Fix various links in Keras docstrings.
PiperOrigin-RevId: 306769967 Change-Id: I21491ccbe9679f34bbd4b28aa27c46c6ba01ac4e
This commit is contained in:
parent
40a351a745
commit
310465b783
@ -86,8 +86,8 @@ def set_floatx(value):
|
||||
likely cause numeric stability issues. Instead, mixed precision, which is
|
||||
using a mix of float16 and float32, can be used by calling
|
||||
`tf.keras.mixed_precision.experimental.set_policy('mixed_float16')`. See the
|
||||
[mixed precision
|
||||
guide](https://www.tensorflow.org/guide/keras/mixed_precision) for details.
|
||||
[mixed precision guide](
|
||||
https://www.tensorflow.org/guide/keras/mixed_precision) for details.
|
||||
|
||||
Arguments:
|
||||
value: String; `'float16'`, `'float32'`, or `'float64'`.
|
||||
|
@ -83,15 +83,16 @@ class TensorBoard(callbacks.TensorBoard):
|
||||
embeddings_layer_names: a list of names of layers to keep eye on. If None
|
||||
or empty list all the embedding layer will be watched.
|
||||
embeddings_metadata: a dictionary which maps layer name to a file name in
|
||||
which metadata for this embedding layer is saved. See the
|
||||
[details](https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)
|
||||
which metadata for this embedding layer is saved.
|
||||
[Here are details](
|
||||
https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)
|
||||
about metadata files format. In case if the same metadata file is
|
||||
used for all embedding layers, string can be passed.
|
||||
embeddings_data: data to be embedded at layers specified in
|
||||
`embeddings_layer_names`. Numpy array (if the model has a single input)
|
||||
or list of Numpy arrays (if the model has multiple inputs). Learn [more
|
||||
about
|
||||
embeddings](https://www.tensorflow.org/programmers_guide/embedding)
|
||||
or list of Numpy arrays (if the model has multiple inputs). Learn more
|
||||
about embeddings [in this guide](
|
||||
https://www.tensorflow.org/programmers_guide/embedding).
|
||||
update_freq: `'batch'` or `'epoch'` or integer. When using `'batch'`,
|
||||
writes the losses and metrics to TensorBoard after each batch. The same
|
||||
applies for `'epoch'`. If using an integer, let's say `1000`, the
|
||||
|
@ -80,7 +80,7 @@ class InputLayer(base_layer.Layer):
|
||||
ragged: Boolean, whether the placeholder created is meant to be ragged.
|
||||
In this case, values of 'None' in the 'shape' argument represent
|
||||
ragged dimensions. For more information about RaggedTensors, see
|
||||
https://www.tensorflow.org/guide/ragged_tensors.
|
||||
[this guide](https://www.tensorflow.org/guide/ragged_tensors).
|
||||
Default to False.
|
||||
name: Optional name of the layer (string).
|
||||
"""
|
||||
@ -231,7 +231,7 @@ def Input( # pylint: disable=invalid-name
|
||||
ragged. Only one of 'ragged' and 'sparse' can be True. In this case,
|
||||
values of 'None' in the 'shape' argument represent ragged dimensions.
|
||||
For more information about RaggedTensors, see
|
||||
https://www.tensorflow.org/guide/ragged_tensors.
|
||||
[this guide](https://www.tensorflow.org/guide/ragged_tensors).
|
||||
**kwargs: deprecated arguments support. Supports `batch_shape` and
|
||||
`batch_input_shape`.
|
||||
|
||||
|
@ -163,9 +163,6 @@ class Model(network.Network, version_utils.ModelVersionSelector):
|
||||
Once the model is created, you can config the model with losses and metrics
|
||||
with `model.compile()`, train the model with `model.fit()`, or use the model
|
||||
to do prediction with `model.predict()`.
|
||||
|
||||
Checkout [guide](https://www.tensorflow.org/guide/keras/overview) for
|
||||
additional details.
|
||||
"""
|
||||
_TF_MODULE_IGNORED_PROPERTIES = frozenset(
|
||||
itertools.chain(('_train_counter', '_test_counter', '_predict_counter',
|
||||
|
@ -46,8 +46,8 @@ def model_to_estimator(
|
||||
model to an Estimator for use with downstream systems.
|
||||
|
||||
For usage example, please see:
|
||||
[Creating estimators from Keras
|
||||
Models](https://www.tensorflow.org/guide/estimators#creating_estimators_from_keras_models).
|
||||
[Creating estimators from Keras Models](
|
||||
https://www.tensorflow.org/guide/estimators#creating_estimators_from_keras_models).
