Fixed accumulator precision for generic DepthWise implementation.

Removed inlined constants for kernel sizes.
Added test.

PiperOrigin-RevId: 304026983
Change-Id: I4f9eac57ba1ec4e6f929d3ab7c9176f0d6f3b4ce
This commit is contained in:
Raman Sarokin 2020-03-31 12:52:58 -07:00 committed by TensorFlower Gardener
parent a65548896c
commit 2bf52af68f
2 changed files with 105 additions and 64 deletions

View File

@ -475,91 +475,93 @@ std::vector<ComputeTaskDescriptorPtr> DepthWiseConvolution(
std::string shader_source = R"(
#include <metal_stdlib>
using namespace metal;
constant int kernel_x = $0;
constant int kernel_y = $1;
struct uniforms {
int4 stride;
int4 padding;
int4 dilation;
int4 size;
int4 src_size;
int4 dst_size;
int2 stride;
int2 padding;
int2 dilation;
int2 kernel_size;
int4 channel_multiplier;
};
$$0
$0
kernel void ComputeFunction(
$$1
$1
uint tid[[thread_index_in_threadgroup]],
uint3 gid[[thread_position_in_grid]]) {
const bool outside = static_cast<int>(gid.x) >= params.size.z ||
static_cast<int>(gid.y) >= params.size.w;
if (outside) {
return;
}
device FLT4* temp = filters + gid.z * kernel_y * kernel_x;
float4 sum0 = float4(0.0f, 0.0f, 0.0f, 0.0f);
int dst_x = static_cast<int>(gid.x);
int dst_y = static_cast<int>(gid.y);
int dst_z = static_cast<int>(gid.z);
for(int ky = 0; ky < kernel_y; ++ky) {
for(int kx = 0; kx < kernel_x; ++kx) {
int2 coords = int2(gid.xy) * params.stride.xy + int2(kx, ky) * params.dilation.xy -
params.padding.xy;
const bool outside = coords.x < 0 || coords.y < 0 ||
coords.x >= params.size.x || coords.y >= params.size.y;
if (outside) continue;
if (dst_x >= U.dst_size.x || dst_y >= U.dst_size.y) return;
device FLT4* temp = filters + dst_z * U.kernel_size.x * U.kernel_size.y;
ACCUM_FLT4 sum0 = ACCUM_FLT4(0.0f, 0.0f, 0.0f, 0.0f);
int src_x = dst_x * U.stride.x + U.padding.x;
int src_y = dst_y * U.stride.y + U.padding.y;
for(int ky = 0; ky < U.kernel_size.y; ++ky) {
int yc = ky * U.dilation.y + src_y;
if (yc < 0 || yc >= U.src_size.y) continue;
for(int kx = 0; kx < U.kernel_size.x; ++kx) {
int xc = kx * U.dilation.x + src_x;
if (xc < 0 || xc >= U.src_size.x) continue;
)";
if (channels_multiplier == 1) {
shader_source += R"(
const int src_layer = gid.z;
const int src_index = (src_layer * params.size.y + coords.y) * params.size.x + coords.x;
const FLT4 src_modified = src_buffer[src_index];
int src_layer = dst_z;
int src_index = (src_layer * U.src_size.y + yc) * U.src_size.x + xc;
FLT4 src_modified = src_buffer[src_index];
)";
} else if (channels_multiplier == 2) {
shader_source += R"(
const int src_layer = gid.z / 2;
const int src_index = (src_layer * params.size.y + coords.y) * params.size.x + coords.x;
const FLT4 src = src_buffer[src_index];
const FLT2 t0 = gid.z % 2 == 0 ? src.xy : src.zw;
const FLT4 src_modified = FLT4(t0.x, t0.x, t0.y, t0.y);
int src_layer = dst_z / 2;
int src_index = (src_layer * U.src_size.y + yc) * U.src_size.x + xc;
FLT4 src = src_buffer[src_index];
FLT2 t0 = dst_z % 2 == 0 ? src.xy : src.zw;
FLT4 src_modified = FLT4(t0.x, t0.x, t0.y, t0.y);
)";
} else if (channels_multiplier == 4) {
shader_source += R"(
const int src_layer = gid.z / 4;
const int src_index = (src_layer * params.size.y + coords.y) * params.size.x + coords.x;
const FLT4 src = src_buffer[src_index];
const FLT t0 = src[gid.z % 4];
const FLT4 src_modified = FLT4(t0, t0, t0, t0);
int src_layer = dst_z / 4;
int src_index = (src_layer * U.src_size.y + yc) * U.src_size.x + xc;
FLT4 src = src_buffer[src_index];
FLT t0 = src[dst_z % 4];
FLT4 src_modified = FLT4(t0, t0, t0, t0);
)";
} else {
shader_source += R"(
const int src_layer = gid.z / params.channel_multiplier.x;
const int src_index = (src_layer * params.size.y + coords.y) * params.size.x + coords.x;
const FLT4 src = src_buffer[src_index];
int src_layer = dst_z / U.channel_multiplier.x;
int src_index = (src_layer * U.src_size.y + yc) * U.src_size.x + xc;
FLT4 src = src_buffer[src_index];
FLT4 src_modified;
const int src_layer_offset = (gid.z % params.channel_multiplier.x) * 4;
src_modified.x = src[(src_layer_offset + 0) / params.channel_multiplier.x];
src_modified.y = src[(src_layer_offset + 1) / params.channel_multiplier.x];
src_modified.z = src[(src_layer_offset + 2) / params.channel_multiplier.x];
src_modified.w = src[(src_layer_offset + 3) / params.channel_multiplier.x];
const int src_layer_offset = (dst_z % U.channel_multiplier.x) * 4;
src_modified.x = src[(src_layer_offset + 0) / U.channel_multiplier.x];
src_modified.y = src[(src_layer_offset + 1) / U.channel_multiplier.x];
src_modified.z = src[(src_layer_offset + 2) / U.channel_multiplier.x];
src_modified.w = src[(src_layer_offset + 3) / U.channel_multiplier.x];
)";
}
shader_source += R"(
sum0 += float4(src_modified * temp[ky * kernel_x + kx]);
sum0 += TO_ACCUM4_TYPE(src_modified * temp[ky * U.kernel_size.x + kx]);
}
}
FLT4 res = FLT4(sum0 + float4(biases[gid.z]));
const int linear_index = (gid.z * params.size.w + int(gid.y)) * params.size.z + int(gid.x);
FLT4 res = FLT4(sum0) + biases[dst_z];
const int linear_index = (dst_z * U.dst_size.y + dst_y) * U.dst_size.x + dst_x;
FLT4 value = res;
$$2
output_buffer[linear_index] = value;
$2
dst_buffer[linear_index] = value;
}
)";
desc->shader_source = absl::Substitute(shader_source, attr.weights.shape.w,
attr.weights.shape.h);
desc->shader_source = shader_source;
desc->input_buffers = {
{input_id, "device FLT4* const src_buffer"},
};
desc->output_buffer = {
output_id, "device FLT4* output_buffer",
output_id, "device FLT4* dst_buffer",
[input_id, attr](const std::map<ValueId, BHWC>& buffers) {
auto out_shape =
CalculateOutputShape(buffers.find(input_id)->second, attr);
@ -577,27 +579,27 @@ std::vector<ComputeTaskDescriptorPtr> DepthWiseConvolution(
};
desc->uniform_buffers = {
{"constant uniforms& params",
{"constant uniforms& U",
[input_id, output_id, attr](const std::map<ValueId, BHWC>& buffers) {
const auto& dimension = buffers.find(input_id)->second;
const auto& output_dimension = buffers.find(output_id)->second;
std::vector<int> uniform_params{
attr.strides.w,
attr.strides.h,
1,
1,
attr.padding.prepended.w,
attr.padding.prepended.h,
1,
1,
attr.dilations.w,
attr.dilations.h,
1,
1,
dimension.w,
dimension.h,
IntegralDivideRoundUp(dimension.c, 4),
0,
output_dimension.w,
output_dimension.h,
IntegralDivideRoundUp(output_dimension.c, 4),
0,
attr.strides.w,
attr.strides.h,
-attr.padding.prepended.w,
-attr.padding.prepended.h,
attr.dilations.w,
attr.dilations.h,
attr.weights.shape.w,
attr.weights.shape.h,
attr.weights.shape.o,
0,
0,

