Handle zero batch input in BatchNorm correctly if inside a DistributionStrategy scope.
PiperOrigin-RevId: 240643242
This commit is contained in:
parent
bb44f3384f
commit
308bb3c69b
@ -2,7 +2,6 @@
|
||||
|
||||
load("//tensorflow/compiler/tests:build_defs.bzl", "tf_xla_py_test")
|
||||
load("//tensorflow/core:platform/default/distribute.bzl", "distribute_py_test")
|
||||
load("//tensorflow:tensorflow.bzl", "py_test")
|
||||
load("//tensorflow:tensorflow.bzl", "cuda_py_test")
|
||||
|
||||
package(
|
||||
@ -805,3 +804,17 @@ tf_xla_py_test(
|
||||
"//tensorflow/python/training/tracking:util",
|
||||
],
|
||||
)
|
||||
|
||||
distribute_py_test(
|
||||
name = "zero_batch_test",
|
||||
srcs = ["zero_batch_test.py"],
|
||||
main = "zero_batch_test.py",
|
||||
deps = [
|
||||
":mirrored_strategy",
|
||||
":tpu_strategy",
|
||||
"//tensorflow/python/distribute:combinations",
|
||||
"//tensorflow/python/distribute:strategy_combinations",
|
||||
"//third_party/py/numpy",
|
||||
"@absl_py//absl/testing:parameterized",
|
||||
],
|
||||
)
|
||||
|
109
tensorflow/contrib/distribute/python/zero_batch_test.py
Normal file
109
tensorflow/contrib/distribute/python/zero_batch_test.py
Normal file
@ -0,0 +1,109 @@
|
||||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Test DistributionStrategy in the zero batch case."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.python.distribute import combinations
|
||||
from tensorflow.python.distribute import strategy_combinations
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.layers import normalization
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import variables
|
||||
from tensorflow.python.ops.losses import losses
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow.python.training import gradient_descent
|
||||
|
||||
|
||||
all_combinations = combinations.combine(
|
||||
distribution=[
|
||||
strategy_combinations.one_device_strategy,
|
||||
],
|
||||
mode=["graph"])
|
||||
|
||||
|
||||
class NormalizationTest(test.TestCase, parameterized.TestCase):
|
||||
|
||||
@combinations.generate(
|
||||
combinations.times(all_combinations,
|
||||
combinations.combine(fused=[True, False])))
|
||||
def testBNWithZeroBatchInput(self, distribution, fused):
|
||||
with distribution.scope(), self.cached_session() as sess:
|
||||
bn_list = []
|
||||
inputs = ops.convert_to_tensor(
|
||||
np.random.random((0, 4, 4, 3)) + 100, dtype=dtypes.float32)
|
||||
targets = ops.convert_to_tensor(
|
||||
np.random.random((0, 4, 4, 3)), dtype=dtypes.float32)
|
||||
|
||||
def step_fn(is_training, inputs, targets=None):
|
||||
bn = normalization.BatchNormalization(
|
||||
axis=3, epsilon=1e-3, momentum=0.9, fused=fused)
|
||||
bn_list.append(bn)
|
||||
outputs = bn.apply(inputs, training=is_training)
|
||||
if not is_training:
|
||||
return outputs
|
||||
|
||||
loss = losses.mean_squared_error(targets, outputs)
|
||||
optimizer = gradient_descent.GradientDescentOptimizer(0.01)
|
||||
train_op = optimizer.minimize(loss)
|
||||
with ops.control_dependencies([train_op]):
|
||||
return array_ops.identity(loss)
|
||||
|
||||
train_op = distribution.extended.call_for_each_replica(
|
||||
step_fn, args=(True, inputs, targets))
|
||||
predict_op = distribution.extended.call_for_each_replica(
|
||||
step_fn, args=(False, inputs))
|
||||
bn = bn_list[0]
|
||||
|
||||
self.evaluate(variables.global_variables_initializer())
|
||||
|
||||
# Check for initial statistics and weights.
|
||||
moving_mean, moving_var = self.evaluate(
|
||||
[bn.moving_mean, bn.moving_variance])
|
||||
self.assertAllEqual([0, 0, 0], moving_mean)
|
||||
self.assertAllEqual([1, 1, 1], moving_var)
|
||||
|
||||
np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta])
|
||||
self.assertAllEqual([1, 1, 1], np_gamma)
|
||||
self.assertAllEqual([0, 0, 0], np_beta)
|
||||
|
||||
for _ in range(100):
|
||||
np_output, _, _ = sess.run([train_op] + bn.updates)
|
||||
self.assertEqual(0.0, np_output)