|
||||
|
||||
Sample Weights:
|
||||
Estimators returned by `model_to_estimator` are configured so that they can
|
||||
@ -144,8 +144,8 @@ def model_to_estimator_v2(keras_model=None,
|
||||
model to an Estimator for use with downstream systems.
|
||||
|
||||
For usage example, please see:
|
||||
[Creating estimators from Keras
|
||||
Models](https://www.tensorflow.org/guide/estimators#creating_estimators_from_keras_models).
|
||||
[Creating estimators from Keras Models](
|
||||
https://www.tensorflow.org/guide/estimators#creating_estimators_from_keras_models).
|
||||
|
||||
Sample Weights:
|
||||
Estimators returned by `model_to_estimator` are configured so that they can
|
||||
|
@ -458,8 +458,8 @@ class ConvLSTM2DCell(DropoutRNNCellMixin, Layer):
|
||||
unit_forget_bias: Boolean.
|
||||
If True, add 1 to the bias of the forget gate at initialization.
|
||||
Use in combination with `bias_initializer="zeros"`.
|
||||
This is recommended in [Jozefowicz et al.]
|
||||
(http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
|
||||
This is recommended in [Jozefowicz et al., 2015](
|
||||
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
|
||||
kernel_regularizer: Regularizer function applied to
|
||||
the `kernel` weights matrix.
|
||||
recurrent_regularizer: Regularizer function applied to
|
||||
@ -739,8 +739,8 @@ class ConvLSTM2D(ConvRNN2D):
|
||||
unit_forget_bias: Boolean.
|
||||
If True, add 1 to the bias of the forget gate at initialization.
|
||||
Use in combination with `bias_initializer="zeros"`.
|
||||
This is recommended in [Jozefowicz et al.]
|
||||
(http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
|
||||
This is recommended in [Jozefowicz et al., 2015](
|
||||
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
|
||||
kernel_regularizer: Regularizer function applied to
|
||||
the `kernel` weights matrix.
|
||||
recurrent_regularizer: Regularizer function applied to
|
||||
@ -807,10 +807,9 @@ class ConvLSTM2D(ConvRNN2D):
|
||||
ValueError: in case of invalid constructor arguments.
|
||||
|
||||
References:
|
||||
- [Convolutional LSTM Network: A Machine Learning Approach for
|
||||
Precipitation Nowcasting](http://arxiv.org/abs/1506.04214v1)
|
||||
The current implementation does not include the feedback loop on the
|
||||
cells output.
|
||||
- [Shi et al., 2015](http://arxiv.org/abs/1506.04214v1)
|
||||
(the current implementation does not include the feedback loop on the
|
||||
cells output).
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
@ -92,8 +92,8 @@ class Masking(Layer):
|
||||
# The time step 3 and 5 will be skipped from LSTM calculation.
|
||||
```
|
||||
|
||||
See [the masking and padding
|
||||
guide](https://www.tensorflow.org/guide/keras/masking_and_padding)
|
||||
See [the masking and padding guide](
|
||||
https://www.tensorflow.org/guide/keras/masking_and_padding)
|
||||
for more details.
|
||||
"""
|
||||
|
||||
@ -734,15 +734,15 @@ class Lambda(Layer):
|
||||
The `Lambda` layer exists so that arbitrary TensorFlow functions
|
||||
can be used when constructing `Sequential` and Functional API
|
||||
models. `Lambda` layers are best suited for simple operations or
|
||||
quick experimentation. For more advanced usecases, follow
|
||||
quick experimentation. For more advanced usecases, follow
|
||||
[this guide](https://www.tensorflow.org/guide/keras/custom_layers_and_models)
|
||||
for subclassing `tf.keras.layers.Layer`.
|
||||
|
||||
The main reason to subclass `tf.keras.layers.Layer` instead of using a
|
||||
`Lambda` layer is saving and inspecting a Model. `Lambda` layers
|
||||
are saved by serializing the Python bytecode, whereas subclassed
|
||||
Layers can be saved via overriding their `get_config` method. Overriding
|
||||
`get_config` improves the portability of Models. Models that rely on
|
||||
for subclassing `tf.keras.layers.Layer`.
|
||||
|
||||
The main reason to subclass `tf.keras.layers.Layer` instead of using a
|
||||
`Lambda` layer is saving and inspecting a Model. `Lambda` layers
|
||||
are saved by serializing the Python bytecode, whereas subclassed
|
||||
Layers can be saved via overriding their `get_config` method. Overriding
|
||||
`get_config` improves the portability of Models. Models that rely on
|
||||
subclassed Layers are also often easier to visualize and reason about.
