecewise_constant"])
|
||||
def piecewise_constant(x, boundaries, values, name=None):
|
||||
"""Piecewise constant from boundaries and interval values.
|
||||
|
||||
Example: use a learning rate that's 1.0 for the first 100001 steps, 0.5
|
||||
for the next 10000 steps, and 0.1 for any additional steps.
|
||||
|
||||
```python
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
boundaries = [100000, 110000]
|
||||
values = [1.0, 0.5, 0.1]
|
||||
learning_rate = tf.compat.v1.train.piecewise_constant(global_step, boundaries,
|
||||
values)
|
||||
|
||||
# Later, whenever we perform an optimization step, we increment global_step.
|
||||
```
|
||||
|
||||
Args:
|
||||
x: A 0-D scalar `Tensor`. Must be one of the following types: `float32`,
|
||||
`float64`, `uint8`, `int8`, `int16`, `int32`, `int64`.
|
||||
boundaries: A list of `Tensor`s or `int`s or `float`s with strictly
|
||||
increasing entries, and with all elements having the same type as `x`.
|
||||
values: A list of `Tensor`s or `float`s or `int`s that specifies the values
|
||||
for the intervals defined by `boundaries`. It should have one more element
|
||||
than `boundaries`, and all elements should have the same type.
|
||||
name: A string. Optional name of the operation. Defaults to
|
||||
'PiecewiseConstant'.
|
||||
|
||||
Returns:
|
||||
A 0-D Tensor. Its value is `values[0]` when `x <= boundaries[0]`,
|
||||
`values[1]` when `x > boundaries[0]` and `x <= boundaries[1]`, ...,
|
||||
and values[-1] when `x > boundaries[-1]`.
|
||||
|
||||
Raises:
|
||||
ValueError: if types of `x` and `boundaries` do not match, or types of all
|
||||
`values` do not match or
|
||||
the number of elements in the lists does not match.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
boundaries = ops.convert_n_to_tensor(boundaries)
|
||||
values = ops.convert_n_to_tensor(values)
|
||||
x_recomp = ops.convert_to_tensor(x)
|
||||
# Avoid explicit conversion to x's dtype. This could result in faulty
|
||||
# comparisons, for example if floats are converted to integers.
|
||||
for i, b in enumerate(boundaries):
|
||||
if b.dtype.base_dtype != x_recomp.dtype.base_dtype:
|
||||
# We can promote int32 boundaries to int64 without loss of precision.
|
||||
# This covers the most common case where the user passes in boundaries
|
||||
# as an array of Python integers.
|
||||
if (b.dtype.base_dtype == dtypes.int32 and
|
||||
x_recomp.dtype.base_dtype == dtypes.int64):
|
||||
b = math_ops.cast(b, x_recomp.dtype.base_dtype)
|
||||
boundaries[i] = b
|
||||
else:
|
||||
raise ValueError(
|
||||
"Boundaries (%s) must have the same dtype as x (%s)." %
|
||||
(b.dtype.base_dtype, x_recomp.dtype.base_dtype))
|
||||
for v in values[1:]:
|
||||
if v.dtype.base_dtype != values[0].dtype.base_dtype:
|
||||
raise ValueError(
|
||||
"Values must have elements all with the same dtype (%s vs %s)." %
|
||||
(values[0].dtype.base_dtype, v.dtype.base_dtype))
|
||||
decayed_lr = learning_rate_schedule.PiecewiseConstantDecay(
|
||||
boundaries, values, name=name)
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(x)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, x)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.polynomial_decay"])
|
||||
def polynomial_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
end_learning_rate=0.0001,
|
||||
power=1.0,
|
||||
cycle=False,
|
||||
name=None):
|
||||
"""Applies a polynomial decay to the learning rate.
|
||||
|
||||
It is commonly observed that a monotonically decreasing learning rate, whose
|
||||
degree of change is carefully chosen, results in a better performing model.
|
||||
This function applies a polynomial decay function to a provided initial
|
||||
`learning_rate` to reach an `end_learning_rate` in the given `decay_steps`.