|
||||
|
||||
# Verify that the statistics and weights are not changed after training.
|
||||
moving_mean, moving_var = self.evaluate(
|
||||
[bn.moving_mean, bn.moving_variance])
|
||||
self.assertAllEqual([0, 0, 0], moving_mean)
|
||||
self.assertAllEqual([1, 1, 1], moving_var)
|
||||
|
||||
np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta])
|
||||
self.assertAllEqual([1, 1, 1], np_gamma)
|
||||
self.assertAllEqual([0, 0, 0], np_beta)
|
||||
|
||||
# Test inference.
|
||||
np_output = sess.run(predict_op)
|
||||
self.assertEqual([], np_output.tolist())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test.main()
|
||||
|
@ -424,7 +424,7 @@ class BatchNormalizationBase(Layer):
|
||||
self._scope.set_partitioner(partitioner)
|
||||
self.built = True
|
||||
|
||||
def _assign_moving_average(self, variable, value, momentum):
|
||||
def _assign_moving_average(self, variable, value, momentum, inputs_size):
|
||||
with ops.name_scope(None, 'AssignMovingAvg',
|
||||
[variable, value, momentum]) as scope:
|
||||
with ops.colocate_with(variable):
|
||||
@ -433,12 +433,19 @@ class BatchNormalizationBase(Layer):
|
||||
decay = math_ops.cast(decay, variable.dtype.base_dtype)
|
||||
update_delta = (
|
||||
variable - math_ops.cast(value, variable.dtype)) * decay
|
||||
# TODO(b/129279393): Support zero batch input in non
|
||||
# DistributionStrategy code as well.
|
||||
if distribution_strategy_context.has_strategy():
|
||||
update_delta = tf_utils.smart_cond(
|
||||
inputs_size > 0,
|
||||
lambda: update_delta, lambda: K.zeros_like(update_delta))
|
||||
return state_ops.assign_sub(variable, update_delta, name=scope)
|
||||
|
||||
def _fused_batch_norm(self, inputs, training):
|
||||
"""Returns the output of fused batch norm."""
|
||||
beta = self.beta if self.center else self._beta_const
|
||||
gamma = self.gamma if self.scale else self._gamma_const
|
||||
inputs_size = array_ops.size(inputs)
|
||||
|
||||
def _fused_batch_norm_training():
|
||||
return nn.fused_batch_norm(
|
||||
@ -482,21 +489,22 @@ class BatchNormalizationBase(Layer):
|
||||
strategy = distribution_strategy_context.get_strategy()
|
||||
mean_update = strategy.extended.update(
|
||||
self.moving_mean, self._assign_moving_average,
|
||||
(mean, self.momentum))
|
||||
(mean, self.momentum, inputs_size))
|
||||
variance_update = strategy.extended.update(
|
||||
self.moving_variance, self._assign_moving_average,
|
||||
(variance, self.momentum))
|
||||
(variance, self.momentum, inputs_size))
|
||||
else:
|
||||
mean_update = self._assign_moving_average(self.moving_mean, mean,
|
||||
momentum)
|
||||
variance_update = self._assign_moving_average(self.moving_variance,
|
||||
variance, momentum)
|
||||
momentum, inputs_size)
|
||||
variance_update = self._assign_moving_average(
|
||||
self.moving_variance, variance, momentum, inputs_size)
|
||||
self.add_update(mean_update, inputs=True)
|
||||
self.add_update(variance_update, inputs=True)
|
||||
|
||||
return output
|
||||
|
||||
def _renorm_correction_and_moments(self, mean, variance, training):
|
||||
def _renorm_correction_and_moments(self, mean, variance, training,
|
||||
inputs_size):
|
||||
"""Returns the correction and update values for renorm."""
|
||||
stddev = math_ops.sqrt(variance + self.epsilon)
|
||||
# Compute the average mean and standard deviation, as if they were
|
||||
@ -527,7 +535,7 @@ class BatchNormalizationBase(Layer):
|
||||
lambda: d,
|
||||
lambda: array_ops.zeros_like(d))
|
||||
|
||||
def _update_renorm_variable(var, weight, value):
|
||||
def _update_renorm_variable(var, weight, value, inputs_size):
|
||||
"""Updates a moving average and weight, returns the unbiased value."""