View File

@ -167,4 +167,43 @@ using ::tflite::gpu::metal::SingleOpModel;
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testShape2x2Kernel2x2 {
TensorRef<BHWC> input;
input.type = DataType::FLOAT32;
input.ref = 0;
input.shape = BHWC(1, 2, 2, 1);
DepthwiseConvolution2DAttributes attr;
Tensor<Linear, DataType::FLOAT32> bias;
bias.shape.v = 1;
bias.id = 1;
bias.data = {0};
attr.bias = std::move(bias);
Tensor<OHWI, DataType::FLOAT32> weights;
weights.shape = OHWI(1, 2, 2, 1);
weights.id = 1;
weights.data = {1, 2, 3, 4};
attr.weights = std::move(weights);
attr.dilations = HW(1, 1);
attr.padding.prepended = HW(0, 0);
attr.padding.appended = HW(1, 1);
attr.strides = HW(1, 1);
TensorRef<BHWC> output;
output.type = DataType::FLOAT32;
output.ref = 3;
output.shape = BHWC(1, 2, 2, 1);
SingleOpModel model({ToString(OperationType::DEPTHWISE_CONVOLUTION), std::move(attr)}, {input},
{output});
XCTAssertTrue(model.PopulateTensor(0, {1, 4, 9, 16}));
auto status = model.Invoke();
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
status = CompareVectors({100, 52, 41, 16}, model.GetOutput(0), 1e-6f);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
@end