[XLA] Speed up. Make XLA faster by making PW kernel use the right number of block and loops.

This commit is contained in:
Frederic Bastien 2020-07-27 14:17:25 -07:00
parent c257a5d210
commit 2cd7d60b98
11 changed files with 84 additions and 6 deletions

View File

@ -31,9 +31,15 @@ ParallelLoopEmitter::ParallelLoopEmitter(
std::vector<llvm_ir::IrArray::Index>
ParallelLoopEmitter::EmitIndexAndSetExitBasicBlock(absl::string_view loop_name,
llvm::Type* index_type) {
llvm::Type* index_type,
llvm::Value* base_index) {
CHECK_NE(index_type, nullptr);
CHECK_EQ(base_index, nullptr)
<< "XLA CPU implementation of"
<< " ParallelLoopEmitter::EmitIndexAndSetExitBasicBlock doesn't support"
<< " base_index, but it was requested.";
CHECK(!shape_.IsTuple());
CHECK(!ShapeUtil::IsScalar(shape_));

View File

@ -61,7 +61,8 @@ class ParallelLoopEmitter : public llvm_ir::LoopEmitter {
~ParallelLoopEmitter() override = default;
std::vector<llvm_ir::IrArray::Index> EmitIndexAndSetExitBasicBlock(
absl::string_view loop_name, llvm::Type* index_type) override;
absl::string_view loop_name, llvm::Type* index_type,
llvm::Value* base_index = nullptr) override;
private:
const DynamicLoopBounds* dynamic_loop_bounds_;

View File

@ -311,6 +311,7 @@ cc_library(
"//tensorflow/compiler/xla:shape_util",
"//tensorflow/compiler/xla:xla_data_proto_cc",
"//tensorflow/compiler/xla/service/llvm_ir:ir_array",
"//tensorflow/compiler/xla/service/llvm_ir:kernel_support_library",
"//tensorflow/compiler/xla/service/llvm_ir:llvm_loop",
"//tensorflow/compiler/xla/service/llvm_ir:llvm_util",
"//tensorflow/compiler/xla/service/llvm_ir:loop_emitter",

View File

@ -610,6 +610,12 @@ static StatusOr<bool> DeviceCompare(se::Stream* stream,
executor->GetDeviceDescription().threads_per_block_limit();
gpu_device_info.threads_per_warp =
executor->GetDeviceDescription().threads_per_warp();
gpu_device_info.shared_memory_per_block =
executor->GetDeviceDescription().shared_memory_per_block();
gpu_device_info.threads_per_core_limit =
executor->GetDeviceDescription().threads_per_core_limit();
gpu_device_info.core_count =
executor->GetDeviceDescription().core_count();
LaunchDimensions dim =
CalculateLaunchDimensions(buffer_shape, gpu_device_info);

View File

@ -611,6 +611,10 @@ StatusOr<std::unique_ptr<Executable>> GpuCompiler::RunBackend(
stream_exec->GetDeviceDescription().threads_per_warp();
gpu_device_info.shared_memory_per_block =
stream_exec->GetDeviceDescription().shared_memory_per_block();
gpu_device_info.threads_per_core_limit =
stream_exec->GetDeviceDescription().threads_per_core_limit();
gpu_device_info.core_count =
stream_exec->GetDeviceDescription().core_count();
absl::optional<CudaComputeCapability> cuda_compute_capability =
[&]() -> absl::optional<CudaComputeCapability> {

View File

@ -32,6 +32,8 @@ struct GpuDeviceInfo {
int threads_per_block_limit;
int threads_per_warp;
int shared_memory_per_block;
int threads_per_core_limit;
int core_count;
};
} // namespace gpu
} // namespace xla

View File

@ -87,6 +87,9 @@ LaunchDimensions CalculateLaunchDimensions(const Shape& shape,
}
int64 block_count = CeilOfRatio(num_elements, threads_per_block);
threads_per_block = std::min(threads_per_block, 128LL);
block_count = gpu_device_info.core_count * (gpu_device_info.threads_per_core_limit /
threads_per_block);
VLOG(2) << absl::StrFormat(
"Initialized the block count to ceil(# of elements / threads per "
"block) = ceil(%d/%d) = %d",

