TensorFlow: upstream changes from Eigen to make build work

with nvcc in debug mode.
This commit is contained in:
Vijay Vasudevan 2015-12-08 15:41:27 -08:00
parent 2c3738db9c
commit 2d1163582a
16 changed files with 536 additions and 27 deletions

View File

@ -333,6 +333,7 @@ using std::ptrdiff_t;
#include "src/Core/NumTraits.h"
#include "src/Core/MathFunctions.h"
#include "src/Core/SpecialFunctions.h"
#include "src/Core/GenericPacketMath.h"
#if defined EIGEN_VECTORIZE_AVX

View File

@ -769,7 +769,6 @@ struct functor_traits<scalar_sin_op<Scalar> >
};
};
/** \internal
* \brief Template functor to compute the tan of a scalar
* \sa class CwiseUnaryOp, ArrayBase::tan()
@ -827,6 +826,82 @@ struct functor_traits<scalar_asin_op<Scalar> >
};
};
/** \internal
* \brief Template functor to compute the lgamma of a scalar
* \sa class CwiseUnaryOp, ArrayBase::lgamma()
*/
template<typename Scalar> struct scalar_lgamma_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_lgamma_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const {
using numext::lgamma; return lgamma(a);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const {
return internal::plgamma(a);
}
};
template<typename Scalar>
struct functor_traits<scalar_lgamma_op<Scalar> >
{
enum {
// Guesstimate
Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasLGamma
};
};
/** \internal
* \brief Template functor to compute the erf of a scalar
* \sa class CwiseUnaryOp, ArrayBase::erf()
*/
template<typename Scalar> struct scalar_erf_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_erf_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const {
using numext::erf; return erf(a);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const {
return internal::perf(a);
}
};
template<typename Scalar>
struct functor_traits<scalar_erf_op<Scalar> >
{
enum {
// Guesstimate
Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasErf
};
};
/** \internal
* \brief Template functor to compute the erfc of a scalar
* \sa class CwiseUnaryOp, ArrayBase::erfc()
*/
template<typename Scalar> struct scalar_erfc_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_erfc_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const {
using numext::erfc; return erfc(a);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const {
return internal::perfc(a);
}
};
template<typename Scalar>
struct functor_traits<scalar_erfc_op<Scalar> >
{
enum {
// Guesstimate
Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasErfc
};
};
/** \internal
* \brief Template functor to raise a scalar to a power
* \sa class CwiseUnaryOp, Cwise::pow

View File

@ -69,7 +69,10 @@ struct default_packet_traits
HasASin = 0,
HasACos = 0,
HasATan = 0,
HasTanH = 0
HasTanH = 0,
HasLGamma = 0,
HasErf = 0,
HasErfc = 0
};
};
@ -453,6 +456,18 @@ Packet ptanh(const Packet& x)
return pselect(med_approx, small_approx, ple(pabs(x), thresh));
}
/** \internal \returns the ln(|gamma(\a a)|) (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plgamma(const Packet& a) { return numext::lgamma(a); }
/** \internal \returns the erf(\a a) (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet perf(const Packet& a) { return numext::erf(a); }
/** \internal \returns the erfc(\a a) (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet perfc(const Packet& a) { return numext::erfc(a); }
/***************************************************************************
* The following functions might not have to be overwritten for vectorized types
***************************************************************************/

View File

@ -47,6 +47,9 @@ namespace Eigen
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op)

