From 266c5ab8782ca3e1b4d4c8455fd4bba945fb9b89 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 30 Apr 2019 01:45:29 -0700 Subject: [PATCH] Go: Update generated wrapper functions for TensorFlow ops. PiperOrigin-RevId: 245905408 --- tensorflow/go/op/wrappers.go | 43644 ++++++++++++++++----------------- 1 file changed, 21822 insertions(+), 21822 deletions(-) diff --git a/tensorflow/go/op/wrappers.go b/tensorflow/go/op/wrappers.go index 1004f4f9bd4..ee7ef1b7519 100644 --- a/tensorflow/go/op/wrappers.go +++ b/tensorflow/go/op/wrappers.go @@ -38,50 +38,47 @@ func makeOutputList(op *tf.Operation, start int, output string) ([]tf.Output, in return list, start + size, nil } -// FakeQuantWithMinMaxArgsGradientAttr is an optional argument to FakeQuantWithMinMaxArgsGradient. -type FakeQuantWithMinMaxArgsGradientAttr func(optionalAttr) +// FakeQuantWithMinMaxVarsAttr is an optional argument to FakeQuantWithMinMaxVars. +type FakeQuantWithMinMaxVarsAttr func(optionalAttr) -// FakeQuantWithMinMaxArgsGradientMin sets the optional min attribute to value. -// If not specified, defaults to -6 -func FakeQuantWithMinMaxArgsGradientMin(value float32) FakeQuantWithMinMaxArgsGradientAttr { - return func(m optionalAttr) { - m["min"] = value - } -} - -// FakeQuantWithMinMaxArgsGradientMax sets the optional max attribute to value. -// If not specified, defaults to 6 -func FakeQuantWithMinMaxArgsGradientMax(value float32) FakeQuantWithMinMaxArgsGradientAttr { - return func(m optionalAttr) { - m["max"] = value - } -} - -// FakeQuantWithMinMaxArgsGradientNumBits sets the optional num_bits attribute to value. +// FakeQuantWithMinMaxVarsNumBits sets the optional num_bits attribute to value. // If not specified, defaults to 8 -func FakeQuantWithMinMaxArgsGradientNumBits(value int64) FakeQuantWithMinMaxArgsGradientAttr { +func FakeQuantWithMinMaxVarsNumBits(value int64) FakeQuantWithMinMaxVarsAttr { return func(m optionalAttr) { m["num_bits"] = value } } -// FakeQuantWithMinMaxArgsGradientNarrowRange sets the optional narrow_range attribute to value. +// FakeQuantWithMinMaxVarsNarrowRange sets the optional narrow_range attribute to value. // If not specified, defaults to false -func FakeQuantWithMinMaxArgsGradientNarrowRange(value bool) FakeQuantWithMinMaxArgsGradientAttr { +func FakeQuantWithMinMaxVarsNarrowRange(value bool) FakeQuantWithMinMaxVarsAttr { return func(m optionalAttr) { m["narrow_range"] = value } } -// Compute gradients for a FakeQuantWithMinMaxArgs operation. +// Fake-quantize the 'inputs' tensor of type float via global float scalars `min` // -// Arguments: -// gradients: Backpropagated gradients above the FakeQuantWithMinMaxArgs operation. -// inputs: Values passed as inputs to the FakeQuantWithMinMaxArgs operation. +// and `max` to 'outputs' tensor of same shape as `inputs`. // -// Returns Backpropagated gradients below the FakeQuantWithMinMaxArgs operation: -// `gradients * (inputs >= min && inputs <= max)`. -func FakeQuantWithMinMaxArgsGradient(scope *Scope, gradients tf.Output, inputs tf.Output, optional ...FakeQuantWithMinMaxArgsGradientAttr) (backprops tf.Output) { +// `[min; max]` define the clamping range for the `inputs` data. +// `inputs` values are quantized into the quantization range (`[0; 2^num_bits - 1]` +// when `narrow_range` is false and `[1; 2^num_bits - 1]` when it is true) and +// then de-quantized and output as floats in `[min; max]` interval. +// `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive. +// +// Before quantization, `min` and `max` values are adjusted with the following +// logic. +// It is suggested to have `min <= 0 <= max`. If `0` is not in the range of values, +// the behavior can be unexpected: +// If `0 < min < max`: `min_adj = 0` and `max_adj = max - min`. +// If `min < max < 0`: `min_adj = min - max` and `max_adj = 0`. +// If `min <= 0 <= max`: `scale = (max - min) / (2^num_bits - 1) `, +// `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`. +// +// This operation has a gradient and thus allows for training `min` and `max` +// values. +func FakeQuantWithMinMaxVars(scope *Scope, inputs tf.Output, min tf.Output, max tf.Output, optional ...FakeQuantWithMinMaxVarsAttr) (outputs tf.Output) { if scope.Err() != nil { return } @@ -90,9 +87,9 @@ func FakeQuantWithMinMaxArgsGradient(scope *Scope, gradients tf.Output, inputs t a(attrs) } opspec := tf.OpSpec{ - Type: "FakeQuantWithMinMaxArgsGradient", + Type: "FakeQuantWithMinMaxVars", Input: []tf.Input{ - gradients, inputs, + inputs, min, max, }, Attrs: attrs, } @@ -259,105 +256,6 @@ func TensorScatterSub(scope *Scope, tensor tf.Output, indices tf.Output, updates return op.Output(0) } -// Scatter `updates` into an existing tensor according to `indices`. -// -// This operation creates a new tensor by applying sparse `updates` to the passed -// in `tensor`. -// This operation is very similar to `tf.scatter_nd`, except that the updates are -// scattered onto an existing tensor (as opposed to a zero-tensor). If the memory -// for the existing tensor cannot be re-used, a copy is made and updated. -// -// If `indices` contains duplicates, then their updates are accumulated (summed). -// -// **WARNING**: The order in which updates are applied is nondeterministic, so the -// output will be nondeterministic if `indices` contains duplicates -- because -// of some numerical approximation issues, numbers summed in different order -// may yield different results. -// -// `indices` is an integer tensor containing indices into a new tensor of shape -// `shape`. The last dimension of `indices` can be at most the rank of `shape`: -// -// indices.shape[-1] <= shape.rank -// -// The last dimension of `indices` corresponds to indices into elements -// (if `indices.shape[-1] = shape.rank`) or slices -// (if `indices.shape[-1] < shape.rank`) along dimension `indices.shape[-1]` of -// `shape`. `updates` is a tensor with shape -// -// indices.shape[:-1] + shape[indices.shape[-1]:] -// -// The simplest form of scatter is to insert individual elements in a tensor by -// index. For example, say we want to insert 4 scattered elements in a rank-1 -// tensor with 8 elements. -// -//
-// -//
-// -// In Python, this scatter operation would look like this: -// -// ```python -// indices = tf.constant([[4], [3], [1], [7]]) -// updates = tf.constant([9, 10, 11, 12]) -// tensor = tf.ones([8], dtype=tf.int32) -// updated = tf.tensor_scatter_update(tensor, indices, updates) -// with tf.Session() as sess: -// print(sess.run(scatter)) -// ``` -// -// The resulting tensor would look like this: -// -// [1, 11, 1, 10, 9, 1, 1, 12] -// -// We can also, insert entire slices of a higher rank tensor all at once. For -// example, if we wanted to insert two slices in the first dimension of a -// rank-3 tensor with two matrices of new values. -// -// In Python, this scatter operation would look like this: -// -// ```python -// indices = tf.constant([[0], [2]]) -// updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6], -// [7, 7, 7, 7], [8, 8, 8, 8]], -// [[5, 5, 5, 5], [6, 6, 6, 6], -// [7, 7, 7, 7], [8, 8, 8, 8]]]) -// tensor = tf.ones([4, 4, 4]) -// updated = tf.tensor_scatter_update(tensor, indices, updates) -// with tf.Session() as sess: -// print(sess.run(scatter)) -// ``` -// -// The resulting tensor would look like this: -// -// [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], -// [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], -// [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], -// [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]] -// -// Note that on CPU, if an out of bound index is found, an error is returned. -// On GPU, if an out of bound index is found, the index is ignored. -// -// Arguments: -// tensor: Tensor to copy/update. -// indices: Index tensor. -// updates: Updates to scatter into output. -// -// Returns A new tensor with the given shape and updates applied according -// to the indices. -func TensorScatterUpdate(scope *Scope, tensor tf.Output, indices tf.Output, updates tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorScatterUpdate", - Input: []tf.Input{ - tensor, indices, updates, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // LowerBoundAttr is an optional argument to LowerBound. type LowerBoundAttr func(optionalAttr) @@ -1005,86 +903,6 @@ func Bitcast(scope *Scope, input tf.Output, type_ tf.DataType) (output tf.Output return op.Output(0) } -// Extract `patches` from `input` and put them in the "depth" output dimension. 3D extension of `extract_image_patches`. -// -// Arguments: -// input: 5-D Tensor with shape `[batch, in_planes, in_rows, in_cols, depth]`. -// ksizes: The size of the sliding window for each dimension of `input`. -// strides: 1-D of length 5. How far the centers of two consecutive patches are in -// `input`. Must be: `[1, stride_planes, stride_rows, stride_cols, 1]`. -// padding: The type of padding algorithm to use. -// -// We specify the size-related attributes as: -// -// ```python -// ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1] -// strides = [1, stride_planes, strides_rows, strides_cols, 1] -// ``` -// -// Returns 5-D Tensor with shape `[batch, out_planes, out_rows, out_cols, -// ksize_planes * ksize_rows * ksize_cols * depth]` containing patches -// with size `ksize_planes x ksize_rows x ksize_cols x depth` vectorized -// in the "depth" dimension. Note `out_planes`, `out_rows` and `out_cols` -// are the dimensions of the output patches. -func ExtractVolumePatches(scope *Scope, input tf.Output, ksizes []int64, strides []int64, padding string) (patches tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksizes": ksizes, "strides": strides, "padding": padding} - opspec := tf.OpSpec{ - Type: "ExtractVolumePatches", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Extract `patches` from `images` and put them in the "depth" output dimension. -// -// Arguments: -// images: 4-D Tensor with shape `[batch, in_rows, in_cols, depth]`. -// ksizes: The size of the sliding window for each dimension of `images`. -// strides: 1-D of length 4. How far the centers of two consecutive patches are in -// the images. Must be: `[1, stride_rows, stride_cols, 1]`. -// rates: 1-D of length 4. Must be: `[1, rate_rows, rate_cols, 1]`. This is the -// input stride, specifying how far two consecutive patch samples are in the -// input. Equivalent to extracting patches with -// `patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by -// subsampling them spatially by a factor of `rates`. This is equivalent to -// `rate` in dilated (a.k.a. Atrous) convolutions. -// padding: The type of padding algorithm to use. -// -// We specify the size-related attributes as: -// -// ```python -// ksizes = [1, ksize_rows, ksize_cols, 1] -// strides = [1, strides_rows, strides_cols, 1] -// rates = [1, rates_rows, rates_cols, 1] -// ``` -// -// Returns 4-D Tensor with shape `[batch, out_rows, out_cols, ksize_rows * -// ksize_cols * depth]` containing image patches with size -// `ksize_rows x ksize_cols x depth` vectorized in the "depth" dimension. Note -// `out_rows` and `out_cols` are the dimensions of the output patches. -func ExtractImagePatches(scope *Scope, images tf.Output, ksizes []int64, strides []int64, rates []int64, padding string) (patches tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksizes": ksizes, "strides": strides, "rates": rates, "padding": padding} - opspec := tf.OpSpec{ - Type: "ExtractImagePatches", - Input: []tf.Input{ - images, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // DepthToSpaceAttr is an optional argument to DepthToSpace. type DepthToSpaceAttr func(optionalAttr) @@ -1210,142 +1028,6 @@ func