View File

@ -23,6 +23,7 @@ limitations under the License.
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Value.h"
#include "tensorflow/compiler/xla/service/gpu/target_util.h"
#include "tensorflow/compiler/xla/service/llvm_ir/kernel_support_library.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_loop.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
@ -58,7 +59,8 @@ ParallelLoopEmitter::ParallelLoopEmitter(
std::vector<llvm_ir::IrArray::Index>
ParallelLoopEmitter::EmitIndexAndSetExitBasicBlock(absl::string_view loop_name,
llvm::Type* index_type) {
llvm::Type* index_type,
llvm::Value* base_index) {
// Emit the following code in LLVM IR:
// linear_index = blockIdx.x * blockDim.x + threadIdx.x;
// if (linear_index < num_elements) {
@ -121,6 +123,12 @@ ParallelLoopEmitter::EmitIndexAndSetExitBasicBlock(absl::string_view loop_name,
"linear_index_base", /*HasNUW=*/true, /*HasNSW=*/true);
}
if (base_index != nullptr) {
linear_index_base = b_->CreateAdd(linear_index_base, base_index,
"linear_index_plus_base",
/*HasNUW=*/true, /*HasNSW=*/true);
}
array_indices.emplace_back(linear_index_base, shape_, b_);
for (int i = 1; i < unroll_factor_; ++i) {
llvm::Value* linear_index =
@ -146,5 +154,44 @@ ParallelLoopEmitter::EmitIndexAndSetExitBasicBlock(absl::string_view loop_name,
return array_indices;
}
Status ParallelLoopEmitter::EmitLoop(absl::string_view loop_name,
llvm::Type* index_type) {
if (index_type == nullptr) {
index_type = b_->getInt64Ty();
}
int64 total_threads = launch_dimensions_.block_count() *
launch_dimensions_.threads_per_block();
int64 num_elements = ShapeUtil::ElementsIn(shape_);
// If all the elements are handled by the current threads, no need
// to add a loop inside the kernel.
if (total_threads * unroll_factor_ >= num_elements) {
VLOG(1) << "ParallelLoopEmitter::EmitLoop fallback";
return LoopEmitter::EmitLoop(loop_name, index_type);
}
KernelSupportLibrary ksl(b_, llvm_ir::UnrollMode::kDefaultUnroll);
auto constant = [&](int64 val) {
return llvm::ConstantInt::get(index_type, val);
};
TF_RETURN_IF_ERROR(
ksl.ForWithStatus("loop", constant(0), constant(num_elements),
constant(total_threads * unroll_factor_),
[&] (llvm::Value* base_indvar) {
for (const llvm_ir::IrArray::Index& array_index :
EmitIndexAndSetExitBasicBlock(loop_name, index_type, base_indvar)) {
TF_RETURN_IF_ERROR(body_emitter_(array_index));
}
return Status::OK();
}));
// Set the insertion point of b_ to the loop exit, so that
// code emitted for later instructions will be correctly placed.
if (exit_bb_ != nullptr) {
b_->SetInsertPoint(exit_bb_);
}
return Status::OK();
}
} // namespace gpu
} // namespace xla

View File

@ -57,8 +57,10 @@ class ParallelLoopEmitter : public llvm_ir::LoopEmitter {
~ParallelLoopEmitter() override = default;
std::vector<llvm_ir::IrArray::Index> EmitIndexAndSetExitBasicBlock(
absl::string_view loop_name, llvm::Type* index_type) override;
absl::string_view loop_name, llvm::Type* index_type, llvm::Value* base_index);
Status EmitLoop(absl::string_view loop_name = "",
llvm::Type* index_type = nullptr);
private:
// The thread and block dimension to parallelize the loop on.
const LaunchDimensions launch_dimensions_;

View File

@ -130,8 +130,13 @@ IrArray::Index LoopEmitter::EmitDynamicIndex(ForLoopNest* loop_nest,
}
std::vector<IrArray::Index> LoopEmitter::EmitIndexAndSetExitBasicBlock(
absl::string_view loop_name, llvm::Type* index_type) {
absl::string_view loop_name, llvm::Type* index_type, llvm::Value* base_index) {
CHECK_NE(index_type, nullptr);
CHECK_EQ(base_index, nullptr)
<< "XLA CPU implementation of"
<< " LoopEmitter::EmitIndexAndSetExitBasicBlock doesn't support"
<< " base_index, but it was requested.";
if (ShapeUtil::IsScalar(shape_)) {
// No loop needed, so set exit_bb_ to nullptr.
exit_bb_ = nullptr;

View File

@ -75,7 +75,8 @@ class LoopEmitter {
}
virtual std::vector<IrArray::Index> EmitIndexAndSetExitBasicBlock(
absl::string_view loop_name, llvm::Type* index_type);
absl::string_view loop_name, llvm::Type* index_type,
llvm::Value* base_index = nullptr);
// Emits a complete loop nest for every element in the given shape.
Status EmitLoop(absl::string_view loop_name = "",