View File

@ -0,0 +1,142 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPECIALFUNCTIONS_H
#define EIGEN_SPECIALFUNCTIONS_H
namespace Eigen {
namespace internal {
template <typename Scalar>
EIGEN_STRONG_INLINE Scalar __lgamma(Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float __lgamma<float>(float x) { return lgammaf(x); }
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double __lgamma<double>(double x) { return lgamma(x); }
template <typename Scalar>
EIGEN_STRONG_INLINE Scalar __erf(Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float __erf<float>(float x) { return erff(x); }
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double __erf<double>(double x) { return erf(x); }
template <typename Scalar>
EIGEN_STRONG_INLINE Scalar __erfc(Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float __erfc<float>(float x) { return erfcf(x); }
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double __erfc<double>(double x) { return erfc(x); }
} // end namespace internal
/****************************************************************************
* Implementations *
****************************************************************************/
namespace internal {
/****************************************************************************
* Implementation of lgamma *
****************************************************************************/
template<typename Scalar>
struct lgamma_impl
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(const Scalar& x)
{
return __lgamma<Scalar>(x);
}
};
template<typename Scalar>
struct lgamma_retval
{
typedef Scalar type;
};
/****************************************************************************
* Implementation of erf *
****************************************************************************/
template<typename Scalar>
struct erf_impl
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(const Scalar& x)
{
return __erf<Scalar>(x);
}
};
template<typename Scalar>
struct erf_retval
{
typedef Scalar type;
};
/****************************************************************************
* Implementation of erfc *
****************************************************************************/
template<typename Scalar>
struct erfc_impl
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(const Scalar& x)
{
return __erfc<Scalar>(x);
}
};
template<typename Scalar>
struct erfc_retval
{
typedef Scalar type;
};
} // end namespace internal
namespace numext {
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar) lgamma(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(erf, Scalar) erf(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar) erfc(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
}
} // end namespace numext
} // end namespace Eigen
#endif // EIGEN_SPECIALFUNCTIONS_H

View File

@ -69,7 +69,7 @@ template<> struct packet_traits<float> : default_packet_traits
HasSqrt = 1,
HasRsqrt = 1,
HasSelect = 1,
HasEq = 1,
HasEq = 1
};
};
template<> struct packet_traits<double> : default_packet_traits
@ -155,11 +155,11 @@ template<> EIGEN_STRONG_INLINE Packet4d pmul<Packet4d>(const Packet4d& a, const
#ifdef __FMA__
template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
#if EIGEN_COMP_GNUC || EIGEN_COMP_CLANG
#if EIGEN_GNUC_AT_MOST(4, 8) || EIGEN_COMP_CLANG
// clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers,
// and gcc stupidly generates a vfmadd132ps instruction,
// so let's enforce it to generate a vfmadd231ps instruction since the most common use case is to accumulate
// the result of the product.
// the result of the product. the issue has been fixed in gcc 4.9
Packet8f res = c;
asm("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
return res;
@ -168,7 +168,7 @@ template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f&
#endif
}
template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
#if EIGEN_COMP_GNUC || EIGEN_COMP_CLANG
#if EIGEN_GNUC_AT_MOST(4, 8) || EIGEN_COMP_CLANG
// see above
Packet4d res = c;
asm("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));

View File

@ -66,6 +66,43 @@ double2 prsqrt<double2>(const double2& a)
return make_double2(rsqrt(a.x), rsqrt(a.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 plgamma<float4>(const float4& a)
{
return make_float4(lgammaf(a.x), lgammaf(a.y), lgammaf(a.z), lgammaf(a.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 plgamma<double2>(const double2& a)
{
return make_double2(lgamma(a.x), lgamma(a.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 perf<float4>(const float4& a)
{
return make_float4(erf(a.x), erf(a.y), erf(a.z), erf(a.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 perf<double2>(const double2& a)
{
return make_double2(erf(a.x), erf(a.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 perfc<float4>(const float4& a)
{
return make_float4(erfc(a.x), erfc(a.y), erfc(a.z), erfc(a.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 perfc<double2>(const double2& a)
{
return make_double2(erfc(a.x), erfc(a.y));
}
#endif
} // end namespace internal

View File

@ -38,6 +38,9 @@ template<> struct packet_traits<float> : default_packet_traits
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasLGamma = 1,
HasErf = 1,
HasErfc = 1,
HasBlend = 0,
HasSelect = 1,
@ -60,6 +63,9 @@ template<> struct packet_traits<double> : default_packet_traits
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasLGamma = 1,
HasErf = 1,
HasErfc = 1,
HasBlend = 0,
HasSelect = 1,

View File

@ -156,6 +156,64 @@ struct functor_traits<scalar_max_op<Scalar> > {
};
};
/** \internal
* \brief Template functors for comparison of two scalars
* \todo Implement packet-comparisons
*/
template<typename Scalar, ComparisonName cmp> struct scalar_cmp_op;
template<typename Scalar, ComparisonName cmp>
struct functor_traits<scalar_cmp_op<Scalar, cmp> > {
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = false
};
};
template<ComparisonName Cmp, typename Scalar>
struct result_of<scalar_cmp_op<Scalar, Cmp>(Scalar,Scalar)> {
typedef bool type;
};
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_EQ> {
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a==b;}
};
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LT> {
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<b;}
};
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LE> {
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<=b;}
};
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_GT> {
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a>b;}
};
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_GE> {
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a>=b;}
};
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_UNORD> {
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return !(a<=b || b<=a);}
};
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_NEQ> {
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a!=b;}
};
/** \internal
* \brief Template functor to compute the hypot of two scalars
*

