NFC: Replace "toco" with "converter" in loggings.
The testing is for both MLIR-based and TOCO based converters. Calling these "toco" is confusing PiperOrigin-RevId: 351158814 Change-Id: If659d97a2b38feee980d9533db83e73b6798e2d1
This commit is contained in:
parent
9a7c57d1d8
commit
28602b1084
@ -37,11 +37,11 @@ def make_report_table(fp, title, reports):
|
|||||||
title: "Title of the zip file this pertains to."
|
title: "Title of the zip file this pertains to."
|
||||||
reports: a list of conversion attempts. (report_args, report_vals) i.e.
|
reports: a list of conversion attempts. (report_args, report_vals) i.e.
|
||||||
({"shape": [1,2,3], "type": "tf.float32"},
|
({"shape": [1,2,3], "type": "tf.float32"},
|
||||||
{"tf": "SUCCESS", "toco": "FAILURE", "toco_log": "Unsupported type.",
|
{"tf": "SUCCESS", "converter": "FAILURE",
|
||||||
"tf_log": ""})
|
"converter_log": "Unsupported type.", "tf_log": ""})
|
||||||
"""
|
"""
|
||||||
# sort reports by if TOCO failure and then TF failure (reversed)
|
# sort reports by if TOCO failure and then TF failure (reversed)
|
||||||
reports.sort(key=lambda x: x[1]["toco"], reverse=False)
|
reports.sort(key=lambda x: x[1]["converter"], reverse=False)
|
||||||
reports.sort(key=lambda x: x[1]["tf"], reverse=True)
|
reports.sort(key=lambda x: x[1]["tf"], reverse=True)
|
||||||
def result_cell(x, row, col):
|
def result_cell(x, row, col):
|
||||||
"""Produce a cell with the condition string `x`."""
|
"""Produce a cell with the condition string `x`."""
|
||||||
@ -76,9 +76,10 @@ log.innerHTML = "<pre>" + data[row][col] + "</pre>";
|
|||||||
}
|
}
|
||||||
""")
|
""")
|
||||||
fp.write("var data = \n")
|
fp.write("var data = \n")
|
||||||
fp.write(json.dumps([[html.escape(x[1]["tf_log"], quote=True),
|
logs = json.dumps([[html.escape(x[1]["tf_log"], quote=True),
|
||||||
html.escape(x[1]["toco_log"], quote=True)]
|
html.escape(x[1]["converter_log"], quote=True)
|
||||||
for x in reports]))
|
] for x in reports])
|
||||||
|
fp.write(logs)
|
||||||
fp.write(";</script>\n")
|
fp.write(";</script>\n")
|
||||||
|
|
||||||
# Write the main table and use onclick on the items that have log items.
|
# Write the main table and use onclick on the items that have log items.
|
||||||
@ -110,7 +111,7 @@ log.innerHTML = "<pre>" + data[row][col] + "</pre>";
|
|||||||
fp.write(" <td>%s</td>\n" % html.escape(repr(params[p]), quote=True))
|
fp.write(" <td>%s</td>\n" % html.escape(repr(params[p]), quote=True))
|
||||||
|
|
||||||
result_cell(vals["tf"], idx, 0)
|
result_cell(vals["tf"], idx, 0)
|
||||||
result_cell(vals["toco"], idx, 1)
|
result_cell(vals["converter"], idx, 1)
|
||||||
fp.write("</tr>\n")
|
fp.write("</tr>\n")
|
||||||
fp.write("</table>\n")
|
fp.write("</table>\n")
|
||||||
fp.write("</div>\n")
|
fp.write("</div>\n")
|
||||||
|
@ -422,11 +422,11 @@ def make_zip_of_tests(options,
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
np.random.seed(RANDOM_SEED)
|
np.random.seed(RANDOM_SEED)
|
||||||
report = {"toco": report_lib.NOTRUN, "tf": report_lib.FAILED}
|
report = {"converter": report_lib.NOTRUN, "tf": report_lib.FAILED}
|
||||||
|
|
||||||
# Build graph
|
# Build graph
|
||||||
report["tf_log"] = ""
|
report["tf_log"] = ""
|
||||||
report["toco_log"] = ""
|
report["converter_log"] = ""
