Update api defs
Signed-off-by: Yong Tang <yong.tang.github@outlook.com>
This commit is contained in:
parent
777534ff7e
commit
2d67d32e58
@ -0,0 +1,43 @@
|
|||||||
|
op {
|
||||||
|
graph_op_name: "DrawBoundingBoxesV2"
|
||||||
|
in_arg {
|
||||||
|
name: "images"
|
||||||
|
description: <<END
|
||||||
|
4-D with shape `[batch, height, width, depth]`. A batch of images.
|
||||||
|
END
|
||||||
|
}
|
||||||
|
in_arg {
|
||||||
|
name: "boxes"
|
||||||
|
description: <<END
|
||||||
|
3-D with shape `[batch, num_bounding_boxes, 4]` containing bounding
|
||||||
|
boxes.
|
||||||
|
END
|
||||||
|
}
|
||||||
|
in_arg {
|
||||||
|
name: "colors"
|
||||||
|
description: <<END
|
||||||
|
2-D. A list of RGBA colors to cycle through for the boxes.
|
||||||
|
END
|
||||||
|
}
|
||||||
|
out_arg {
|
||||||
|
name: "output"
|
||||||
|
description: <<END
|
||||||
|
4-D with the same shape as `images`. The batch of input images with
|
||||||
|
bounding boxes drawn on the images.
|
||||||
|
END
|
||||||
|
}
|
||||||
|
summary: "Draw bounding boxes on a batch of images."
|
||||||
|
description: <<END
|
||||||
|
Outputs a copy of `images` but draws on top of the pixels zero or more bounding
|
||||||
|
boxes specified by the locations in `boxes`. The coordinates of the each
|
||||||
|
bounding box in `boxes` are encoded as `[y_min, x_min, y_max, x_max]`. The
|
||||||
|
bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and
|
||||||
|
height of the underlying image.
|
||||||
|
|
||||||
|
For example, if an image is 100 x 200 pixels (height x width) and the bounding
|
||||||
|
box is `[0.1, 0.2, 0.5, 0.9]`, the upper-left and bottom-right coordinates of
|
||||||
|
the bounding box will be `(40, 10)` to `(100, 50)` (in (x,y) coordinates).
|
||||||
|
|
||||||
|
Parts of the bounding box may fall outside the image.
|
||||||
|
END
|
||||||
|
}
|
@ -603,29 +603,7 @@ REGISTER_OP("DrawBoundingBoxesV2")
|
|||||||
.Attr("T: {float, half} = DT_FLOAT")
|
.Attr("T: {float, half} = DT_FLOAT")
|
||||||
.SetShapeFn([](InferenceContext* c) {
|
.SetShapeFn([](InferenceContext* c) {
|
||||||
return shape_inference::UnchangedShapeWithRankAtLeast(c, 3);
|
return shape_inference::UnchangedShapeWithRankAtLeast(c, 3);
|
||||||
})
|
});
|
||||||
.Doc(R"doc(
|
|
||||||
Draw bounding boxes on a batch of images.
|
|
||||||
|
|
||||||
Outputs a copy of `images` but draws on top of the pixels zero or more bounding
|
|
||||||
boxes specified by the locations in `boxes`. The coordinates of the each
|
|
||||||
bounding box in `boxes` are encoded as `[y_min, x_min, y_max, x_max]`. The
|
|
||||||
bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and
|
|
||||||
height of the underlying image.
|
|
||||||
|
|
||||||
For example, if an image is 100 x 200 pixels (height x width) and the bounding
|
|
||||||
box is `[0.1, 0.2, 0.5, 0.9]`, the upper-left and bottom-right coordinates of
|
|
||||||
the bounding box will be `(40, 10)` to `(100, 50)` (in (x,y) coordinates).
|
|
||||||
|
|
||||||
Parts of the bounding box may fall outside the image.
|
|
||||||
|
|
||||||
images: 4-D with shape `[batch, height, width, depth]`. A batch of images.
|
|
||||||
boxes: 3-D with shape `[batch, num_bounding_boxes, 4]` containing bounding
|
|
||||||
boxes.
|
|
||||||
colors: 2-D. A list of RGBA colors to cycle through for the boxes.
|
|
||||||
output: 4-D with the same shape as `images`. The batch of input images with
|
|
||||||
bounding boxes drawn on the images.
|
|
||||||
)doc");
|
|
||||||
|
|
||||||
// --------------------------------------------------------------------------
|
// --------------------------------------------------------------------------
|
||||||
REGISTER_OP("SampleDistortedBoundingBox")
|
REGISTER_OP("SampleDistortedBoundingBox")
|
||||||
|
Loading…
Reference in New Issue
Block a user