View File

@ -28,6 +28,12 @@ using std::asin;
using std::atan;
#endif
#if defined(__CUDA_ARCH__)
using std::lgamma; // Supported by all cuda compilers
using std::erf; // Supported by all cuda compilers
using std::erfc; // Supported by all cuda compilers
#endif
/** \internal
* \brief Template functor to compute the opposite of a scalar
*
@ -409,6 +415,85 @@ struct functor_traits<scalar_tanh_op<Scalar> >
};
};
/** \internal
* \brief Template functor to compute the natural log of the absolute value of Gamma of a scalar
* \sa class CwiseUnaryOp, Cwise::lgamma()
*/
template<typename Scalar> struct scalar_lgamma_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_lgamma_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
#if defined(__CUDA_ARCH__)
return lgamma(a);
#else
using numext::lgamma; return lgamma(a);
#endif
}
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::plgamma(a); }
};
template<typename Scalar>
struct functor_traits<scalar_lgamma_op<Scalar> >
{
enum {
// Guesstimate
Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasLGamma
};
};
/** \internal
* \brief Template functor to compute the Gauss error function of a scalar
* \sa class CwiseUnaryOp, Cwise::erf()
*/
template<typename Scalar> struct scalar_erf_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_erf_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
#if defined(__CUDA_ARCH__)
return erf(a);
#else
using numext::erf; return erf(a);
#endif
}
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::perf(a); }
};
template<typename Scalar>
struct functor_traits<scalar_erf_op<Scalar> >
{
enum {
// Guesstimate
Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasErf
};
};
/** \internal
* \brief Template functor to compute the Complementary Error Function of a scalar
* \sa class CwiseUnaryOp, Cwise::erfc()
*/
template<typename Scalar> struct scalar_erfc_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_erfc_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
#if defined(__CUDA_ARCH__)
return erfc(a);
#else
using numext::erfc; return erfc(a);
#endif
}
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::perfc(a); }
};
template<typename Scalar>
struct functor_traits<scalar_erfc_op<Scalar> >
{
enum {
// Guesstimate
Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasErfc
};
};
/** \internal
* \brief Template functor to compute the sigmoid of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sigmoid()

View File

@ -448,6 +448,22 @@ struct MatrixXpr {};
/** The type used to identify an array expression */
struct ArrayXpr {};
namespace internal {
/** \internal
* Constants for comparison functors
*/
enum ComparisonName {
cmp_EQ = 0,
cmp_LT = 1,
cmp_LE = 2,
cmp_UNORD = 3,
cmp_NEQ = 4,
cmp_GT = 5,
cmp_GE = 6
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CONSTANTS_H

View File

@ -296,6 +296,13 @@ template<typename MatrixType, unsigned int Mode> struct eigen2_part_return_type;
}
#endif
// SpecialFunctions forward declarations
namespace internal {
template <typename Scalar> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar __lgamma(Scalar x);
template <typename Scalar> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar __erf(Scalar x);
template <typename Scalar> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar __erfc(Scalar x);
}
} // end namespace Eigen
#endif // EIGEN_FORWARDDECLARATIONS_H

View File

@ -90,7 +90,8 @@
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED,
THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE,
THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH,
OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG
OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG,
THIS_TYPE_IS_NOT_SUPPORTED
};
};

View File

@ -166,6 +166,45 @@ atan() const
return derived();
}
/** \returns an expression of the coefficient-wise ln(|gamma(*this)|).
*
* Example: \include Cwise_lgamma.cpp
* Output: \verbinclude Cwise_lgamma.out
*
* \sa cos(), sin(), tan()
*/
inline const CwiseUnaryOp<internal::scalar_lgamma_op<Scalar>, Derived>
lgamma() const
{
return derived();
}
/** \returns an expression of the coefficient-wise Gauss error function of *this.
*
* Example: \include Cwise_erf.cpp
* Output: \verbinclude Cwise_erf.out
*
* \sa cos(), sin(), tan()
*/
inline const CwiseUnaryOp<internal::scalar_erf_op<Scalar>, Derived>
erf() const
{
return derived();
}
/** \returns an expression of the coefficient-wise Complementary error function of *this.
*
* Example: \include Cwise_erfc.cpp
* Output: \verbinclude Cwise_erfc.out
*
* \sa cos(), sin(), tan()
*/
inline const CwiseUnaryOp<internal::scalar_erfc_op<Scalar>, Derived>
erfc() const
{
return derived();
}
/** \returns an expression of the coefficient-wise power of *this to the given exponent.
*
* Example: \include Cwise_pow.cpp
@ -181,7 +220,6 @@ pow(const Scalar& exponent) const
(derived(), internal::scalar_pow_op<Scalar>(exponent));
}
/** \returns an expression of the coefficient-wise inverse of *this.
*
* Example: \include Cwise_inverse.cpp

