Removed accept_symbolic_tensors from internal_convert_to_tensor
It was only used from one (of the two) branches in args_to_matching_eager. PiperOrigin-RevId: 255572203
This commit is contained in:
parent
86eedcea09
commit
2fd2eff6cb
@ -192,16 +192,20 @@ def args_to_matching_eager(l, ctx, default_dtype=None):
|
||||
# remaining values.
|
||||
ret = []
|
||||
for t in l:
|
||||
ret.append(internal_convert_to_tensor(
|
||||
t, dtype,
|
||||
preferred_dtype=default_dtype,
|
||||
ctx=ctx,
|
||||
accept_symbolic_tensors=False))
|
||||
ret.append(
|
||||
internal_convert_to_tensor(
|
||||
t, dtype, preferred_dtype=default_dtype, ctx=ctx))
|
||||
if dtype is None:
|
||||
dtype = ret[-1].dtype
|
||||
else:
|
||||
ret = [internal_convert_to_tensor(t, dtype, ctx=ctx) for t in l]
|
||||
|
||||
# TODO(slebedev): consider removing this as it leaks a Keras concept.
|
||||
# pylint: disable=protected-access
|
||||
if any(ops._is_keras_symbolic_tensor(x) for x in ret):
|
||||
raise core._SymbolicException(
|
||||
"Using the symbolic output of a Keras layer during eager execution.")
|
||||
# pylint: enable=protected-access
|
||||
return dtype.as_datatype_enum, ret
|
||||
|
||||
|
||||
|
@ -1170,7 +1170,6 @@ def internal_convert_to_tensor(value,
|
||||
as_ref=False,
|
||||
preferred_dtype=None,
|
||||
ctx=None,
|
||||
accept_symbolic_tensors=True,
|
||||
accept_composite_tensors=False):
|
||||
"""Implementation of the public convert_to_tensor."""
|
||||
if ctx is None:
|
||||
@ -1187,18 +1186,6 @@ def internal_convert_to_tensor(value,
|
||||
raise RuntimeError("Attempting to capture an EagerTensor without "
|
||||
"building a function.")
|
||||
return graph.capture(value, name=name)
|
||||
elif ((not accept_symbolic_tensors) and isinstance(value, Tensor) and
|
||||
ctx.executing_eagerly()):
|
||||
# Found a symbolic tensor in an eager context.
|
||||
# This happens when we use the Keras functional API (i.e. calling layers
|
||||
# on the output of `keras.Input()`, which is symbolic) while eager
|
||||
# execution is enabled.
|
||||
if _is_keras_symbolic_tensor(value):
|
||||
# If the graph of the tensor isn't the Keras graph, we should still
|
||||
# fail, for the time being. TODO(fchollet): consider allowing
|
||||
# all symbolic tensors to raise this exception in this case.
|
||||
raise core._SymbolicException( # pylint: disable=protected-access
|
||||
"Using the symbolic output of a Keras layer during eager execution.")
|
||||
|
||||
if dtype is not None:
|
||||
dtype = dtypes.as_dtype(dtype)
|
||||
|
Loading…
Reference in New Issue
Block a user