Add a test case to cover the training phase when using TPUStrategy. The test case also involves KPL calls.

PiperOrigin-RevId: 355007578
Change-Id: I1717ccb86c0f8cd2c19da0c8f75f2f984cb50a2e
This commit is contained in:
Chen Qian 2021-02-01 13:03:02 -08:00 committed by TensorFlower Gardener
parent acea35d1f8
commit 2f05920fb7

View File

@ -18,16 +18,26 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
from absl import flags
import tensorflow as tf
preproc_layer = tf.keras.layers.experimental.preprocessing
FLAGS = flags.FLAGS
flags.DEFINE_string("tpu", "", "Name of TPU to connect to.")
flags.DEFINE_string("project", None, "Name of GCP project with TPU.")
flags.DEFINE_string("zone", None, "Name of GCP zone with TPU.")
# These vocabularies usually come from TFT or a Beam pipeline.
FEATURE_VOCAB = [
"avenger", "ironman", "batman", "hulk", "spiderman", "kingkong",
"wonder_woman"
]
LABEL_VOCAB = ["yes", "no"]
def get_tpu_cluster_resolver():
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
@ -47,6 +57,37 @@ def get_tpu_strategy():
class TpuStrategyTest(tf.test.TestCase):
def define_kpls_for_training(self, use_adapt):
if use_adapt:
feature_lookup_layer = (
tf.keras.layers.experimental.preprocessing.StringLookup(
num_oov_indices=1))
feature_lookup_layer.adapt(FEATURE_VOCAB)
label_lookup_layer = (
tf.keras.layers.experimental.preprocessing.StringLookup(
num_oov_indices=0, mask_token=None))
label_lookup_layer.adapt(LABEL_VOCAB)
else:
feature_lookup_layer = (
tf.keras.layers.experimental.preprocessing.StringLookup(
vocabulary=FEATURE_VOCAB, num_oov_indices=1))
label_lookup_layer = (
tf.keras.layers.experimental.preprocessing.StringLookup(
vocabulary=LABEL_VOCAB, num_oov_indices=0, mask_token=None))
raw_feature_input = tf.keras.layers.Input(
shape=(3,), dtype=tf.dtypes.string, name="feature", ragged=True)
feature_id_input = feature_lookup_layer(raw_feature_input)
feature_mapper = tf.keras.Model({"features": raw_feature_input},
feature_id_input)
raw_label_input = tf.keras.layers.Input(
shape=(1,), dtype=tf.dtypes.string, name="label")
label_id_input = label_lookup_layer(raw_label_input)
label_mapper = tf.keras.Model({"label": raw_label_input}, label_id_input)
return feature_mapper, label_mapper
def test_keras_metric_outside_strategy_scope_per_replica(self):
strategy = get_tpu_strategy()
metric = tf.keras.metrics.Mean("test_metric", dtype=tf.float32)
@ -58,12 +99,93 @@ class TpuStrategyTest(tf.test.TestCase):
def step_fn(i):
metric.update_state(i)
with self.assertRaisesRegex(ValueError, "Trying to run metric.update_state "
"in replica context"):
with self.assertRaisesRegex(
ValueError, "Trying to run metric.update_state "
"in replica context"):
with strategy.scope():
for i in dataset:
strategy.run(step_fn, args=(i,))
def test_train_and_serve(self):
strategy = get_tpu_strategy()
use_adapt = False
with strategy.scope():
feature_mapper, label_mapper = self.define_kpls_for_training(use_adapt)
def dataset_fn(_):
def feature_and_label_gen():
# Generator of dataset.
while True:
features = random.sample(FEATURE_VOCAB, 3)
label = ["yes"] if "avenger" in features else ["no"]
yield {"features": features, "label": label}
raw_dataset = tf.data.Dataset.from_generator(
feature_and_label_gen,
output_signature={
"features": tf.TensorSpec([3], tf.dtypes.string),
"label": tf.TensorSpec([1], tf.dtypes.string)
}).shuffle(100).batch(32)
train_dataset = raw_dataset.map(lambda x: ( # pylint: disable=g-long-lambda
{
"features": feature_mapper(x["features"])
}, label_mapper(x["label"])))
return train_dataset
# Create the model. The input needs to be compatible with KPLs.
model_input = tf.keras.layers.Input(
shape=(3,), dtype=tf.dtypes.int64, name="model_input")
# input_dim includes a mask token and an oov token.
emb_output = tf.keras.layers.Embedding(
input_dim=len(FEATURE_VOCAB) + 2, output_dim=20)(
model_input)
emb_output = tf.math.reduce_mean(emb_output, axis=1)
dense_output = tf.keras.layers.Dense(
units=1, activation="sigmoid")(
emb_output)
model = tf.keras.Model({"features": model_input}, dense_output)
optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1)
accuracy = tf.keras.metrics.Accuracy()
@tf.function
def train_step(iterator):
"""The step function for one training step."""
def step_fn(inputs):
"""The computation to run on each TPU device."""
features, labels = inputs
with tf.GradientTape() as tape:
pred = model(features, training=True)
loss = tf.keras.losses.binary_crossentropy(labels, pred)
loss = tf.nn.compute_average_loss(loss)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(list(zip(grads, model.trainable_variables)))
actual_pred = tf.cast(tf.math.greater(pred, 0.5), tf.dtypes.int64)
accuracy.update_state(labels, actual_pred)
strategy.run(step_fn, args=(next(iterator),))
distributed_dataset = strategy.distribute_datasets_from_function(
dataset_fn)
distributed_iterator = iter(distributed_dataset)
num_epochs = 4
num_steps = 7
for _ in range(num_epochs):
accuracy.reset_states()
for _ in range(num_steps):
train_step(distributed_iterator)
self.assertGreater(accuracy.result().numpy(), 0.5)
self.assertEqual(optimizer.iterations.numpy(), num_epochs * num_steps)
# TODO(b/178495959): Add tests that cover the serving phase.
if __name__ == "__main__":
tf.test.main()