|
||||
value = array_ops.identity(value)
|
||||
def _do_update():
|
||||
@ -540,9 +548,10 @@ class BatchNormalizationBase(Layer):
|
||||
# Make sure the weight is not updated until before r and d computation.
|
||||
with ops.control_dependencies([value]):
|
||||
weight_value = array_ops.constant(1., dtype=weight.dtype)
|
||||
new_var = self._assign_moving_average(var, value, self.renorm_momentum)
|
||||
new_weight = self._assign_moving_average(weight, weight_value,
|
||||
self.renorm_momentum)
|
||||
new_var = self._assign_moving_average(var, value, self.renorm_momentum,
|
||||
inputs_size)
|
||||
new_weight = self._assign_moving_average(
|
||||
weight, weight_value, self.renorm_momentum, inputs_size)
|
||||
# TODO(yuefengz): the updates to var and weighted can not be batched
|
||||
# together if we fetch their updated values here. Consider calculating
|
||||
# new values and delaying the updates.
|
||||
@ -553,17 +562,26 @@ class BatchNormalizationBase(Layer):
|
||||
return tf_utils.smart_cond(training, _do_update, _fake_update)
|
||||
|
||||
# TODO(yuefengz): colocate the operations
|
||||
new_mean = _update_renorm_variable(self.renorm_mean,
|
||||
self.renorm_mean_weight, mean)
|
||||
new_stddev = _update_renorm_variable(self.renorm_stddev,
|
||||
self.renorm_stddev_weight, stddev)
|
||||
new_mean = _update_renorm_variable(
|
||||
self.renorm_mean, self.renorm_mean_weight, mean, inputs_size)
|
||||
new_stddev = _update_renorm_variable(
|
||||
self.renorm_stddev, self.renorm_stddev_weight, stddev, inputs_size)
|
||||
# Make sqrt(moving_variance + epsilon) = new_stddev.
|
||||
new_variance = math_ops.square(new_stddev) - self.epsilon
|
||||
|
||||
return (r, d, new_mean, new_variance)
|
||||
|
||||
def _moments(self, inputs, reduction_axes, keep_dims):
|
||||
return nn.moments(inputs, reduction_axes, keep_dims=keep_dims)
|
||||
mean, variance = nn.moments(inputs, reduction_axes, keep_dims=keep_dims)
|
||||
# TODO(b/129279393): Support zero batch input in non DistributionStrategy
|
||||
# code as well.
|
||||
if distribution_strategy_context.has_strategy():
|
||||
inputs_size = array_ops.size(inputs)
|
||||
mean = tf_utils.smart_cond(
|
||||
inputs_size > 0, lambda: mean, lambda: K.zeros_like(mean))
|
||||
variance = tf_utils.smart_cond(
|
||||
inputs_size > 0, lambda: variance, lambda: K.zeros_like(variance))
|
||||
return mean, variance
|
||||
|
||||
def call(self, inputs, training=None):
|
||||
if training is None:
|
||||
@ -661,9 +679,10 @@ class BatchNormalizationBase(Layer):
|
||||
else:
|
||||
new_mean, new_variance = mean, variance
|
||||
|
||||
inputs_size = array_ops.size(inputs)
|
||||
if self.renorm:
|
||||
r, d, new_mean, new_variance = self._renorm_correction_and_moments(
|
||||
new_mean, new_variance, training)
|
||||
new_mean, new_variance, training, inputs_size)
|
||||
# When training, the normalized values (say, x) will be transformed as
|
||||
# x * gamma + beta without renorm, and (x * r + d) * gamma + beta
|
||||
# = x * (r * gamma) + (d * gamma + beta) with renorm.
|
||||
@ -679,8 +698,8 @@ class BatchNormalizationBase(Layer):
|
||||
if in_eager_mode and not self.trainable:
|
||||
return
|
||||
return strategy.extended.update(
|
||||
var, self._assign_moving_average, (value, self.momentum),
|
||||
group=False)
|
||||
var, self._assign_moving_average,
|
||||
(value, self.momentum, inputs_size), group=False)
|
||||
# We need to unwrap the moving_mean or moving_variance in the case of
|
||||
# training being false to match the output of true_fn and false_fn
|
||||
# in the smart cond.
|
||||
@ -697,7 +716,9 @@ class BatchNormalizationBase(Layer):
|
||||
"""Compute the updates for mean and variance."""
|
||||
if in_eager_mode and not self.trainable:
|
||||
return
|
||||
return self._assign_moving_average(var, value, self.momentum)
|
||||
return self._assign_moving_average(var, value, self.momentum,
|
||||
inputs_size)
|
||||
|
||||
mean_update = tf_utils.smart_cond(
|
||||
training,
|
||||
lambda: _do_update(self.moving_mean, new_mean),
|
||||
|
Loading…
Reference in New Issue
Block a user