DepthToSpace(scope *Scope, input tf.Output, block_size int64, optional ...D return op.Output(0) } -// BatchToSpace for N-D tensors of type T. -// -// This operation reshapes the "batch" dimension 0 into `M + 1` dimensions of shape -// `block_shape + [batch]`, interleaves these blocks back into the grid defined by -// the spatial dimensions `[1, ..., M]`, to obtain a result with the same rank as -// the input. The spatial dimensions of this intermediate result are then -// optionally cropped according to `crops` to produce the output. This is the -// reverse of SpaceToBatch. See below for a precise description. -// -// Arguments: -// input: N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`, -// where spatial_shape has M dimensions. -// block_shape: 1-D with shape `[M]`, all values must be >= 1. -// crops: 2-D with shape `[M, 2]`, all values must be >= 0. -// `crops[i] = [crop_start, crop_end]` specifies the amount to crop from input -// dimension `i + 1`, which corresponds to spatial dimension `i`. It is -// required that -// `crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1]`. -// -// This operation is equivalent to the following steps: -// -// 1. Reshape `input` to `reshaped` of shape: -// [block_shape[0], ..., block_shape[M-1], -// batch / prod(block_shape), -// input_shape[1], ..., input_shape[N-1]] -// -// 2. Permute dimensions of `reshaped` to produce `permuted` of shape -// [batch / prod(block_shape), -// -// input_shape[1], block_shape[0], -// ..., -// input_shape[M], block_shape[M-1], -// -// input_shape[M+1], ..., input_shape[N-1]] -// -// 3. Reshape `permuted` to produce `reshaped_permuted` of shape -// [batch / prod(block_shape), -// -// input_shape[1] * block_shape[0], -// ..., -// input_shape[M] * block_shape[M-1], -// -// input_shape[M+1], -// ..., -// input_shape[N-1]] -// -// 4. Crop the start and end of dimensions `[1, ..., M]` of -// `reshaped_permuted` according to `crops` to produce the output of shape: -// [batch / prod(block_shape), -// -// input_shape[1] * block_shape[0] - crops[0,0] - crops[0,1], -// ..., -// input_shape[M] * block_shape[M-1] - crops[M-1,0] - crops[M-1,1], -// -// input_shape[M+1], ..., input_shape[N-1]] -// -// Some examples: -// -// (1) For the following input of shape `[4, 1, 1, 1]`, `block_shape = [2, 2]`, and -// `crops = [[0, 0], [0, 0]]`: -// -// ``` -// [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] -// ``` -// -// The output tensor has shape `[1, 2, 2, 1]` and value: -// -// ``` -// x = [[[[1], [2]], [[3], [4]]]] -// ``` -// -// (2) For the following input of shape `[4, 1, 1, 3]`, `block_shape = [2, 2]`, and -// `crops = [[0, 0], [0, 0]]`: -// -// ``` -// [[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]] -// ``` -// -// The output tensor has shape `[1, 2, 2, 3]` and value: -// -// ``` -// x = [[[[1, 2, 3], [4, 5, 6]], -// [[7, 8, 9], [10, 11, 12]]]] -// ``` -// -// (3) For the following input of shape `[4, 2, 2, 1]`, `block_shape = [2, 2]`, and -// `crops = [[0, 0], [0, 0]]`: -// -// ``` -// x = [[[[1], [3]], [[9], [11]]], -// [[[2], [4]], [[10], [12]]], -// [[[5], [7]], [[13], [15]]], -// [[[6], [8]], [[14], [16]]]] -// ``` -// -// The output tensor has shape `[1, 4, 4, 1]` and value: -// -// ``` -// x = [[[[1], [2], [3], [4]], -// [[5], [6], [7], [8]], -// [[9], [10], [11], [12]], -// [[13], [14], [15], [16]]]] -// ``` -// -// (4) For the following input of shape `[8, 1, 3, 1]`, `block_shape = [2, 2]`, and -// `crops = [[0, 0], [2, 0]]`: -// -// ``` -// x = [[[[0], [1], [3]]], [[[0], [9], [11]]], -// [[[0], [2], [4]]], [[[0], [10], [12]]], -// [[[0], [5], [7]]], [[[0], [13], [15]]], -// [[[0], [6], [8]]], [[[0], [14], [16]]]] -// ``` -// -// The output tensor has shape `[2, 2, 4, 1]` and value: -// -// ``` -// x = [[[[1], [2], [3], [4]], -// [[5], [6], [7], [8]]], -// [[[9], [10], [11], [12]], -// [[13], [14], [15], [16]]]] -// ``` -func BatchToSpaceND(scope *Scope, input tf.Output, block_shape tf.Output, crops tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BatchToSpaceND", - Input: []tf.Input{ - input, block_shape, crops, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // SpaceToBatch for 4-D tensors of type T. // // This is a legacy version of the more general SpaceToBatchND. @@ -1460,6 +1142,242 @@ func SpaceToBatch(scope *Scope, input tf.Output, paddings tf.Output, block_size return op.Output(0) } +// SpaceToBatch for N-D tensors of type T. +// +// This operation divides "spatial" dimensions `[1, ..., M]` of the input into a +// grid of blocks of shape `block_shape`, and interleaves these blocks with the +// "batch" dimension (0) such that in the output, the spatial dimensions +// `[1, ..., M]` correspond to the position within the grid, and the batch +// dimension combines both the position within a spatial block and the original +// batch position. Prior to division into blocks, the spatial dimensions of the +// input are optionally zero padded according to `paddings`. See below for a +// precise description. +// +// Arguments: +// input: N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`, +// where spatial_shape has `M` dimensions. +// block_shape: 1-D with shape `[M]`, all values must be >= 1. +// paddings: 2-D with shape `[M, 2]`, all values must be >= 0. +// `paddings[i] = [pad_start, pad_end]` specifies the padding for input dimension +// `i + 1`, which corresponds to spatial dimension `i`. It is required that +// `block_shape[i]` divides `input_shape[i + 1] + pad_start + pad_end`. +// +// This operation is equivalent to the following steps: +// +// 1. Zero-pad the start and end of dimensions `[1, ..., M]` of the +// input according to `paddings` to produce `padded` of shape `padded_shape`. +// +// 2. Reshape `padded` to `reshaped_padded` of shape: +// +// [batch] + +// [padded_shape[1] / block_shape[0], +// block_shape[0], +// ..., +// padded_shape[M] / block_shape[M-1], +// block_shape[M-1]] + +// remaining_shape +// +// 3. Permute dimensions of `reshaped_padded` to produce +// `permuted_reshaped_padded` of shape: +// +// block_shape + +// [batch] + +// [padded_shape[1] / block_shape[0], +// ..., +// padded_shape[M] / block_shape[M-1]] + +// remaining_shape +// +// 4. Reshape `permuted_reshaped_padded` to flatten `block_shape` into the batch +// dimension, producing an output tensor of shape: +// +// [batch * prod(block_shape)] + +// [padded_shape[1] / block_shape[0], +// ..., +// padded_shape[M] / block_shape[M-1]] + +// remaining_shape +// +// Some examples: +// +// (1) For the following input of shape `[1, 2, 2, 1]`, `block_shape = [2, 2]`, and +// `paddings = [[0, 0], [0, 0]]`: +// +// ``` +// x = [[[[1], [2]], [[3], [4]]]] +// ``` +// +// The output tensor has shape `[4, 1, 1, 1]` and value: +// +// ``` +// [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] +// ``` +// +// (2) For the following input of shape `[1, 2, 2, 3]`, `block_shape = [2, 2]`, and +// `paddings = [[0, 0], [0, 0]]`: +// +// ``` +// x = [[[[1, 2, 3], [4, 5, 6]], +// [[7, 8, 9], [10, 11, 12]]]] +// ``` +// +// The output tensor has shape `[4, 1, 1, 3]` and value: +// +// ``` +// [[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]] +// ``` +// +// (3) For the following input of shape `[1, 4, 4, 1]`, `block_shape = [2, 2]`, and +// `paddings = [[0, 0], [0, 0]]`: +// +// ``` +// x = [[[[1], [2], [3], [4]], +// [[5], [6], [7], [8]], +// [[9], [10], [11], [12]], +// [[13], [14], [15], [16]]]] +// ``` +// +// The output tensor has shape `[4, 2, 2, 1]` and value: +// +// ``` +// x = [[[[1], [3]], [[9], [11]]], +// [[[2], [4]], [[10], [12]]], +// [[[5], [7]], [[13], [15]]], +// [[[6], [8]], [[14], [16]]]] +// ``` +// +// (4) For the following input of shape `[2, 2, 4, 1]`, block_shape = `[2, 2]`, and +// paddings = `[[0, 0], [2, 0]]`: +// +// ``` +// x = [[[[1], [2], [3], [4]], +// [[5], [6], [7], [8]]], +// [[[9], [10], [11], [12]], +// [[13], [14], [15], [16]]]] +// ``` +// +// The output tensor has shape `[8, 1, 3, 1]` and value: +// +// ``` +// x = [[[[0], [1], [3]]], [[[0], [9], [11]]], +// [[[0], [2], [4]]], [[[0], [10], [12]]], +// [[[0], [5], [7]]], [[[0], [13], [15]]], +// [[[0], [6], [8]]], [[[0], [14], [16]]]] +// ``` +// +// Among others, this operation is useful for reducing atrous convolution into +// regular convolution. +func SpaceToBatchND(scope *Scope, input tf.Output, block_shape tf.Output, paddings tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SpaceToBatchND", + Input: []tf.Input{ + input, block_shape, paddings, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Scatter `updates` into an existing tensor according to `indices`. +// +// This operation creates a new tensor by applying sparse `updates` to the passed +// in `tensor`. +// This operation is very similar to `tf.scatter_nd`, except that the updates are +// scattered onto an existing tensor (as opposed to a zero-tensor). If the memory +// for the existing tensor cannot be re-used, a copy is made and updated. +// +// If `indices` contains duplicates, then their updates are accumulated (summed). +// +// **WARNING**: The order in which updates are applied is nondeterministic, so the +// output will be nondeterministic if `indices` contains duplicates -- because +// of some numerical approximation issues, numbers summed in different order +// may yield different results. +// +// `indices` is an integer tensor containing indices into a new tensor of shape +// `shape`. The last dimension of `indices` can be at most the rank of `shape`: +// +// indices.shape[-1] <= shape.rank +// +// The last dimension of `indices` corresponds to indices into elements +// (if `indices.shape[-1] = shape.rank`) or slices +// (if `indices.shape[-1] < shape.rank`) along dimension `indices.shape[-1]` of +// `shape`. `updates` is a tensor with shape +// +// indices.shape[:-1] + shape[indices.shape[-1]:] +// +// The simplest form of scatter is to insert individual elements in a tensor by +// index. For example, say we want to insert 4 scattered elements in a rank-1 +// tensor with 8 elements. +// +//
+// +//