|
||||||
tf.reset_default_graph()
|
tf.reset_default_graph()
|
||||||
|
|
||||||
with tf.Graph().as_default():
|
with tf.Graph().as_default():
|
||||||
@ -446,7 +446,7 @@ def make_zip_of_tests(options,
|
|||||||
ValueError):
|
ValueError):
|
||||||
report["tf_log"] += traceback.format_exc()
|
report["tf_log"] += traceback.format_exc()
|
||||||
return None, report
|
return None, report
|
||||||
report["toco"] = report_lib.FAILED
|
report["converter"] = report_lib.FAILED
|
||||||
report["tf"] = report_lib.SUCCESS
|
report["tf"] = report_lib.SUCCESS
|
||||||
# Convert graph to toco
|
# Convert graph to toco
|
||||||
input_tensors = [(input_tensor.name.split(":")[0], input_tensor.shape,
|
input_tensors = [(input_tensor.name.split(":")[0], input_tensor.shape,
|
||||||
@ -468,10 +468,10 @@ def make_zip_of_tests(options,
|
|||||||
output_tensors,
|
output_tensors,
|
||||||
extra_toco_options=extra_toco_options,
|
extra_toco_options=extra_toco_options,
|
||||||
test_params=param_dict_real)
|
test_params=param_dict_real)
|
||||||
report["toco"] = (
|
report["converter"] = (
|
||||||
report_lib.SUCCESS
|
report_lib.SUCCESS
|
||||||
if tflite_model_binary is not None else report_lib.FAILED)
|
if tflite_model_binary is not None else report_lib.FAILED)
|
||||||
report["toco_log"] = toco_log
|
report["converter_log"] = toco_log
|
||||||
|
|
||||||
if options.save_graphdefs:
|
if options.save_graphdefs:
|
||||||
archive.writestr(zip_path_label + ".pbtxt",
|
archive.writestr(zip_path_label + ".pbtxt",
|
||||||
@ -507,7 +507,7 @@ def make_zip_of_tests(options,
|
|||||||
|
|
||||||
_, report = build_example(label, param_dict, zip_path_label)
|
_, report = build_example(label, param_dict, zip_path_label)
|
||||||
|
|
||||||
if report["toco"] == report_lib.FAILED:
|
if report["converter"] == report_lib.FAILED:
|
||||||
ignore_error = False
|
ignore_error = False
|
||||||
if not options.known_bugs_are_errors:
|
if not options.known_bugs_are_errors:
|
||||||
for pattern, bug_number in options.known_bugs.items():
|
for pattern, bug_number in options.known_bugs.items():
|
||||||
@ -517,7 +517,7 @@ def make_zip_of_tests(options,
|
|||||||
if not ignore_error:
|
if not ignore_error:
|
||||||
toco_errors += 1
|
toco_errors += 1
|
||||||
print("-----------------\nconverter error!\n%s\n-----------------\n" %
|
print("-----------------\nconverter error!\n%s\n-----------------\n" %
|
||||||
report["toco_log"])
|
report["converter_log"])
|
||||||
|
|
||||||
convert_report.append((param_dict, report))
|
convert_report.append((param_dict, report))
|
||||||
|
|
||||||
@ -541,7 +541,7 @@ def make_zip_of_tests(options,
|
|||||||
tf_success = sum(
|
tf_success = sum(
|
||||||
1 for x in convert_report if x[1]["tf"] == report_lib.SUCCESS)
|
1 for x in convert_report if x[1]["tf"] == report_lib.SUCCESS)
|
||||||
toco_success = sum(
|
toco_success = sum(
|
||||||
1 for x in convert_report if x[1]["toco"] == report_lib.SUCCESS)
|
1 for x in convert_report if x[1]["converter"] == report_lib.SUCCESS)
|
||||||
percent = 0
|
percent = 0
|
||||||
if tf_success > 0:
|
if tf_success > 0:
|
||||||
percent = float(toco_success) / float(tf_success) * 100.
|
percent = float(toco_success) / float(tf_success) * 100.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user