|
||||
|
||||
Examples:
|
||||
|
@ -88,8 +88,8 @@ class BatchNormalizationBase(Layer):
|
||||
gamma_regularizer: Optional regularizer for the gamma weight.
|
||||
beta_constraint: Optional constraint for the beta weight.
|
||||
gamma_constraint: Optional constraint for the gamma weight.
|
||||
renorm: Whether to use Batch Renormalization
|
||||
(https://arxiv.org/abs/1702.03275). This adds extra variables during
|
||||
renorm: Whether to use [Batch Renormalization](
|
||||
https://arxiv.org/abs/1702.03275). This adds extra variables during
|
||||
training. The inference is the same for either value of this parameter.
|
||||
renorm_clipping: A dictionary that may map keys 'rmax', 'rmin', 'dmax' to
|
||||
scalar `Tensors` used to clip the renorm correction. The correction
|
||||
@ -164,9 +164,9 @@ class BatchNormalizationBase(Layer):
|
||||
|
||||
\\({y_i} = {\gamma * \hat{x_i} + \beta}\\)
|
||||
|
||||
References:
|
||||
- [Batch Normalization: Accelerating Deep Network Training by Reducing
|
||||
Internal Covariate Shift](https://arxiv.org/abs/1502.03167)
|
||||
Reference:
|
||||
|
||||
- [Ioffe and Szegedy, 2015](https://arxiv.org/abs/1502.03167).
|
||||
"""
|
||||
|
||||
# By default, the base class uses V2 behavior. The BatchNormalization V1
|
||||
@ -998,8 +998,8 @@ class LayerNormalization(Layer):
|
||||
Output shape:
|
||||
Same shape as input.
|
||||
|
||||
References:
|
||||
- [Layer Normalization](https://arxiv.org/abs/1607.06450)
|
||||
Reference:
|
||||
- [Lei Ba et al., 2016](https://arxiv.org/abs/1607.06450).
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
@ -76,8 +76,8 @@ class SyncBatchNormalization(normalization.BatchNormalizationBase):
|
||||
gamma_regularizer: Optional regularizer for the gamma weight.
|
||||
beta_constraint: Optional constraint for the beta weight.
|
||||
gamma_constraint: Optional constraint for the gamma weight.
|
||||
renorm: Whether to use Batch Renormalization
|
||||
(https://arxiv.org/abs/1702.03275). This adds extra variables during
|
||||
renorm: Whether to use [Batch Renormalization](
|
||||
https://arxiv.org/abs/1702.03275). This adds extra variables during
|
||||
training. The inference is the same for either value of this parameter.
|
||||
renorm_clipping: A dictionary that may map keys 'rmax', 'rmin', 'dmax' to
|
||||
scalar `Tensors` used to clip the renorm correction. The correction
|
||||
|
@ -2233,8 +2233,8 @@ class LSTMCell(DropoutRNNCellMixin, Layer):
|
||||
unit_forget_bias: Boolean.
|
||||
If True, add 1 to the bias of the forget gate at initialization.
|
||||
Setting it to true will also force `bias_initializer="zeros"`.
|
||||
This is recommended in [Jozefowicz et
|
||||
al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
|
||||
This is recommended in [Jozefowicz et al., 2015](
|
||||
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
|
||||
kernel_regularizer: Regularizer function applied to
|
||||
the `kernel` weights matrix.
|
||||
recurrent_regularizer: Regularizer function applied to
|
||||
@ -2503,7 +2503,8 @@ class PeepholeLSTMCell(LSTMCell):
|
||||
well as the previous hidden state (which is what LSTMCell is limited to).
|
||||
This allows PeepholeLSTMCell to better learn precise timings over LSTMCell.
|
||||
|
||||
From [Gers et al.](http://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf):
|
||||
From [Gers et al., 2002](
|
||||
http://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf):
|
||||
|
||||
"We find that LSTM augmented by 'peephole connections' from its internal
|
||||
cells to its multiplicative gates can learn the fine distinction between
|
||||
@ -2512,9 +2513,7 @@ class PeepholeLSTMCell(LSTMCell):
|
||||
|
||||
The peephole implementation is based on:
|
||||
|
||||
[Long short-term memory recurrent neural network architectures for
|
||||
large scale acoustic modeling.
|
||||
](https://research.google.com/pubs/archive/43905.pdf)
|
||||
[Sak et al., 2014](https://research.google.com/pubs/archive/43905.pdf)
|
||||
|
||||
Example:
|
||||
|
||||
@ -2601,8 +2600,8 @@ class LSTM(RNN):
|
||||
unit_forget_bias: Boolean.