|
||||
|
||||
It requires a `global_step` value to compute the decayed learning rate. You
|
||||
can just pass a TensorFlow variable that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
|
||||
```python
|
||||
global_step = min(global_step, decay_steps)
|
||||
decayed_learning_rate = (learning_rate - end_learning_rate) *
|
||||
(1 - global_step / decay_steps) ^ (power) +
|
||||
end_learning_rate
|
||||
|
||||
```
|
||||
|
||||
If `cycle` is True then a multiple of `decay_steps` is used, the first one
|
||||
that is bigger than `global_steps`.
|
||||
|
||||
```python
|
||||
decay_steps = decay_steps * ceil(global_step / decay_steps)
|
||||
decayed_learning_rate = (learning_rate - end_learning_rate) *
|
||||
(1 - global_step / decay_steps) ^ (power) +
|
||||
end_learning_rate
|
||||
|
||||
```
|
||||
|
||||
Example: decay from 0.1 to 0.01 in 10000 steps using sqrt (i.e. power=0.5):
|
||||
|
||||
```python
|
||||
...
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
starter_learning_rate = 0.1
|
||||
end_learning_rate = 0.01
|
||||
decay_steps = 10000
|
||||
learning_rate = tf.compat.v1.train.polynomial_decay(starter_learning_rate,
|
||||
global_step,
|
||||
decay_steps, end_learning_rate,
|
||||
power=0.5)
|
||||
# Passing global_step to minimize() will increment it at each step.
|
||||
learning_step = (
|
||||
tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
|
||||
.minimize(...my loss..., global_step=global_step)
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation. Must not be negative.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Must
|
||||
be positive. See the decay computation above.
|
||||
end_learning_rate: A scalar `float32` or `float64` `Tensor` or a Python
|
||||
number. The minimal end learning rate.
|
||||
power: A scalar `float32` or `float64` `Tensor` or a Python number. The
|
||||
power of the polynomial. Defaults to linear, 1.0.
|
||||
cycle: A boolean, whether or not it should cycle beyond decay_steps.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'PolynomialDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.PolynomialDecay(
|
||||
learning_rate,
|
||||
decay_steps,
|
||||
end_learning_rate=end_learning_rate,
|
||||
power=power,
|
||||
cycle=cycle,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.natural_exp_decay"])
|
||||
def natural_exp_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
decay_rate,
|
||||
staircase=False,
|
||||
name=None):
|
||||
"""Applies natural exponential decay to the initial learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies an exponential decay function
|
||||
to a provided initial learning rate. It requires an `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate * exp(-decay_rate * global_step /
|
||||
decay_step)
|
||||
```
|
||||
|
||||
or, if `staircase` is `True`, as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate * exp(-decay_rate * floor(global_step /
|
||||
decay_step))
|
||||
```
|
||||
|
||||
Example: decay exponentially with a base of 0.96:
|
||||
|
||||
```python
|
||||
...
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
learning_rate = 0.1
|
||||
decay_steps = 5
|
||||
k = 0.5
|
||||
learning_rate = tf.compat.v1.train.natural_exp_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps, k)
|
||||
|
||||
# Passing global_step to minimize() will increment it at each step.
|
||||
learning_step = (
|
||||
tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
|
||||
.minimize(...my loss..., global_step=global_step)
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A Python number. Global step to use for the decay computation.
|
||||
Must not be negative.
|
||||
decay_steps: How often to apply decay.
|
||||
decay_rate: A Python number. The decay rate.