+// +// In Python, this scatter operation would look like this: +// +// ```python +// indices = tf.constant([[4], [3], [1], [7]]) +// updates = tf.constant([9, 10, 11, 12]) +// tensor = tf.ones([8], dtype=tf.int32) +// updated = tf.tensor_scatter_update(tensor, indices, updates) +// with tf.Session() as sess: +// print(sess.run(scatter)) +// ``` +// +// The resulting tensor would look like this: +// +// [1, 11, 1, 10, 9, 1, 1, 12] +// +// We can also, insert entire slices of a higher rank tensor all at once. For +// example, if we wanted to insert two slices in the first dimension of a +// rank-3 tensor with two matrices of new values. +// +// In Python, this scatter operation would look like this: +// +// ```python +// indices = tf.constant([[0], [2]]) +// updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6], +// [7, 7, 7, 7], [8, 8, 8, 8]], +// [[5, 5, 5, 5], [6, 6, 6, 6], +// [7, 7, 7, 7], [8, 8, 8, 8]]]) +// tensor = tf.ones([4, 4, 4]) +// updated = tf.tensor_scatter_update(tensor, indices, updates) +// with tf.Session() as sess: +// print(sess.run(scatter)) +// ``` +// +// The resulting tensor would look like this: +// +// [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], +// [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], +// [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], +// [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]] +// +// Note that on CPU, if an out of bound index is found, an error is returned. +// On GPU, if an out of bound index is found, the index is ignored. +// +// Arguments: +// tensor: Tensor to copy/update. +// indices: Index tensor. +// updates: Updates to scatter into output. +// +// Returns A new tensor with the given shape and updates applied according +// to the indices. +func TensorScatterUpdate(scope *Scope, tensor tf.Output, indices tf.Output, updates tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorScatterUpdate", + Input: []tf.Input{ + tensor, indices, updates, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // ListDiffAttr is an optional argument to ListDiff. type ListDiffAttr func(optionalAttr) @@ -1574,43 +1492,22 @@ func ExpandDims(scope *Scope, input tf.Output, axis tf.Output) (output tf.Output return op.Output(0) } -// Gradient op for `MirrorPad` op. This op folds a mirror-padded tensor. -// -// This operation folds the padded areas of `input` by `MirrorPad` according to the -// `paddings` you specify. `paddings` must be the same as `paddings` argument -// given to the corresponding `MirrorPad` op. -// -// The folded size of each dimension D of the output is: -// -// `input.dim_size(D) - paddings(D, 0) - paddings(D, 1)` -// -// For example: -// -// ``` -// # 't' is [[1, 2, 3], [4, 5, 6], [7, 8, 9]]. -// # 'paddings' is [[0, 1]], [0, 1]]. -// # 'mode' is SYMMETRIC. -// # rank of 't' is 2. -// pad(t, paddings) ==> [[ 1, 5] -// [11, 28]] -// ``` +// A placeholder op that passes through `input` when its output is not fed. // // Arguments: -// input: The input tensor to be folded. -// paddings: A two-column matrix specifying the padding sizes. The number of -// rows must be the same as the rank of `input`. -// mode: The mode used in the `MirrorPad` op. +// input: The default value to produce when `output` is not fed. +// shape: The (possibly partial) shape of the tensor. // -// Returns The folded tensor. -func MirrorPadGrad(scope *Scope, input tf.Output, paddings tf.Output, mode string) (output tf.Output) { +// Returns A placeholder tensor that defaults to `input` if it is not fed. +func PlaceholderWithDefault(scope *Scope, input tf.Output, shape tf.Shape) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"mode": mode} + attrs := map[string]interface{}{"shape": shape} opspec := tf.OpSpec{ - Type: "MirrorPadGrad", + Type: "PlaceholderWithDefault", Input: []tf.Input{ - input, paddings, + input, }, Attrs: attrs, } @@ -1618,22 +1515,21 @@ func MirrorPadGrad(scope *Scope, input tf.Output, paddings tf.Output, mode strin return op.Output(0) } -// Return the shape of s0 op s1 with broadcast. +// Return the reduction indices for computing gradients of s0 op s1 with broadcast. // -// Given `s0` and `s1`, tensors that represent shapes, compute `r0`, the -// broadcasted shape. `s0`, `s1` and `r0` are all integer vectors. -func BroadcastArgs(scope *Scope, s0 tf.Output, s1 tf.Output) (r0 tf.Output) { +// This is typically used by gradient computations for a broadcasting operation. +func BroadcastGradientArgs(scope *Scope, s0 tf.Output, s1 tf.Output) (r0 tf.Output, r1 tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "BroadcastArgs", + Type: "BroadcastGradientArgs", Input: []tf.Input{ s0, s1, }, } op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1) } // Returns locations of nonzero / true values in a tensor. @@ -1757,6 +1653,76 @@ func Tile(scope *Scope, input tf.Output, multiples tf.Output) (output tf.Output) return op.Output(0) } +// TensorStridedSliceUpdateAttr is an optional argument to TensorStridedSliceUpdate. +type TensorStridedSliceUpdateAttr func(optionalAttr) + +// TensorStridedSliceUpdateBeginMask sets the optional begin_mask attribute to value. +// If not specified, defaults to 0 +func TensorStridedSliceUpdateBeginMask(value int64) TensorStridedSliceUpdateAttr { + return func(m optionalAttr) { + m["begin_mask"] = value + } +} + +// TensorStridedSliceUpdateEndMask sets the optional end_mask attribute to value. +// If not specified, defaults to 0 +func TensorStridedSliceUpdateEndMask(value int64) TensorStridedSliceUpdateAttr { + return func(m optionalAttr) { + m["end_mask"] = value + } +} + +// TensorStridedSliceUpdateEllipsisMask sets the optional ellipsis_mask attribute to value. +// If not specified, defaults to 0 +func TensorStridedSliceUpdateEllipsisMask(value int64) TensorStridedSliceUpdateAttr { + return func(m optionalAttr) { + m["ellipsis_mask"] = value + } +} + +// TensorStridedSliceUpdateNewAxisMask sets the optional new_axis_mask attribute to value. +// If not specified, defaults to 0 +func TensorStridedSliceUpdateNewAxisMask(value int64) TensorStridedSliceUpdateAttr { + return func(m optionalAttr) { + m["new_axis_mask"] = value + } +} + +// TensorStridedSliceUpdateShrinkAxisMask sets the optional shrink_axis_mask attribute to value. +// If not specified, defaults to 0 +func TensorStridedSliceUpdateShrinkAxisMask(value int64) TensorStridedSliceUpdateAttr { + return func(m optionalAttr) { + m["shrink_axis_mask"] = value + } +} + +// Assign `value` to the sliced l-value reference of `input`. +// +// The values of `value` are assigned to the positions in the tensor `input` that +// are selected by the slice parameters. The slice parameters `begin` `end` +// `strides` etc. work exactly as in `StridedSlice`. +// +// NOTE this op currently does not support broadcasting and so `value`'s shape +// must be exactly the shape produced by the slice of `input`. +func TensorStridedSliceUpdate(scope *Scope, input tf.Output, begin tf.Output, end tf.Output, strides tf.Output, value tf.Output, optional ...TensorStridedSliceUpdateAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TensorStridedSliceUpdate", + Input: []tf.Input{ + input, begin, end, strides, value, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // StridedSliceGradAttr is an optional argument to StridedSliceGrad. type StridedSliceGradAttr func(optionalAttr) @@ -1829,276 +1795,30 @@ func StridedSliceGrad(scope *Scope, shape tf.Output, begin tf.Output, end tf.Out return op.Output(0) } -// QuantizedInstanceNormAttr is an optional argument to QuantizedInstanceNorm. -type QuantizedInstanceNormAttr func(optionalAttr) - -// QuantizedInstanceNormOutputRangeGiven sets the optional output_range_given attribute to value. +// Returns the rank of a tensor. // -// value: If True, `given_y_min` and `given_y_min` -// and `given_y_max` are used as the output range. Otherwise, -// the implementation computes the output range. -// If not specified, defaults to false -func QuantizedInstanceNormOutputRangeGiven(value bool) QuantizedInstanceNormAttr { - return func(m optionalAttr) { - m["output_range_given"] = value - } -} - -// QuantizedInstanceNormGivenYMin sets the optional given_y_min attribute to value. +// This operation returns an integer representing the rank of `input`. // -// value: Output in `y_min` if `output_range_given` is True. -// If not specified, defaults to 0 -func QuantizedInstanceNormGivenYMin(value float32) QuantizedInstanceNormAttr { - return func(m optionalAttr) { - m["given_y_min"] = value - } -} - -// QuantizedInstanceNormGivenYMax sets the optional given_y_max attribute to value. +// For example: // -// value: Output in `y_max` if `output_range_given` is True. -// If not specified, defaults to 0 -func QuantizedInstanceNormGivenYMax(value float32) QuantizedInstanceNormAttr { - return func(m optionalAttr) { - m["given_y_max"] = value - } -} - -// QuantizedInstanceNormVarianceEpsilon sets the optional variance_epsilon attribute to value. +// ``` +// # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] +// # shape of tensor 't' is [2, 2, 3] +// rank(t) ==> 3 +// ``` // -// value: A small float number to avoid dividing by 0. -// If not specified, defaults to 1e-05 -func QuantizedInstanceNormVarianceEpsilon(value float32) QuantizedInstanceNormAttr { - return func(m optionalAttr) { - m["variance_epsilon"] = value - } -} - -// QuantizedInstanceNormMinSeparation sets the optional min_separation attribute to value. -// -// value: Minimum value of `y_max - y_min` -// If not specified, defaults to 0.001 -func QuantizedInstanceNormMinSeparation(value float32) QuantizedInstanceNormAttr { - return func(m optionalAttr) { - m["min_separation"] = value - } -} - -// Quantized Instance normalization. -// -// Arguments: -// x: A 4D input Tensor. -// x_min: The value represented by the lowest quantized input. -// x_max: The value represented by the highest quantized input. -// -// Returns A 4D Tensor.The value represented by the lowest quantized output.The value represented by the highest quantized output. -func QuantizedInstanceNorm(scope *Scope, x tf.Output, x_min tf.Output, x_max tf.Output, optional ...QuantizedInstanceNormAttr) (y tf.Output, y_min tf.Output, y_max tf.Output) { +// **Note**: The rank of a tensor is not the same as the rank of a matrix. The rank +// of a tensor is the number of indices required to uniquely select each element +// of the tensor. Rank is also known as "order", "degree", or "ndims." +func Rank(scope *Scope, input tf.Output) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "QuantizedInstanceNorm", + Type: "Rank", Input: []tf.Input{ - x, x_min, x_max, + input, }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// StridedSliceAttr is an optional argument to StridedSlice. -type StridedSliceAttr func(optionalAttr) - -// StridedSliceBeginMask sets the optional begin_mask attribute to value. -// -// value: a bitmask where a bit i being 1 means to ignore the begin -// value and instead use the largest interval possible. At runtime -// begin[i] will be replaced with `[0, n-1)` if `stride[i] > 0` or -// `[-1, n-1]` if `stride[i] < 0` -// If not specified, defaults to 0 -func StridedSliceBeginMask(value int64) StridedSliceAttr { - return func(m optionalAttr) { - m["begin_mask"] = value - } -} - -// StridedSliceEndMask sets the optional end_mask attribute to value. -// -// value: analogous to `begin_mask` -// If not specified, defaults to 0 -func StridedSliceEndMask(value int64) StridedSliceAttr { - return func(m optionalAttr) { - m["end_mask"] = value - } -} - -// StridedSliceEllipsisMask sets the optional ellipsis_mask attribute to value. -// -// value: a bitmask where bit `i` being 1 means the `i`th -// position is actually an ellipsis. One bit at most can be 1. -// If `ellipsis_mask == 0`, then an implicit ellipsis mask of `1 << (m+1)` -// is provided. This means that `foo[3:5] == foo[3:5, ...]`. An ellipsis -// implicitly creates as many range specifications as necessary to fully -// specify the sliced range for every dimension. For example for a 4-dimensional -// tensor `foo` the slice `foo[2, ..., 5:8]` implies `foo[2, :, :, 5:8]`. -// If not specified, defaults to 0 -func StridedSliceEllipsisMask(value int64) StridedSliceAttr { - return func(m optionalAttr) { - m["ellipsis_mask"] = value - } -} - -// StridedSliceNewAxisMask sets the optional new_axis_mask attribute to value. -// -// value: a bitmask where bit `i` being 1 means the `i`th -// specification creates a new shape 1 dimension. For example -// `foo[:4, tf.newaxis, :2]` would produce a shape `(4, 1, 2)` tensor. -// If not specified, defaults to 0 -func StridedSliceNewAxisMask(value int64) StridedSliceAttr { - return func(m optionalAttr) { - m["new_axis_mask"] = value - } -} - -// StridedSliceShrinkAxisMask sets the optional shrink_axis_mask attribute to value. -// -// value: a bitmask where bit `i` implies that the `i`th -// specification should shrink the dimensionality. begin and end -// must imply a slice of size 1 in the dimension. For example in -// python one might do `foo[:, 3, :]` which would result in -// `shrink_axis_mask` being 2. -// If not specified, defaults to 0 -func StridedSliceShrinkAxisMask(value int64) StridedSliceAttr { - return func(m optionalAttr) { - m["shrink_axis_mask"] = value - } -} - -// Return a strided slice from `input`. -// -// Note, most python users will want to use the Python `Tensor.