View File

@ -122,6 +122,24 @@ class TensorBase<Derived, ReadOnlyAccessors>
return unaryExpr(internal::scalar_tanh_op<Scalar>());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_lgamma_op<Scalar>, const Derived>
lgamma() const {
return unaryExpr(internal::scalar_lgamma_op<Scalar>());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived>
erf() const {
return unaryExpr(internal::scalar_erf_op<Scalar>());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erfc_op<Scalar>, const Derived>
erfc() const {
return unaryExpr(internal::scalar_erfc_op<Scalar>());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sigmoid_op<Scalar>, const Derived>
sigmoid() const {
@ -286,67 +304,67 @@ class TensorBase<Derived, ReadOnlyAccessors>
return binaryExpr(other.derived(), internal::scalar_boolean_xor_op());
}
// Comparisons and tests.
// Comparisons and tests.
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<std::less<Scalar>, const Derived, const OtherDerived>
const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_LT>, const Derived, const OtherDerived>
operator<(const OtherDerived& other) const {
return binaryExpr(other.derived(), std::less<Scalar>());
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_LT>());
}
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<std::less_equal<Scalar>, const Derived, const OtherDerived>
const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_LE>, const Derived, const OtherDerived>
operator<=(const OtherDerived& other) const {
return binaryExpr(other.derived(), std::less_equal<Scalar>());
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_LE>());
}
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<std::greater<Scalar>, const Derived, const OtherDerived>
const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_GT>, const Derived, const OtherDerived>
operator>(const OtherDerived& other) const {
return binaryExpr(other.derived(), std::greater<Scalar>());
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_GT>());
}
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<std::greater_equal<Scalar>, const Derived, const OtherDerived>
const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_GE>, const Derived, const OtherDerived>
operator>=(const OtherDerived& other) const {
return binaryExpr(other.derived(), std::greater_equal<Scalar>());
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_GE>());
}
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived>
const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_EQ>, const Derived, const OtherDerived>
operator==(const OtherDerived& other) const {
return binaryExpr(other.derived(), std::equal_to<Scalar>());
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_EQ>());
}
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived>
const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>, const Derived, const OtherDerived>
operator!=(const OtherDerived& other) const {
return binaryExpr(other.derived(), std::not_equal_to<Scalar>());
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>());
}
// comparisons and tests for Scalars
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<std::less<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_LT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
operator<(Scalar threshold) const {
return operator<(constant(threshold));
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<std::less_equal<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_LE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
operator<=(Scalar threshold) const {
return operator<=(constant(threshold));
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<std::greater<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_GT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
operator>(Scalar threshold) const {
return operator>(constant(threshold));
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<std::greater_equal<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_GE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
operator>=(Scalar threshold) const {
return operator>=(constant(threshold));
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<std::equal_to<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_EQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
operator==(Scalar threshold) const {
return operator==(constant(threshold));
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
operator!=(Scalar threshold) const {
return operator!=(constant(threshold));
}

View File

@ -451,6 +451,8 @@ class StreamInterface {
static cudaDeviceProp* m_deviceProperties;
static bool m_devicePropInitialized = false;
#ifndef __CUDA_ARCH__
static tensorflow::mutex m_devicePropInitMutex(tensorflow::LINKER_INITIALIZED);
static void initializeDeviceProp() {
@ -469,6 +471,11 @@ static void initializeDeviceProp() {
}
}
}
#else
static void initializeDeviceProp() {
assert(false && "This function should never be called from within a CUDA kernel");
}
#endif // __CUDA_ARCH__
static const cudaStream_t default_stream = cudaStreamDefault;