Merge pull request #40012 from kyscg:ctc
PiperOrigin-RevId: 314374155 Change-Id: Ic33bf9de0d6411ca67fe3fa6365e2e7504189f81
This commit is contained in:
commit
28ca5613b6
@ -82,7 +82,7 @@ def ctc_loss(labels,
|
||||
logits=None):
|
||||
"""Computes the CTC (Connectionist Temporal Classification) Loss.
|
||||
|
||||
This op implements the CTC loss as presented in (Graves et al., 2016).
|
||||
This op implements the CTC loss as presented in (Graves et al., 2006).
|
||||
|
||||
Input requirements:
|
||||
|
||||
@ -180,7 +180,7 @@ def ctc_loss(labels,
|
||||
References:
|
||||
Connectionist Temporal Classification - Labeling Unsegmented Sequence Data
|
||||
with Recurrent Neural Networks:
|
||||
[Graves et al., 2016](https://dl.acm.org/citation.cfm?id=1143891)
|
||||
[Graves et al., 2006](https://dl.acm.org/citation.cfm?id=1143891)
|
||||
([pdf](http://www.cs.toronto.edu/~graves/icml_2006.pdf))
|
||||
"""
|
||||
return _ctc_loss_impl(
|
||||
@ -747,7 +747,7 @@ def ctc_loss_v2(labels,
|
||||
name=None):
|
||||
"""Computes CTC (Connectionist Temporal Classification) loss.
|
||||
|
||||
This op implements the CTC loss as presented in (Graves et al., 2016).
|
||||
This op implements the CTC loss as presented in (Graves et al., 2006).
|
||||
|
||||
Notes:
|
||||
|
||||
@ -787,7 +787,7 @@ def ctc_loss_v2(labels,
|
||||
References:
|
||||
Connectionist Temporal Classification - Labeling Unsegmented Sequence Data
|
||||
with Recurrent Neural Networks:
|
||||
[Graves et al., 2016](https://dl.acm.org/citation.cfm?id=1143891)
|
||||
[Graves et al., 2006](https://dl.acm.org/citation.cfm?id=1143891)
|
||||
([pdf](http://www.cs.toronto.edu/~graves/icml_2006.pdf))
|
||||
"""
|
||||
if isinstance(labels, sparse_tensor.SparseTensor):
|
||||
@ -946,7 +946,7 @@ def ctc_loss_dense(labels,
|
||||
name=None):
|
||||
"""Computes CTC (Connectionist Temporal Classification) loss.
|
||||
|
||||
This op implements the CTC loss as presented in (Graves et al., 2016),
|
||||
This op implements the CTC loss as presented in (Graves et al., 2006),
|
||||
using the batched forward backward algorithm described in (Sim et al., 2017).
|
||||
|
||||
Notes:
|
||||
@ -993,7 +993,7 @@ def ctc_loss_dense(labels,
|
||||
References:
|
||||
Connectionist Temporal Classification - Labeling Unsegmented Sequence Data
|
||||
with Recurrent Neural Networks:
|
||||
[Graves et al., 2016](https://dl.acm.org/citation.cfm?id=1143891)
|
||||
[Graves et al., 2006](https://dl.acm.org/citation.cfm?id=1143891)
|
||||
([pdf](http://www.cs.toronto.edu/~graves/icml_2006.pdf))
|
||||
Improving the efficiency of forward-backward algorithm using batched
|
||||
computation in TensorFlow:
|
||||
|
Loading…
Reference in New Issue
Block a user