|
||||
staircase: Whether to apply decay in a discrete staircase, as opposed to
|
||||
continuous, fashion.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'ExponentialTimeDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
natural_exp_rate = math_ops.exp(math_ops.negative(decay_rate))
|
||||
decayed_lr = learning_rate_schedule.ExponentialDecay(
|
||||
learning_rate,
|
||||
decay_steps,
|
||||
natural_exp_rate,
|
||||
staircase=staircase,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.inverse_time_decay"])
|
||||
def inverse_time_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
decay_rate,
|
||||
staircase=False,
|
||||
name=None):
|
||||
"""Applies inverse time decay to the initial learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies an inverse decay function
|
||||
to a provided initial learning rate. It requires an `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate / (1 + decay_rate * global_step /
|
||||
decay_step)
|
||||
```
|
||||
|
||||
or, if `staircase` is `True`, as:
|
||||
|
||||
```python
|
||||
decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step /
|
||||
decay_step))
|
||||
```
|
||||
|
||||
Example: decay 1/t with a rate of 0.5:
|
||||
|
||||
```python
|
||||
...
|
||||
global_step = tf.Variable(0, trainable=False)
|
||||
learning_rate = 0.1
|
||||
decay_steps = 1.0
|
||||
decay_rate = 0.5
|
||||
learning_rate = tf.compat.v1.train.inverse_time_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps, decay_rate)
|
||||
|
||||
# Passing global_step to minimize() will increment it at each step.
|
||||
learning_step = (
|
||||
tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
|
||||
.minimize(...my loss..., global_step=global_step)
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A Python number. Global step to use for the decay computation.
|
||||
Must not be negative.
|
||||
decay_steps: How often to apply decay.
|
||||
decay_rate: A Python number. The decay rate.
|
||||
staircase: Whether to apply decay in a discrete staircase, as opposed to
|
||||
continuous, fashion.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'InverseTimeDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.InverseTimeDecay(
|
||||
learning_rate, decay_steps, decay_rate, staircase=staircase, name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.cosine_decay"])
|
||||
def cosine_decay(learning_rate, global_step, decay_steps, alpha=0.0, name=None):
|
||||
"""Applies cosine decay to the learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies a cosine decay function
|
||||
to a provided initial learning rate. It requires a `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
```python
|
||||
global_step = min(global_step, decay_steps)
|
||||
cosine_decay = 0.5 * (1 + cos(pi * global_step / decay_steps))
|
||||
decayed = (1 - alpha) * cosine_decay + alpha
|
||||
decayed_learning_rate = learning_rate * decayed
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
decay_steps = 1000
|
||||
lr_decayed = cosine_decay(learning_rate, global_step, decay_steps)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Number
|
||||
of steps to decay over.
|
||||
alpha: A scalar `float32` or `float64` Tensor or a Python number. Minimum
|
||||
learning rate value as a fraction of learning_rate.
|
||||
name: String. Optional name of the operation. Defaults to 'CosineDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
References:
|
||||
Stochastic Gradient Descent with Warm Restarts:
|
||||
[Loshchilov et al., 2017]
|
||||
(https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx)
|
||||
([pdf](https://openreview.net/pdf?id=Skq89Scxx))
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.CosineDecay(
|
||||
learning_rate, decay_steps, alpha=alpha, name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.cosine_decay_restarts"])
|
||||
def cosine_decay_restarts(learning_rate,
|
||||
global_step,
|
||||
first_decay_steps,
|
||||
t_mul=2.0,
|
||||
m_mul=1.0,
|
||||
alpha=0.0,
|
||||
name=None):
|
||||
"""Applies cosine decay with restarts to the learning rate.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies a cosine decay function with
|
||||
restarts to a provided initial learning rate. It requires a `global_step`
|
||||
value to compute the decayed learning rate. You can just pass a TensorFlow
|
||||
variable that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate while taking into account
|
||||
possible warm restarts. The learning rate multiplier first decays
|
||||
from 1 to `alpha` for `first_decay_steps` steps. Then, a warm
|
||||
restart is performed. Each new warm restart runs for `t_mul` times more steps
|
||||
and with `m_mul` times smaller initial learning rate.