__getitem__` -// or `Variable.__getitem__` rather than this op directly. -// -// The goal of this op is to produce a new tensor with a subset of -// the elements from the `n` dimensional `input` tensor. The subset is chosen using -// a sequence of `m` sparse range specifications encoded into the arguments -// of this function. Note, in some cases -// `m` could be equal to `n`, but this need not be the case. Each -// range specification entry can be one of the following: -// -// - An ellipsis (...). Ellipses are used to imply zero or more -// dimensions of full-dimension selection and are produced using -// `ellipsis_mask`. For example, `foo[...]` is the identity slice. -// -// - A new axis. This is used to insert a new shape=1 dimension and is -// produced using `new_axis_mask`. For example, `foo[:, ...]` where -// `foo` is shape `(3, 4)` produces a `(1, 3, 4)` tensor. -// -// -// - A range `begin:end:stride`. This is used to specify how much to choose from -// a given dimension. `stride` can be any integer but 0. `begin` is an integer -// which represents the index of the first value to select while `end` represents -// the index of the last value to select. The number of values selected in each -// dimension is `end - begin` if `stride > 0` and `begin - end` if `stride < 0`. -// `begin` and `end` can be negative where `-1` is the last element, `-2` is -// the second to last. `begin_mask` controls whether to replace the explicitly -// given `begin` with an implicit effective value of `0` if `stride > 0` and -// `-1` if `stride < 0`. `end_mask` is analogous but produces the number -// required to create the largest open interval. For example, given a shape -// `(3,)` tensor `foo[:]`, the effective `begin` and `end` are `0` and `3`. Do -// not assume this is equivalent to `foo[0:-1]` which has an effective `begin` -// and `end` of `0` and `2`. Another example is `foo[-2::-1]` which reverses the -// first dimension of a tensor while dropping the last two (in the original -// order elements). For example `foo = [1,2,3,4]; foo[-2::-1]` is `[4,3]`. -// -// - A single index. This is used to keep only elements that have a given -// index. For example (`foo[2, :]` on a shape `(5,6)` tensor produces a -// shape `(6,)` tensor. This is encoded in `begin` and `end` and -// `shrink_axis_mask`. -// -// Each conceptual range specification is encoded in the op's argument. This -// encoding is best understand by considering a non-trivial example. In -// particular, -// `foo[1, 2:4, None, ..., :-3:-1, :]` will be encoded as -// -// ``` -// begin = [1, 2, x, x, 0, x] # x denotes don't care (usually 0) -// end = [2, 4, x, x, -3, x] -// strides = [1, 1, x, x, -1, 1] -// begin_mask = 1<<4 | 1 << 5 = 48 -// end_mask = 1<<5 = 32 -// ellipsis_mask = 1<<3 = 8 -// new_axis_mask = 1<<2 4 -// shrink_axis_mask = 1<<0 -// ``` -// -// In this case if `foo.shape` is (5, 5, 5, 5, 5, 5) the final shape of -// the slice becomes (2, 1, 5, 5, 2, 5). -// Let us walk step by step through each argument specification. -// -// 1. The first argument in the example slice is turned into `begin = 1` and -// `end = begin + 1 = 2`. To disambiguate from the original spec `2:4` we -// also set the appropriate bit in `shrink_axis_mask`. -// -// 2. `2:4` is contributes 2, 4, 1 to begin, end, and stride. All masks have -// zero bits contributed. -// -// 3. None is a synonym for `tf.newaxis`. This means insert a dimension of size 1 -// dimension in the final shape. Dummy values are contributed to begin, -// end and stride, while the new_axis_mask bit is set. -// -// 4. `...` grab the full ranges from as many dimensions as needed to -// fully specify a slice for every dimension of the input shape. -// -// 5. `:-3:-1` shows the use of negative indices. A negative index `i` associated -// with a dimension that has shape `s` is converted to a positive index -// `s + i`. So `-1` becomes `s-1` (i.e. the last element). This conversion -// is done internally so begin, end and strides receive x, -3, and -1. -// The appropriate begin_mask bit is set to indicate the start range is the -// full range (ignoring the x). -// -// 6. `:` indicates that the entire contents of the corresponding dimension -// is selected. This is equivalent to `::` or `0::1`. begin, end, and strides -// receive 0, 0, and 1, respectively. The appropriate bits in `begin_mask` and -// `end_mask` are also set. -// -// *Requirements*: -// `0 != strides[i] for i in [0, m)` -// `ellipsis_mask must be a power of two (only one ellipsis)` -// -// Arguments: -// -// begin: `begin[k]` specifies the offset into the `k`th range specification. -// The exact dimension this corresponds to will be determined by context. -// Out-of-bounds values will be silently clamped. If the `k`th bit of -// `begin_mask` then `begin[k]` is ignored and the full range of the -// appropriate dimension is used instead. Negative values causes indexing -// to start from the highest element e.g. If `foo==[1,2,3]` then `foo[-1]==3`. -// end: `end[i]` is like `begin` with the exception that `end_mask` is -// used to determine full ranges. -// strides: `strides[i]` specifies the increment in the `i`th specification -// after extracting a given element. Negative indices will reverse -// the original order. Out or range values are -// clamped to `[0,dim[i]) if slice[i]>0` or `[-1,dim[i]-1] if slice[i] < 0` -func StridedSlice(scope *Scope, input tf.Output, begin tf.Output, end tf.Output, strides tf.Output, optional ...StridedSliceAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StridedSlice", - Input: []tf.Input{ - input, begin, end, strides, - }, - Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) @@ -2200,303 +1920,6 @@ func ReverseSequence(scope *Scope, input tf.Output, seq_lengths tf.Output, seq_d return op.Output(0) } -// Ensures that the tensor's shape matches the expected shape. -// -// Raises an error if the input tensor's shape does not match the specified shape. -// Returns the input tensor otherwise. -// -// Arguments: -// input: A tensor, whose shape is to be validated. -// shape: The expected (possibly partially specified) shape of the input tensor. -// -// Returns A tensor with the same shape and contents as the input tensor or value. -func EnsureShape(scope *Scope, input tf.Output, shape tf.Shape) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"shape": shape} - opspec := tf.OpSpec{ - Type: "EnsureShape", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ShapeNAttr is an optional argument to ShapeN. -type ShapeNAttr func(optionalAttr) - -// ShapeNOutType sets the optional out_type attribute to value. -// If not specified, defaults to DT_INT32 -func ShapeNOutType(value tf.DataType) ShapeNAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// Returns shape of tensors. -// -// This operation returns N 1-D integer tensors representing shape of `input[i]s`. -func ShapeN(scope *Scope, input []tf.Output, optional ...ShapeNAttr) (output []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ShapeN", - Input: []tf.Input{ - tf.OutputList(input), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if output, idx, err = makeOutputList(op, idx, "output"); err != nil { - scope.UpdateErr("ShapeN", err) - return - } - return output -} - -// ShapeAttr is an optional argument to Shape. -type ShapeAttr func(optionalAttr) - -// ShapeOutType sets the optional out_type attribute to value. -// If not specified, defaults to DT_INT32 -func ShapeOutType(value tf.DataType) ShapeAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// Returns the shape of a tensor. -// -// This operation returns a 1-D integer tensor representing the shape of `input`. -// -// For example: -// -// ``` -// # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] -// shape(t) ==> [2, 2, 3] -// ``` -func Shape(scope *Scope, input tf.Output, optional ...ShapeAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Shape", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// UniqueWithCountsAttr is an optional argument to UniqueWithCounts. -type UniqueWithCountsAttr func(optionalAttr) - -// UniqueWithCountsOutIdx sets the optional out_idx attribute to value. -// If not specified, defaults to DT_INT32 -func UniqueWithCountsOutIdx(value tf.DataType) UniqueWithCountsAttr { - return func(m optionalAttr) { - m["out_idx"] = value - } -} - -// Finds unique elements in a 1-D tensor. -// -// This operation returns a tensor `y` containing all of the unique elements of `x` -// sorted in the same order that they occur in `x`. This operation also returns a -// tensor `idx` the same size as `x` that contains the index of each value of `x` -// in the unique output `y`. Finally, it returns a third tensor `count` that -// contains the count of each element of `y` in `x`. In other words: -// -// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` -// -// For example: -// -// ``` -// # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] -// y, idx, count = unique_with_counts(x) -// y ==> [1, 2, 4, 7, 8] -// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] -// count ==> [2, 1, 3, 1, 2] -// ``` -// -// Arguments: -// x: 1-D. -// -// Returns 1-D.1-D.1-D. -func UniqueWithCounts(scope *Scope, x tf.Output, optional ...UniqueWithCountsAttr) (y tf.Output, idx tf.Output, count tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "UniqueWithCounts", - Input: []tf.Input{ - x, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// UniqueV2Attr is an optional argument to UniqueV2. -type UniqueV2Attr func(optionalAttr) - -// UniqueV2OutIdx sets the optional out_idx attribute to value. -// If not specified, defaults to DT_INT32 -func UniqueV2OutIdx(value tf.DataType) UniqueV2Attr { - return func(m optionalAttr) { - m["out_idx"] = value - } -} - -// Finds unique elements along an axis of a tensor. -// -// This operation either returns a tensor `y` containing unique elements -// along the `axis` of a tensor. The returned unique elements is sorted -// in the same order as they occur along `axis` in `x`. -// This operation also returns a tensor `idx` that is the same size as -// the number of the elements in `x` along the `axis` dimension. It -// contains the index in the unique output `y`. -// In other words, for an `1-D` tensor `x` with `axis = None: -// -// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` -// -// For example: -// -// ``` -// # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] -// y, idx = unique(x) -// y ==> [1, 2, 4, 7, 8] -// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] -// ``` -// -// For an `2-D` tensor `x` with `axis = 0`: -// -// ``` -// # tensor 'x' is [[1, 0, 0], -// # [1, 0, 0], -// # [2, 0, 0]] -// y, idx = unique(x, axis=0) -// y ==> [[1, 0, 0], -// [2, 0, 0]] -// idx ==> [0, 0, 1] -// ``` -// -// For an `2-D` tensor `x` with `axis = 1`: -// -// ``` -// # tensor 'x' is [[1, 0, 0], -// # [1, 0, 0], -// # [2, 0, 0]] -// y, idx = unique(x, axis=1) -// y ==> [[1, 0], -// [1, 0], -// [2, 0]] -// idx ==> [0, 1, 1] -// ``` -// -// Arguments: -// x: A `Tensor`. -// axis: A `Tensor` of type `int32` (default: None). The axis of the Tensor to -// find the unique elements. -// -// Returns A `Tensor`. Unique elements along the `axis` of `Tensor` x.A 1-D Tensor. Has the same type as x that contains the index of each -// value of x in the output y. -func UniqueV2(scope *Scope, x tf.Output, axis tf.Output, optional ...UniqueV2Attr) (y tf.Output, idx tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "UniqueV2", - Input: []tf.Input{ - x, axis, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// UniqueAttr