|
||||
If True, add 1 to the bias of the forget gate at initialization.
|
||||
Setting it to true will also force `bias_initializer="zeros"`.
|
||||
This is recommended in [Jozefowicz et
|
||||
al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf).
|
||||
This is recommended in [Jozefowicz et al., 2015](
|
||||
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf).
|
||||
kernel_regularizer: Regularizer function applied to
|
||||
the `kernel` weights matrix.
|
||||
recurrent_regularizer: Regularizer function applied to
|
||||
|
@ -63,8 +63,8 @@ class Loss(object):
|
||||
types, and reduce losses explicitly in your training loop. Using 'AUTO' or
|
||||
'SUM_OVER_BATCH_SIZE' will raise an error.
|
||||
|
||||
Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training) for more
|
||||
Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training) for more
|
||||
details on this.
|
||||
|
||||
You can implement 'SUM_OVER_BATCH_SIZE' using global batch size like:
|
||||
@ -88,8 +88,8 @@ class Loss(object):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op.
|
||||
"""
|
||||
@ -222,8 +222,8 @@ class LossFunctionWrapper(Loss):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: (Optional) name for the loss.
|
||||
**kwargs: The keyword arguments that are passed on to `fn`.
|
||||
@ -305,8 +305,8 @@ class MeanSquaredError(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'mean_squared_error'.
|
||||
"""
|
||||
@ -364,8 +364,8 @@ class MeanAbsoluteError(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'mean_absolute_error'.
|
||||
"""
|
||||
@ -424,8 +424,8 @@ class MeanAbsolutePercentageError(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to
|
||||
'mean_absolute_percentage_error'.
|
||||
@ -485,8 +485,8 @@ class MeanSquaredLogarithmicError(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to
|
||||
'mean_squared_logarithmic_error'.
|
||||
@ -561,8 +561,8 @@ class BinaryCrossentropy(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: (Optional) Name for the op. Defaults to 'binary_crossentropy'.
|
||||
"""
|
||||
@ -641,8 +641,8 @@ class CategoricalCrossentropy(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'categorical_crossentropy'.
|
||||
"""
|
||||
@ -718,8 +718,8 @@ class SparseCategoricalCrossentropy(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to
|
||||
'sparse_categorical_crossentropy'.
|
||||
@ -782,8 +782,8 @@ class Hinge(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'hinge'.
|
||||
"""
|
||||
@ -843,8 +843,8 @@ class SquaredHinge(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'squared_hinge'.
|
||||
"""
|
||||
@ -903,8 +903,8 @@ class CategoricalHinge(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'categorical_hinge'.
|
||||
"""
|
||||
@ -960,8 +960,8 @@ class Poisson(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'poisson'.
|
||||
"""
|
||||
@ -1017,8 +1017,8 @@ class LogCosh(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'log_cosh'.
|
||||
"""
|
||||
@ -1077,8 +1077,8 @@ class KLDivergence(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'kl_divergence'.
|
||||
"""
|
||||
@ -1145,8 +1145,8 @@ class Huber(LossFunctionWrapper):
|
||||
this defaults to `SUM_OVER_BATCH_SIZE`. When used with
|
||||
`tf.distribute.Strategy`, outside of built-in training loops such as
|
||||
`tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
|
||||
will raise an error. Please see this custom training [tutorial]
|
||||
(https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
will raise an error. Please see this custom training [tutorial](
|
||||
https://www.tensorflow.org/tutorials/distribute/custom_training)
|
||||
for more details.
|
||||
name: Optional name for the op. Defaults to 'huber_loss'.
|
||||
"""
|
||||
|
@ -1416,8 +1416,8 @@ class Recall(Metric):
|
||||
class SensitivitySpecificityBase(Metric):
|
||||
"""Abstract base class for computing sensitivity and specificity.
|
||||
|
||||
For additional information about specificity and sensitivity, see the
|
||||
following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
|
||||
For additional information about specificity and sensitivity, see
|
||||
[the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity).
|
||||
"""
|
||||
|
||||
def __init__(self, value, num_thresholds=200, name=None, dtype=None):
|
||||
@ -1523,8 +1523,8 @@ class SensitivityAtSpecificity(SensitivitySpecificityBase):
|
||||
If `sample_weight` is `None`, weights default to 1.
|
||||
Use `sample_weight` of 0 to mask values.
|
||||
|
||||
For additional information about specificity and sensitivity, see the
|
||||
following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
|
||||
For additional information about specificity and sensitivity, see
|
||||
[the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity).