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
first_decay_steps = 1000
|
||||
lr_decayed = cosine_decay_restarts(learning_rate, global_step,
|
||||
first_decay_steps)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation.
|
||||
first_decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
|
||||
Number of steps to decay over.
|
||||
t_mul: A scalar `float32` or `float64` `Tensor` or a Python number. Used to
|
||||
derive the number of iterations in the i-th period
|
||||
m_mul: A scalar `float32` or `float64` `Tensor` or a Python number.
|
||||
Used to derive the initial learning rate of the i-th period:
|
||||
alpha: A scalar `float32` or `float64` Tensor or a Python number. Minimum
|
||||
learning rate value as a fraction of the learning_rate.
|
||||
name: String. Optional name of the operation. Defaults to 'SGDRDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
References:
|
||||
Stochastic Gradient Descent with Warm Restarts:
|
||||
[Loshchilov et al., 2017]
|
||||
(https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx)
|
||||
([pdf](https://openreview.net/pdf?id=Skq89Scxx))
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.CosineDecayRestarts(
|
||||
learning_rate,
|
||||
first_decay_steps,
|
||||
t_mul=t_mul,
|
||||
m_mul=m_mul,
|
||||
alpha=alpha,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.linear_cosine_decay"])
|
||||
def linear_cosine_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
num_periods=0.5,
|
||||
alpha=0.0,
|
||||
beta=0.001,
|
||||
name=None):
|
||||
"""Applies linear cosine decay to the learning rate.
|
||||
|
||||
Note that linear cosine decay is more aggressive than cosine decay and
|
||||
larger initial learning rates can typically be used.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies a linear cosine decay function
|
||||
to a provided initial learning rate. It requires a `global_step` value to
|
||||
compute the decayed learning rate. You can just pass a TensorFlow variable
|
||||
that you increment at each training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
```python
|
||||
global_step = min(global_step, decay_steps)
|
||||
linear_decay = (decay_steps - global_step) / decay_steps)
|
||||
cosine_decay = 0.5 * (
|
||||
1 + cos(pi * 2 * num_periods * global_step / decay_steps))
|
||||
decayed = (alpha + linear_decay) * cosine_decay + beta
|
||||
decayed_learning_rate = learning_rate * decayed
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
decay_steps = 1000
|
||||
lr_decayed = linear_cosine_decay(learning_rate, global_step, decay_steps)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Number
|
||||
of steps to decay over.
|
||||
num_periods: Number of periods in the cosine part of the decay. See
|
||||
computation above.
|
||||
alpha: See computation above.
|
||||
beta: See computation above.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'LinearCosineDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
References:
|
||||
Neural Optimizer Search with Reinforcement Learning:
|
||||
[Bello et al., 2017](http://proceedings.mlr.press/v70/bello17a.html)
|
||||
([pdf](http://proceedings.mlr.press/v70/bello17a/bello17a.pdf))
|
||||
Stochastic Gradient Descent with Warm Restarts:
|
||||
[Loshchilov et al., 2017]
|
||||
(https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx)
|
||||
([pdf](https://openreview.net/pdf?id=Skq89Scxx))
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.LinearCosineDecay(
|
||||
learning_rate,
|
||||
decay_steps,
|
||||
num_periods=num_periods,
|
||||
alpha=alpha,
|
||||
beta=beta,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
|
||||
|
||||
@tf_export(v1=["train.noisy_linear_cosine_decay"])
|
||||
def noisy_linear_cosine_decay(learning_rate,
|
||||
global_step,
|
||||
decay_steps,
|
||||
initial_variance=1.0,
|
||||
variance_decay=0.55,
|
||||
num_periods=0.5,
|
||||
alpha=0.0,
|
||||
beta=0.001,
|
||||
name=None):
|
||||
"""Applies noisy linear cosine decay to the learning rate.
|
||||
|
||||
Note that linear cosine decay is more aggressive than cosine decay and
|
||||
larger initial learning rates can typically be used.
|
||||
|
||||
When training a model, it is often recommended to lower the learning rate as
|
||||
the training progresses. This function applies a noisy linear
|
||||
cosine decay function to a provided initial learning rate.
|
||||
It requires a `global_step` value to compute the decayed learning rate.