is an optional argument to Unique. -type UniqueAttr func(optionalAttr) - -// UniqueOutIdx sets the optional out_idx attribute to value. -// If not specified, defaults to DT_INT32 -func UniqueOutIdx(value tf.DataType) UniqueAttr { - return func(m optionalAttr) { - m["out_idx"] = value - } -} - -// Finds unique elements in a 1-D tensor. -// -// This operation returns a tensor `y` containing all of the unique elements of `x` -// sorted in the same order that they occur in `x`. This operation also returns a -// tensor `idx` the same size as `x` that contains the index of each value of `x` -// in the unique output `y`. In other words: -// -// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` -// -// For example: -// -// ``` -// # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] -// y, idx = unique(x) -// y ==> [1, 2, 4, 7, 8] -// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] -// ``` -// -// Arguments: -// x: 1-D. -// -// Returns 1-D.1-D. -func Unique(scope *Scope, x tf.Output, optional ...UniqueAttr) (y tf.Output, idx tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Unique", - Input: []tf.Input{ - x, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - // Computes the inverse permutation of a tensor. // // This operation computes the inverse of an index permutation. It takes a 1-D @@ -2604,60 +2027,6 @@ func PreventGradient(scope *Scope, input tf.Output, optional ...PreventGradientA return op.Output(0) } -// Stops gradient computation. -// -// When executed in a graph, this op outputs its input tensor as-is. -// -// When building ops to compute gradients, this op prevents the contribution of -// its inputs to be taken into account. Normally, the gradient generator adds ops -// to a graph to compute the derivatives of a specified 'loss' by recursively -// finding out inputs that contributed to its computation. If you insert this op -// in the graph it inputs are masked from the gradient generator. They are not -// taken into account for computing gradients. -// -// This is useful any time you want to compute a value with TensorFlow but need -// to pretend that the value was a constant. Some examples include: -// -// * The *EM* algorithm where the *M-step* should not involve backpropagation -// through the output of the *E-step*. -// * Contrastive divergence training of Boltzmann machines where, when -// differentiating the energy function, the training must not backpropagate -// through the graph that generated the samples from the model. -// * Adversarial training, where no backprop should happen through the adversarial -// example generation process. -func StopGradient(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "StopGradient", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Identity op for gradient debugging. -// -// This op is hidden from public in Python. It is used by TensorFlow Debugger to -// register gradient tensors for gradient debugging. -// This op operates on non-reference-type tensors. -func DebugGradientIdentity(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "DebugGradientIdentity", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Returns a list of tensors with the same shapes and contents as the input // // tensors. @@ -2713,133 +2082,6 @@ func Identity(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// Gather slices from `params` into a Tensor with shape specified by `indices`. -// -// `indices` is an K-dimensional integer tensor, best thought of as a -// (K-1)-dimensional tensor of indices into `params`, where each element defines a -// slice of `params`: -// -// output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]] -// -// Whereas in `tf.gather` `indices` defines slices into the first -// dimension of `params`, in `tf.gather_nd`, `indices` defines slices into the -// first `N` dimensions of `params`, where `N = indices.shape[-1]`. -// -// The last dimension of `indices` can be at most the rank of -// `params`: -// -// indices.shape[-1] <= params.rank -// -// The last dimension of `indices` corresponds to elements -// (if `indices.shape[-1] == params.rank`) or slices -// (if `indices.shape[-1] < params.rank`) along dimension `indices.shape[-1]` -// of `params`. The output tensor has shape -// -// indices.shape[:-1] + params.shape[indices.shape[-1]:] -// -// Note that on CPU, if an out of bound index is found, an error is returned. -// On GPU, if an out of bound index is found, a 0 is stored in the -// corresponding output value. -// -// Some examples below. -// -// Simple indexing into a matrix: -// -// ```python -// indices = [[0, 0], [1, 1]] -// params = [['a', 'b'], ['c', 'd']] -// output = ['a', 'd'] -// ``` -// -// Slice indexing into a matrix: -// -// ```python -// indices = [[1], [0]] -// params = [['a', 'b'], ['c', 'd']] -// output = [['c', 'd'], ['a', 'b']] -// ``` -// -// Indexing into a 3-tensor: -// -// ```python -// indices = [[1]] -// params = [[['a0', 'b0'], ['c0', 'd0']], -// [['a1', 'b1'], ['c1', 'd1']]] -// output = [[['a1', 'b1'], ['c1', 'd1']]] -// -// -// indices = [[0, 1], [1, 0]] -// params = [[['a0', 'b0'], ['c0', 'd0']], -// [['a1', 'b1'], ['c1', 'd1']]] -// output = [['c0', 'd0'], ['a1', 'b1']] -// -// -// indices = [[0, 0, 1], [1, 0, 1]] -// params = [[['a0', 'b0'], ['c0', 'd0']], -// [['a1', 'b1'], ['c1', 'd1']]] -// output = ['b0', 'b1'] -// ``` -// -// Batched indexing into a matrix: -// -// ```python -// indices = [[[0, 0]], [[0, 1]]] -// params = [['a', 'b'], ['c', 'd']] -// output = [['a'], ['b']] -// ``` -// -// Batched slice indexing into a matrix: -// -// ```python -// indices = [[[1]], [[0]]] -// params = [['a', 'b'], ['c', 'd']] -// output = [[['c', 'd']], [['a', 'b']]] -// ``` -// -// Batched indexing into a 3-tensor: -// -// ```python -// indices = [[[1]], [[0]]] -// params = [[['a0', 'b0'], ['c0', 'd0']], -// [['a1', 'b1'], ['c1', 'd1']]] -// output = [[[['a1', 'b1'], ['c1', 'd1']]], -// [[['a0', 'b0'], ['c0', 'd0']]]] -// -// indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]] -// params = [[['a0', 'b0'], ['c0', 'd0']], -// [['a1', 'b1'], ['c1', 'd1']]] -// output = [[['c0', 'd0'], ['a1', 'b1']], -// [['a0', 'b0'], ['c1', 'd1']]] -// -// -// indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]] -// params = [[['a0', 'b0'], ['c0', 'd0']], -// [['a1', 'b1'], ['c1', 'd1']]] -// output = [['b0', 'b1'], ['d0', 'c1']] -// ``` -// -// See also `tf.gather` and `tf.batch_gather`. -// -// Arguments: -// params: The tensor from which to gather values. -// indices: Index tensor. -// -// Returns Values from `params` gathered from indices given by `indices`, with -// shape `indices.shape[:-1] + params.shape[indices.shape[-1]:]`. -func GatherNd(scope *Scope, params tf.Output, indices tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "GatherNd", - Input: []tf.Input{ - params, indices, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Gather slices from `params` axis `axis` according to `indices`. // // `indices` must be an integer tensor of any dimension (usually 0-D or 1-D). @@ -2893,6 +2135,106 @@ func GatherV2(scope *Scope, params tf.Output, indices tf.Output, axis tf.Output) return op.Output(0) } +// GatherAttr is an optional argument to Gather. +type GatherAttr func(optionalAttr) + +// GatherValidateIndices sets the optional validate_indices attribute to value. +// If not specified, defaults to true +func GatherValidateIndices(value bool) GatherAttr { + return func(m optionalAttr) { + m["validate_indices"] = value + } +} + +// Gather slices from `params` according to `indices`. +// +// `indices` must be an integer tensor of any dimension (usually 0-D or 1-D). +// Produces an output tensor with shape `indices.shape + params.shape[1:]` where: +// +// ```python +// # Scalar indices +// output[:, ..., :] = params[indices, :, ... :] +// +// # Vector indices +// output[i, :, ..., :] = params[indices[i], :, ... :] +// +// # Higher rank indices +// output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :] +// ``` +// +// If `indices` is a permutation and `len(indices) == params.shape[0]` then +// this operation will permute `params` accordingly. +// +// `validate_indices`: DEPRECATED. If this operation is assigned to CPU, values in +// `indices` are always validated to be within range. If assigned to GPU, +// out-of-bound indices result in safe but unspecified behavior, which may include +// raising an error. +// +//
+// +//
+func Gather(scope *Scope, params tf.Output, indices tf.Output, optional ...GatherAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Gather", + Input: []tf.Input{ + params, indices, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a tensor filled with a scalar value. +// +// This operation creates a tensor of shape `dims` and fills it with `value`. +// +// For example: +// +// ``` +// # Output tensor has shape [2, 3]. +// fill([2, 3], 9) ==> [[9, 9, 9] +// [9, 9, 9]] +// ``` +// +// `tf.fill` differs from `tf.constant` in a few ways: +// +// * `tf.fill` only supports scalar contents, whereas `tf.constant` supports +// Tensor values. +// * `tf.fill` creates an Op in the computation graph that constructs the actual +// Tensor value at runtime. This is in contrast to `tf.constant` which embeds +// the entire Tensor into the graph with a `Const` node. +// * Because `tf.fill` evaluates at graph runtime, it supports dynamic shapes +// based on other runtime Tensors, unlike `tf.constant`. +// +// Arguments: +// dims: 1-D. Represents the shape of the output tensor. +// value: 0-D (scalar). Value to fill the returned tensor. +// +// @compatibility(numpy) +// Equivalent to np.full +// @end_compatibility +func Fill(scope *Scope, dims tf.Output, value tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Fill", + Input: []tf.Input{ + dims, value, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // EditDistanceAttr is an optional argument to EditDistance. type EditDistanceAttr func(optionalAttr) @@ -3048,35 +2390,6 @@ func ReverseV2(scope *Scope, tensor tf.Output, axis tf.Output) (output tf.Output return op.Output(0) } -// Returns the rank of a tensor. -// -// This operation returns an integer representing the rank of `input`. -// -// For example: -// -// ``` -// # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] -// # shape of tensor 't' is [2, 2, 3] -// rank(t) ==> 3 -// ``` -// -// **Note**: The rank of a tensor is not the same as the rank of a matrix. The rank -// of a tensor is the number of indices required to uniquely select each element -// of the tensor. Rank is also known as "order", "degree", or "ndims." -func Rank(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Rank", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Reverses specific dimensions of a tensor. // // Given a `tensor`, and a `bool` tensor `dims` representing the dimensions @@ -3207,6 +2520,56 @@ func MatrixBandPart(scope *Scope, input tf.Output, num_lower tf.Output, num_uppe return op.Output(0) } +// Returns the batched diagonal part of a batched tensor. +// +// This operation returns a tensor with the `diagonal` part +// of the batched `input`. The `diagonal` part is computed as follows: +// +// Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a +// tensor of rank `k - 1` with dimensions `[I, J, K, ..., min(M, N)]` where: +// +// `diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n]`. +// +// The input must be at least a matrix. +// +// For example: +// +// ``` +// # 'input' is [[[1, 0, 0, 0] +// [0, 2, 0, 0] +// [0, 0, 3, 0] +// [0, 0, 0, 4]], +// [[5, 0, 0, 0] +// [0, 6, 0, 0] +// [0, 0, 7, 0] +// [0, 0, 0, 8]]] +// +// and input.shape = (2, 4, 4) +// +// tf.matrix_diag_part(input) ==> [[1, 