|
||||
|
||||
Args:
|
||||
specificity: A scalar value in range `[0, 1]`.
|
||||
@ -1598,8 +1598,8 @@ class SpecificityAtSensitivity(SensitivitySpecificityBase):
|
||||
If `sample_weight` is `None`, weights default to 1.
|
||||
Use `sample_weight` of 0 to mask values.
|
||||
|
||||
For additional information about specificity and sensitivity, see the
|
||||
following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
|
||||
For additional information about specificity and sensitivity, see
|
||||
[the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity).
|
||||
|
||||
Args:
|
||||
sensitivity: A scalar value in range `[0, 1]`.
|
||||
@ -1828,13 +1828,14 @@ class AUC(Metric):
|
||||
use when discretizing the roc curve. Values must be > 1.
|
||||
curve: (Optional) Specifies the name of the curve to be computed, 'ROC'
|
||||
[default] or 'PR' for the Precision-Recall-curve.
|
||||
summation_method: (Optional) Specifies the Riemann summation method used
|
||||
(https://en.wikipedia.org/wiki/Riemann_sum): 'interpolation' [default],
|
||||
applies mid-point summation scheme for `ROC`. For PR-AUC, interpolates
|
||||
(true/false) positives but not the ratio that is precision (see Davis
|
||||
& Goadrich 2006 for details); 'minoring' that applies left summation
|
||||
summation_method: (Optional) Specifies the [Riemann summation method](
|
||||
https://en.wikipedia.org/wiki/Riemann_sum) used.
|
||||
'interpolation' (default) applies mid-point summation scheme for `ROC`.
|
||||
For PR-AUC, interpolates (true/false) positives but not the ratio that
|
||||
is precision (see Davis & Goadrich 2006 for details);
|
||||
'minoring' applies left summation
|
||||
for increasing intervals and right summation for decreasing intervals;
|
||||
'majoring' that does the opposite.
|
||||
'majoring' does the opposite.
|
||||
name: (Optional) string name of the metric instance.
|
||||
dtype: (Optional) data type of the metric result.
|
||||
thresholds: (Optional) A list of floating point values to use as the
|
||||
@ -2226,8 +2227,9 @@ class AUC(Metric):
|
||||
class CosineSimilarity(MeanMetricWrapper):
|
||||
"""Computes the cosine similarity between the labels and predictions.
|
||||
|
||||
cosine similarity = (a . b) / ||a|| ||b||
|
||||
[Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)
|
||||
`cosine similarity = (a . b) / ||a|| ||b||`
|
||||
|
||||
See: [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity).
|
||||
|
||||
This metric keeps the average cosine similarity between `predictions` and
|
||||
`labels` over a stream of data.
|
||||
|
@ -15,8 +15,8 @@
|
||||
|
||||
"""Keras mixed precision API.
|
||||
|
||||
See [the mixed precision
|
||||
guide](https://www.tensorflow.org/guide/keras/mixed_precision) to learn how to
|
||||
See [the mixed precision guide](
|
||||
https://www.tensorflow.org/guide/keras/mixed_precision) to learn how to
|
||||
use the API.
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
|
@ -57,8 +57,8 @@ class Policy(object):
|
||||
not have a single dtype. When the variable dtype does not match the compute
|
||||
dtype, variables will be automatically casted to the compute dtype to avoid
|
||||
type errors. In this case, `tf.keras.layers.Layer.dtype` refers to the
|
||||
variable dtype, not the compute dtype. See [the mixed precision
|
||||
guide](https://www.tensorflow.org/guide/keras/mixed_precision) for more
|
||||
variable dtype, not the compute dtype. See [the mixed precision guide](
|
||||
https://www.tensorflow.org/guide/keras/mixed_precision) for more
|
||||
information on how to use mixed precision.
|
||||
|
||||
Certain policies also have a `tf.mixed_precision.experimental.LossScale`
|
||||
@ -119,8 +119,8 @@ class Policy(object):
|
||||
`'mixed_bfloat16'`, no loss scaling is done and loss scaling never needs to be
|
||||
manually applied.
|
||||
|
||||
See [the mixed precision
|
||||
guide](https://www.tensorflow.org/guide/keras/mixed_precision) for more
|
||||
See [the mixed precision guide](
|
||||
https://www.tensorflow.org/guide/keras/mixed_precision) for more
|
||||
information on using mixed precision
|
||||
|
||||
### How to use float64 in a Keras model
|
||||
|
Loading…
Reference in New Issue
Block a user