|
||||
You can just pass a TensorFlow variable that you increment at each
|
||||
training step.
|
||||
|
||||
The function returns the decayed learning rate. It is computed as:
|
||||
```python
|
||||
global_step = min(global_step, decay_steps)
|
||||
linear_decay = (decay_steps - global_step) / decay_steps)
|
||||
cosine_decay = 0.5 * (
|
||||
1 + cos(pi * 2 * num_periods * global_step / decay_steps))
|
||||
decayed = (alpha + linear_decay + eps_t) * cosine_decay + beta
|
||||
decayed_learning_rate = learning_rate * decayed
|
||||
```
|
||||
where eps_t is 0-centered gaussian noise with variance
|
||||
initial_variance / (1 + global_step) ** variance_decay
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
decay_steps = 1000
|
||||
lr_decayed = noisy_linear_cosine_decay(
|
||||
learning_rate, global_step, decay_steps)
|
||||
```
|
||||
|
||||
Args:
|
||||
learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
|
||||
The initial learning rate.
|
||||
global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
|
||||
step to use for the decay computation.
|
||||
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Number
|
||||
of steps to decay over.
|
||||
initial_variance: initial variance for the noise. See computation above.
|
||||
variance_decay: decay for the noise's variance. See computation above.
|
||||
num_periods: Number of periods in the cosine part of the decay. See
|
||||
computation above.
|
||||
alpha: See computation above.
|
||||
beta: See computation above.
|
||||
name: String. Optional name of the operation. Defaults to
|
||||
'NoisyLinearCosineDecay'.
|
||||
|
||||
Returns:
|
||||
A scalar `Tensor` of the same type as `learning_rate`. The decayed
|
||||
learning rate.
|
||||
Raises:
|
||||
ValueError: if `global_step` is not supplied.
|
||||
|
||||
References:
|
||||
Neural Optimizer Search with Reinforcement Learning:
|
||||
[Bello et al., 2017](http://proceedings.mlr.press/v70/bello17a.html)
|
||||
([pdf](http://proceedings.mlr.press/v70/bello17a/bello17a.pdf))
|
||||
Stochastic Gradient Descent with Warm Restarts:
|
||||
[Loshchilov et al., 2017]
|
||||
(https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx)
|
||||
([pdf](https://openreview.net/pdf?id=Skq89Scxx))
|
||||
|
||||
@compatibility(eager)
|
||||
When eager execution is enabled, this function returns a function which in
|
||||
turn returns the decayed learning rate Tensor. This can be useful for changing
|
||||
the learning rate value across different invocations of optimizer functions.
|
||||
@end_compatibility
|
||||
"""
|
||||
decayed_lr = learning_rate_schedule.NoisyLinearCosineDecay(
|
||||
learning_rate,
|
||||
decay_steps,
|
||||
initial_variance=initial_variance,
|
||||
variance_decay=variance_decay,
|
||||
num_periods=num_periods,
|
||||
alpha=alpha,
|
||||
beta=beta,
|
||||
name=name)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
decayed_lr = decayed_lr(global_step)
|
||||
else:
|
||||
decayed_lr = functools.partial(decayed_lr, global_step)
|
||||
return decayed_lr
|
||||
exponential_decay = learning_rate_decay.exponential_decay
|
||||
piecewise_constant = learning_rate_decay.piecewise_constant
|
||||
polynomial_decay = learning_rate_decay.polynomial_decay
|
||||
natural_exp_decay = learning_rate_decay.natural_exp_decay
|
||||
inverse_time_decay = learning_rate_decay.inverse_time_decay
|
||||
cosine_decay = learning_rate_decay.cosine_decay
|
||||
cosine_decay_restarts = learning_rate_decay.cosine_decay_restarts
|
||||
linear_cosine_decay = learning_rate_decay.linear_cosine_decay
|
||||
noisy_linear_cosine_decay = learning_rate_decay.noisy_linear_cosine_decay
|
||||
|
Loading…
Reference in New Issue
Block a user