2, 3, 4], [5, 6, 7, 8]] +// +// which has shape (2, 4) +// ``` +// +// Arguments: +// input: Rank `k` tensor where `k >= 2`. +// +// Returns The extracted diagonal(s) having shape +// `diagonal.shape = input.shape[:-2] + [min(input.shape[-2:])]`. +func MatrixDiagPart(scope *Scope, input tf.Output) (diagonal tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "MatrixDiagPart", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Returns a batched matrix tensor with new batched diagonal values. // // Given `input` and `diagonal`, this operation returns a tensor with the @@ -3367,6 +2730,25 @@ func ImmutableConst(scope *Scope, dtype tf.DataType, shape tf.Shape, memory_regi return op.Output(0) } +// Returns a constant tensor on the host. Only for writing C++ tests. +// +// Arguments: +// value: Attr `value` is the tensor to return. +// +func HostConst(scope *Scope, value tf.Tensor, dtype tf.DataType) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"value": value, "dtype": dtype} + opspec := tf.OpSpec{ + Type: "HostConst", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Splits a tensor into `num_split` tensors along one dimension. // // Arguments: @@ -3404,6 +2786,48 @@ func Split(scope *Scope, axis tf.Output, value tf.Output, num_split int64) (outp return output } +// ShapeNAttr is an optional argument to ShapeN. +type ShapeNAttr func(optionalAttr) + +// ShapeNOutType sets the optional out_type attribute to value. +// If not specified, defaults to DT_INT32 +func ShapeNOutType(value tf.DataType) ShapeNAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// Returns shape of tensors. +// +// This operation returns N 1-D integer tensors representing shape of `input[i]s`. +func ShapeN(scope *Scope, input []tf.Output, optional ...ShapeNAttr) (output []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ShapeN", + Input: []tf.Input{ + tf.OutputList(input), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if output, idx, err = makeOutputList(op, idx, "output"); err != nil { + scope.UpdateErr("ShapeN", err) + return + } + return output +} + // Computes offsets of concat inputs within its output. // // For example: @@ -3449,22 +2873,22 @@ func ConcatOffset(scope *Scope, concat_dim tf.Output, shape []tf.Output) (offset // Concatenates tensors along one dimension. // // Arguments: -// values: List of `N` Tensors to concatenate. Their ranks and types must match, +// concat_dim: 0-D. The dimension along which to concatenate. Must be in the +// range [0, rank(values)). +// values: The `N` Tensors to concatenate. Their ranks and types must match, // and their sizes must match in all dimensions except `concat_dim`. -// axis: 0-D. The dimension along which to concatenate. Must be in the -// range [-rank(values), rank(values)). // // Returns A `Tensor` with the concatenation of values stacked along the // `concat_dim` dimension. This tensor's shape matches that of `values` except // in `concat_dim` where it has the sum of the sizes. -func ConcatV2(scope *Scope, values []tf.Output, axis tf.Output) (output tf.Output) { +func Concat(scope *Scope, concat_dim tf.Output, values []tf.Output) (output tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "ConcatV2", + Type: "Concat", Input: []tf.Input{ - tf.OutputList(values), axis, + concat_dim, tf.OutputList(values), }, } op := scope.AddOperation(opspec) @@ -3607,6 +3031,30 @@ func InplaceSub(scope *Scope, x tf.Output, i tf.Output, v tf.Output) (y tf.Outpu return op.Output(0) } +// Adds v into specified rows of x. +// +// Computes y = x; y[i, :] += v; return y. +// +// Arguments: +// x: A `Tensor` of type T. +// i: A vector. Indices into the left-most dimension of `x`. +// v: A `Tensor` of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size. +// +// Returns A `Tensor` of type T. An alias of `x`. The content of `y` is undefined if there are duplicates in `i`. +func InplaceAdd(scope *Scope, x tf.Output, i tf.Output, v tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "InplaceAdd", + Input: []tf.Input{ + x, i, v, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Updates specified rows with values in `v`. // // Computes `x[i, :] = v; return x`. @@ -3708,6 +3156,74 @@ func Mfcc(scope *Scope, spectrogram tf.Output, sample_rate tf.Output, optional . return op.Output(0) } +// AudioSpectrogramAttr is an optional argument to AudioSpectrogram. +type AudioSpectrogramAttr func(optionalAttr) + +// AudioSpectrogramMagnitudeSquared sets the optional magnitude_squared attribute to value. +// +// value: Whether to return the squared magnitude or just the +// magnitude. Using squared magnitude can avoid extra calculations. +// If not specified, defaults to false +func AudioSpectrogramMagnitudeSquared(value bool) AudioSpectrogramAttr { + return func(m optionalAttr) { + m["magnitude_squared"] = value + } +} + +// Produces a visualization of audio data over time. +// +// Spectrograms are a standard way of representing audio information as a series of +// slices of frequency information, one slice for each window of time. By joining +// these together into a sequence, they form a distinctive fingerprint of the sound +// over time. +// +// This op expects to receive audio data as an input, stored as floats in the range +// -1 to 1, together with a window width in samples, and a stride specifying how +// far to move the window between slices. From this it generates a three +// dimensional output. The first dimension is for the channels in the input, so a +// stereo audio input would have two here for example. The second dimension is time, +// with successive frequency slices. The third dimension has an amplitude value for +// each frequency during that time slice. +// +// This means the layout when converted and saved as an image is rotated 90 degrees +// clockwise from a typical spectrogram. Time is descending down the Y axis, and +// the frequency decreases from left to right. +// +// Each value in the result represents the square root of the sum of the real and +// imaginary parts of an FFT on the current window of samples. In this way, the +// lowest dimension represents the power of each frequency in the current window, +// and adjacent windows are concatenated in the next dimension. +// +// To get a more intuitive and visual look at what this operation does, you can run +// tensorflow/examples/wav_to_spectrogram to read in an audio file and save out the +// resulting spectrogram as a PNG image. +// +// Arguments: +// input: Float representation of audio data. +// window_size: How wide the input window is in samples. For the highest efficiency +// this should be a power of two, but other values are accepted. +// stride: How widely apart the center of adjacent sample windows should be. +// +// Returns 3D representation of the audio frequencies as an image. +func AudioSpectrogram(scope *Scope, input tf.Output, window_size int64, stride int64, optional ...AudioSpectrogramAttr) (spectrogram tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"window_size": window_size, "stride": stride} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "AudioSpectrogram", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // DecodeWavAttr is an optional argument to DecodeWav. type DecodeWavAttr func(optionalAttr) @@ -3771,117 +3287,6 @@ func DecodeWav(scope *Scope, contents tf.Output, optional ...DecodeWavAttr) (aud return op.Output(0), op.Output(1) } -// BatchAttr is an optional argument to Batch. -type BatchAttr func(optionalAttr) - -// BatchMaxEnqueuedBatches sets the optional max_enqueued_batches attribute to value. -// If not specified, defaults to 10 -func BatchMaxEnqueuedBatches(value int64) BatchAttr { - return func(m optionalAttr) { - m["max_enqueued_batches"] = value - } -} - -// BatchAllowedBatchSizes sets the optional allowed_batch_sizes attribute to value. -// If not specified, defaults to <> -func BatchAllowedBatchSizes(value []int64) BatchAttr { - return func(m optionalAttr) { - m["allowed_batch_sizes"] = value - } -} - -// BatchContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func BatchContainer(value string) BatchAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// BatchSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func BatchSharedName(value string) BatchAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// BatchBatchingQueue sets the optional batching_queue attribute to value. -// If not specified, defaults to "" -func BatchBatchingQueue(value string) BatchAttr { - return func(m optionalAttr) { - m["batching_queue"] = value - } -} - -// Batches all input tensors nondeterministically. -// -// When many instances of this Op are being run concurrently with the same -// container/shared_name in the same device, some will output zero-shaped Tensors -// and others will output Tensors of size up to max_batch_size. -// -// All Tensors in in_tensors are batched together (so, for example, labels and -// features should be batched with a single instance of this operation. -// -// Each invocation of batch emits an `id` scalar which will be used to identify -// this particular invocation when doing unbatch or its gradient. -// -// Each op which emits a non-empty batch will also emit a non-empty batch_index -// Tensor, which, is a [K, 3] matrix where each row contains the invocation's id, -// start, and length of elements of each set of Tensors present in batched_tensors. -// -// Batched tensors are concatenated along the first dimension, and all tensors in -// in_tensors must have the first dimension of the same size. -// -// in_tensors: The tensors to be batched. -// num_batch_threads: Number of scheduling threads for processing batches of work. -// Determines the number of batches processed in parallel. -// max_batch_size: Batch sizes will never be bigger than this. -// batch_timeout_micros: Maximum number of microseconds to wait before outputting -// an incomplete batch. -// allowed_batch_sizes: Optional list of allowed batch sizes. If left empty, does -// nothing. Otherwise, supplies a list of batch sizes, causing the op to pad -// batches up to one of those sizes. The entries must increase monotonically, and -// the final entry must equal max_batch_size. -// grad_timeout_micros: The timeout to use for the gradient. See Unbatch. -// batched_tensors: Either empty tensors or a batch of concatenated Tensors. -// batch_index: If out_tensors is non-empty, has information to invert it. -// container: Controls the scope of sharing of this batch. -// id: always contains a scalar with a unique ID for this invocation of Batch. -// shared_name: Concurrently running instances of batch in the same device with the -// same container and shared_name will batch their elements together. If left -// empty, the op name will be used as the shared name. -// T: the types of tensors to be batched. -func Batch(scope *Scope, in_tensors []tf.Output, num_batch_threads int64, max_batch_size int64, batch_timeout_micros int64, grad_timeout_micros int64, optional ...BatchAttr) (batched_tensors []tf.Output, batch_index tf.Output, id tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_batch_threads": num_batch_threads, "max_batch_size": max_batch_size, "batch_timeout_micros": batch_timeout_micros, "grad_timeout_micros": grad_timeout_micros} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Batch", - Input: []tf.Input{ - tf.OutputList(in_tensors), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if batched_tensors, idx, err = makeOutputList(op, idx, "batched_tensors"); err != nil { - scope.UpdateErr("Batch", err) - return - } - batch_index = op.Output(idx) - id = op.Output(idx) - return batched_tensors, batch_index, id -} - // Elementwise computes the bitwise XOR of `x` and `y`. // // The result will have those bits set, that are different in `x` and `y`. The @@ -3900,18 +3305,80 @@ func BitwiseXor(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { return op.Output(0) } -// Flips all bits elementwise. +// Elementwise computes the bitwise OR of `x` and `y`. // -// The result will have exactly those bits set, that are not set in `x`. The -// computation is performed on the underlying representation of x. -func Invert(scope *Scope, x tf.Output) (y tf.Output) { +// The result will have those bits set, that are set in `x`, `y` or both. The +// computation is performed on the underlying representations of `x` and `y`. +func BitwiseOr(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Invert", + Type: "BitwiseOr", Input: []tf.Input{ - x, + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Gradient op for `MirrorPad` op. This op folds a mirror-padded tensor. +// +// This operation folds the padded areas of `input` by `MirrorPad` according to the +// `paddings` you specify. `paddings` must be the same as `paddings` argument +// given to the corresponding `MirrorPad` op. +// +// The folded size of each dimension D of the output is: +// +// `input.dim_size(D) - paddings(D, 0) - paddings(D, 1)` +// +// For example: +// +// ``` +// # 't' is [[1, 2, 3], [4, 5, 6], [7, 8, 9]]. +// # 'paddings' is [[0, 1]], [0, 1]]. +// # 'mode' is SYMMETRIC. +// # rank of 't' is 2. +// pad(t, paddings) ==> [[ 1, 5] +// [11, 28]] +// ``` +// +// Arguments: +// input: The input tensor to be folded. +// paddings: A two-column matrix specifying the padding sizes. The number of +// rows must be the same as the rank of `input`. +// mode: The mode used in the `MirrorPad` op. +// +// Returns The folded tensor. +func MirrorPadGrad(scope *Scope, input tf.Output, paddings tf.Output, mode string) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"mode": mode} + opspec := tf.OpSpec{ + Type: "MirrorPadGrad", + Input: []tf.Input{ + input, paddings, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Elementwise computes the bitwise AND of `x` and `y`. +// +// The result will have those bits set, that are set in both `x` and `y`. The +// computation is performed on the underlying representations of `x` and `y`. +func BitwiseAnd(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "BitwiseAnd", + Input: []tf.Input{ + x, y, }, } op := scope.AddOperation(opspec) @@ -3998,28 +3465,6 @@ func BoostedTreesQuantileStreamResourceFlush(scope *Scope, quantile_stream_resou return scope.AddOperation(opspec) } -// Deserialize bucket boundaries and ready flag into current QuantileAccumulator. -// -// An op that deserializes bucket boundaries and are boundaries ready flag into current QuantileAccumulator. -// -// Arguments: -// quantile_stream_resource_handle: resource handle referring to a QuantileStreamResource. -// bucket_boundaries: float; List of Rank 1 Tensors each containing the bucket boundaries for a feature. -// -// Returns the created operation. -func BoostedTreesQuantileStreamResourceDeserialize(scope *Scope, quantile_stream_resource_handle tf.Output, bucket_boundaries []tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BoostedTreesQuantileStreamResourceDeserialize", - Input: []tf.Input{ - quantile_stream_resource_handle, tf.OutputList(bucket_boundaries), - }, - } - return scope.AddOperation(opspec) -} - // Makes the summary of quantiles for the batch. // // An op that takes a list of tensors (one tensor per feature) and outputs the @@ -4055,28 +3500,27 @@ func BoostedTreesMakeQuantileSummaries(scope *Scope, float_values []tf.Output, e return summaries } -// BoostedTreesCreateQuantileStreamResourceAttr is an optional argument to BoostedTreesCreateQuantileStreamResource. -type BoostedTreesCreateQuantileStreamResourceAttr func(optionalAttr) +// BoostedTreesQuantileStreamResourceHandleOpAttr is an optional argument to BoostedTreesQuantileStreamResourceHandleOp. +type BoostedTreesQuantileStreamResourceHandleOpAttr func(optionalAttr) -// BoostedTreesCreateQuantileStreamResourceMaxElements sets the optional max_elements attribute to value. -// -// value: int; The maximum number of data points that can be fed to the stream. -// If not specified, defaults to 1099511627776 -func BoostedTreesCreateQuantileStreamResourceMaxElements(value int64) BoostedTreesCreateQuantileStreamResourceAttr { +// BoostedTreesQuantileStreamResourceHandleOpContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func BoostedTreesQuantileStreamResourceHandleOpContainer(value string) BoostedTreesQuantileStreamResourceHandleOpAttr { return func(m optionalAttr) { - m["max_elements"] = value + m["container"] = value } } -// Create the Resource for Quantile Streams. -// -// Arguments: -// quantile_stream_resource_handle: resource; Handle to quantile stream resource. -// epsilon: float; The required approximation error of the stream resource. -// num_streams: int; The number of streams managed by the resource that shares the same epsilon. -// -// Returns the created operation. -func BoostedTreesCreateQuantileStreamResource(scope *Scope, quantile_stream_resource_handle tf.Output, epsilon tf.Output, num_streams tf.Output, optional ...BoostedTreesCreateQuantileStreamResourceAttr) (o *tf.Operation) { +// BoostedTreesQuantileStreamResourceHandleOpSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func BoostedTreesQuantileStreamResourceHandleOpSharedName(value string) BoostedTreesQuantileStreamResourceHandleOpAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Creates a handle to a BoostedTreesQuantileStreamResource. +func BoostedTreesQuantileStreamResourceHandleOp(scope *Scope, optional ...BoostedTreesQuantileStreamResourceHandleOpAttr) (resource tf.Output) { if scope.Err() != nil { return } @@ -4085,13 +3529,36 @@ func BoostedTreesCreateQuantileStreamResource(scope *Scope, quantile_stream_reso a(attrs) } opspec := tf.OpSpec{ - Type: "BoostedTreesCreateQuantileStreamResource", - Input: []tf.Input{ - quantile_stream_resource_handle, epsilon, num_streams, - }, + Type: "BoostedTreesQuantileStreamResourceHandleOp", + Attrs: attrs, } - return scope.AddOperation(opspec) + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. Returns a boolean indicating whether to continue centering. +// +// Arguments: +// tree_ensemble_handle: Handle to the tree ensemble. +// mean_gradients: A tensor with shape=[logits_dimension] with mean of gradients for a first node. +// mean_hessians: A tensor with shape=[logits_dimension] mean of hessians for a first node. +// l1: l1 regularization factor on leaf weights, per instance based. +// l2: l2 regularization factor on leaf weights, per instance based. +// +// Returns Bool, whether to continue bias centering. +func BoostedTreesCenterBias(scope *Scope, tree_ensemble_handle tf.Output, mean_gradients tf.Output, mean_hessians tf.Output, l1 tf.Output, l2 tf.Output) (continue_centering tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "BoostedTreesCenterBias", + Input: []tf.Input{ + tree_ensemble_handle, mean_gradients, mean_hessians, l1, l2, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) } // Runs multiple additive regression ensemble predictors on input instances and @@ -4209,35 +3676,6 @@ func BoostedTreesAggregateStats(scope *Scope, node_ids tf.Output, gradients tf.O return op.Output(0) } -// Makes the summary of accumulated stats for the batch. -// -// The summary stats contains gradients and hessians accumulated into the corresponding node and bucket for each example. -// -// Arguments: -// node_ids: int32 Rank 1 Tensor containing node ids, which each example falls into for the requested layer. -// gradients: float32; Rank 2 Tensor (shape=[#examples, 1]) for gradients. -// hessians: float32; Rank 2 Tensor (shape=[#examples, 1]) for hessians. -// bucketized_features_list: int32 list of Rank 1 Tensors, each containing the bucketized feature (for each feature column). -// max_splits: int; the maximum number of splits possible in the whole tree. -// num_buckets: int; equals to the maximum possible value of bucketized feature. -// -// Returns output Rank 4 Tensor (shape=[#features, #splits, #buckets, 2]) containing accumulated stats put into the corresponding node and bucket. The first index of 4th dimension refers to gradients, and the second to hessians. -func BoostedTreesMakeStatsSummary(scope *Scope, node_ids tf.Output, gradients tf.Output, hessians tf.Output, bucketized_features_list []tf.Output, max_splits int64, num_buckets int64) (stats_summary tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"max_splits": max_splits, "num_buckets": num_buckets} - opspec := tf.OpSpec{ - Type: "BoostedTreesMakeStatsSummary", - Input: []tf.Input{ - node_ids, gradients, hessians, tf.OutputList(bucketized_features_list), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. // // Arguments: @@ -4374,26 +3812,6 @@ func BoostedTreesCalculateBestGainsPerFeature(scope *Scope, node_id_range tf.Out return node_ids_list, gains_list, thresholds_list, left_node_contribs_list, right_node_contribs_list } -// Checks whether a tree ensemble has been initialized. -// -// Arguments: -// tree_ensemble_handle: Handle to the tree ensemble resouce. -// -// Returns output boolean on whether it is initialized or not. -func IsBoostedTreesEnsembleInitialized(scope *Scope, tree_ensemble_handle tf.Output) (is_initialized tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "IsBoostedTreesEnsembleInitialized", - Input: []tf.Input{ - tree_ensemble_handle, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // BoostedTreesEnsembleResourceHandleOpAttr is an optional argument to BoostedTreesEnsembleResourceHandleOp. type BoostedTreesEnsembleResourceHandleOpAttr func(optionalAttr) @@ -4431,6 +3849,30 @@ func BoostedTreesEnsembleResourceHandleOp(scope *Scope, optional ...BoostedTrees return op.Output(0) } +// Output the logits for the given input data +// +// Arguments: +// tree_handle: Handle to the tree resource. +// dense_features: Rank 2 dense features tensor. +// logits_dimension: Scalar, dimension of the logits. +// +// Returns The logits predictions from the tree for each instance in the batch. +func TensorForestTreePredict(scope *Scope, tree_handle tf.Output, dense_features tf.Output, logits_dimension int64) (logits tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"logits_dimension": logits_dimension} + opspec := tf.OpSpec{ + Type: "TensorForestTreePredict", + Input: []tf.Input{ + tree_handle, dense_features, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Get the number of nodes in a tree // // Arguments: @@ -4471,6 +3913,26 @@ func TensorForestTreeDeserialize(scope *Scope, tree_handle tf.Output, tree_confi return scope.AddOperation(opspec) } +// Serializes the tree handle to a proto +// +// Arguments: +// tree_handle: Handle to the tree resource to be serialized. +// +// Returns Serialied proto string of the tree resource. +func TensorForestTreeSerialize(scope *Scope, tree_handle tf.Output) (tree_config tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorForestTreeSerialize", + Input: []tf.Input{ + tree_handle, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Creates a tree resource and returns a handle to it. // // Arguments: @@ -4766,117 +4228,150 @@ func FixedUnigramCandidateSampler(scope *Scope, true_classes tf.Output, num_true return op.Output(0), op.Output(1), op.Output(2) } -// Deserializes a serialized tree ensemble config and replaces current tree -// -// ensemble. -// -// Arguments: -// tree_ensemble_handle: Handle to the tree ensemble. -// stamp_token: Token to use as the new value of the resource stamp. -// tree_ensemble_serialized: Serialized proto of the ensemble. -// -// Returns the created operation. -func BoostedTreesDeserializeEnsemble(scope *Scope, tree_ensemble_handle tf.Output, stamp_token tf.Output, tree_ensemble_serialized tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BoostedTreesDeserializeEnsemble", - Input: []tf.Input{ - tree_ensemble_handle, stamp_token, tree_ensemble_serialized, - }, - } - return scope.AddOperation(opspec) -} +// LogUniformCandidateSamplerAttr is an optional argument to LogUniformCandidateSampler. +type LogUniformCandidateSamplerAttr func(optionalAttr) -// LoadAndRemapMatrixAttr is an optional argument to LoadAndRemapMatrix. -type LoadAndRemapMatrixAttr func(optionalAttr) - -// LoadAndRemapMatrixMaxRowsInMemory sets the optional max_rows_in_memory attribute to value. +// LogUniformCandidateSamplerSeed sets the optional seed attribute to value. // -// value: The maximum number of rows to load from the checkpoint at -// once. If less than or equal to 0, the entire matrix will be loaded into -// memory. Setting this arg trades increased disk reads for lower memory usage. -// If not specified, defaults to -1 -func LoadAndRemapMatrixMaxRowsInMemory(value int64) LoadAndRemapMatrixAttr { +// value: If either seed or seed2 are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func LogUniformCandidateSamplerSeed(value int64) LogUniformCandidateSamplerAttr { return func(m optionalAttr) { - m["max_rows_in_memory"] = value + m["seed"] = value } } -// Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint +// LogUniformCandidateSamplerSeed2 sets the optional seed2 attribute to value. // -// at `ckpt_path` and potentially reorders its rows and columns using the -// specified remappings. +// value: An second seed to avoid seed collision. +// If not specified, defaults to 0 +func LogUniformCandidateSamplerSeed2(value int64) LogUniformCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Generates labels for candidate sampling with a log-uniform distribution. // -// Most users should use one of the wrapper initializers (such as -// `tf.contrib.framework.load_and_remap_matrix_initializer`) instead of this -// function directly. +// See explanations of candidate sampling and the data formats at +// go/candidate-sampling. // -// The remappings are 1-D tensors with the following properties: +// For each batch, this op picks a single set of sampled candidate labels. // -// * `row_remapping` must have exactly `num_rows` entries. Row `i` of the output -// matrix will be initialized from the row corresponding to index -// `row_remapping[i]` in the old `Tensor` from the checkpoint. -// * `col_remapping` must have either 0 entries (indicating that no column -// reordering is needed) or `num_cols` entries. If specified, column `j` of the -// output matrix will be initialized from the column corresponding to index -// `col_remapping[j]` in the old `Tensor` from the checkpoint. -// * A value of -1 in either of the remappings signifies a "missing" entry. In that -// case, values from the `initializing_values` tensor will be used to fill that -// missing row or column. If `row_remapping` has `r` missing entries and -// `col_remapping` has `c` missing entries, then the following condition must be -// true: -// -// `(r * num_cols) + (c * num_rows) - (r * c) == len(initializing_values)` -// -// The remapping tensors can be generated using the GenerateVocabRemapping op. -// -// As an example, with row_remapping = [1, 0, -1], col_remapping = [0, 2, -1], -// initializing_values = [0.5, -0.5, 0.25, -0.25, 42], and w(i, j) representing -// the value from row i, column j of the old tensor in the checkpoint, the output -// matrix will look like the following: -// -// [[w(1, 0), w(1, 2), 0.5], -// [w(0, 0), w(0, 2), -0.5], -// [0.25, -0.25, 42]] +// The advantages of sampling candidates per-batch are simplicity and the +// possibility of efficient dense matrix multiplication. The disadvantage is that +// the sampled candidates must be chosen independently of the context and of the +// true labels. // // Arguments: -// ckpt_path: Path to the TensorFlow checkpoint (version 2, `TensorBundle`) from -// which the old matrix `Tensor` will be loaded. -// old_tensor_name: Name of the 2-D `Tensor` to load from checkpoint. -// row_remapping: An int `Tensor` of row remappings (generally created by -// `generate_vocab_remapping`). Even if no row remapping is needed, this must -// still be an index-valued Tensor (e.g. [0, 1, 2, ...]), or a shifted -// index-valued `Tensor` (e.g. [8, 9, 10, ...], for partitioned `Variables`). -// col_remapping: An int `Tensor` of column remappings (generally created by -// `generate_vocab_remapping`). May be a size-0 `Tensor` if only row remapping -// is to be done (e.g. column ordering is the same). -// initializing_values: A float `Tensor` containing values to fill in for cells -// in the output matrix that are not loaded from the checkpoint. Length must be -// exactly the same as the number of missing / new cells. -// num_rows: Number of rows (length of the 1st dimension) in the output matrix. -// num_cols: Number of columns (length of the 2nd dimension) in the output matrix. +// true_classes: A batch_size * num_true matrix, in which each row contains the +// IDs of the num_true target_classes in the corresponding original label. +// num_true: Number of true labels per context. +// num_sampled: Number of candidates to randomly sample. +// unique: If unique is true, we sample with rejection, so that all sampled +// candidates in a batch are unique. This requires some approximation to +// estimate the post-rejection sampling probabilities. +// range_max: The sampler will sample integers from the interval [0, range_max). // -// Returns Output matrix containing existing values loaded from the -// checkpoint, and with any missing values filled in from initializing_values. -func LoadAndRemapMatrix(scope *Scope, ckpt_path tf.Output, old_tensor_name tf.Output, row_remapping tf.Output, col_remapping tf.Output, initializing_values tf.Output, num_rows int64, num_cols int64, optional ...LoadAndRemapMatrixAttr) (output_matrix tf.Output) { +// Returns A vector of length num_sampled, in which each element is +// the ID of a sampled candidate.A batch_size * num_true matrix, representing +// the number of times each candidate is expected to occur in a batch +// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled +// candidate representing the number of times the candidate is expected +// to occur in a batch of sampled candidates. If unique=true, then this is a +// probability. +func LogUniformCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, range_max int64, optional ...LogUniformCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"num_rows": num_rows, "num_cols": num_cols} + attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique, "range_max": range_max} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "LoadAndRemapMatrix", + Type: "LogUniformCandidateSampler", Input: []tf.Input{ - ckpt_path, old_tensor_name, row_remapping, col_remapping, initializing_values, + true_classes, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1), op.Output(2) +} + +// UniformCandidateSamplerAttr is an optional argument to UniformCandidateSampler. +type UniformCandidateSamplerAttr func(optionalAttr) + +// UniformCandidateSamplerSeed sets the optional seed attribute to value. +// +// value: If either seed or seed2 are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func UniformCandidateSamplerSeed(value int64) UniformCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// UniformCandidateSamplerSeed2 sets the optional seed2 attribute to value. +// +// value: An second seed to avoid seed collision. +// If not specified, defaults to 0 +func UniformCandidateSamplerSeed2(value int64) UniformCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Generates labels for candidate sampling with a uniform distribution. +// +// See explanations of candidate sampling and the data formats at +// go/candidate-sampling. +// +// For each batch, this op picks a single set of sampled candidate labels. +// +// The advantages of sampling candidates per-batch are simplicity and the +// possibility of efficient dense matrix multiplication. The disadvantage is that +// the sampled candidates must be chosen independently of the context and of the +// true labels. +// +// Arguments: +// true_classes: A batch_size * num_true matrix, in which each row contains the +// IDs of the num_true target_classes in the corresponding original label. +// num_true: Number of true labels per context. +// num_sampled: Number of candidates to randomly sample. +// unique: If unique is true, we sample with rejection, so that all sampled +// candidates in a batch are unique. This requires some approximation to +// estimate the post-rejection sampling probabilities. +// range_max: The sampler will sample integers from the interval [0, range_max). +// +// Returns A vector of length num_sampled, in which each element is +// the ID of a sampled candidate.A batch_size * num_true matrix, representing +// the number of times each candidate is expected to occur in a batch +// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled +// candidate representing the number of times the candidate is expected +// to occur in a batch of sampled candidates. If unique=true, then this is a +// probability. +func UniformCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, range_max int64, optional ...UniformCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique, "range_max": range_max} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "UniformCandidateSampler", + Input: []tf.Input{ + true_classes, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) } // GenerateVocabRemappingAttr is an optional argument to GenerateVocabRemapping. @@ -4954,31 +4449,33 @@ func GenerateVocabRemapping(scope *Scope, new_vocab_file tf.Output, old_vocab_fi return op.Output(0), op.Output(1) } -// Returns the index of a data point that should be added to the seed set. +// Selects the k nearest centers for each point. // -// Entries in distances are assumed to be squared distances of candidate points to -// the already sampled centers in the seed set. The op constructs one Markov chain -// of the k-MC^2 algorithm and returns the index of one candidate point to be added -// as an additional cluster center. +// Rows of points are assumed to be input points. Rows of centers are assumed to be +// the list of candidate centers. For each point, the k centers that have least L2 +// distance to it are computed. // // Arguments: -// distances: Vector with squared distances to the closest previously sampled cluster center -// for each candidate point. -// seed: Scalar. Seed for initializing the random number generator. +// points: Matrix of shape (n, d). Rows are assumed to be input points. +// centers: Matrix of shape (m, d). Rows are assumed to be centers. +// k: Number of nearest centers to return for each point. If k is larger than m, then +// only m centers are returned. // -// Returns Scalar with the index of the sampled point. -func KMC2ChainInitialization(scope *Scope, distances tf.Output, seed tf.Output) (index tf.Output) { +// Returns Matrix of shape (n, min(m, k)). Each row contains the indices of the centers +// closest to the corresponding point, ordered by increasing distance.Matrix of shape (n, min(m, k)). Each row contains the squared L2 distance to the +// corresponding center in nearest_center_indices. +func NearestNeighbors(scope *Scope, points tf.Output, centers tf.Output, k tf.Output) (nearest_center_indices tf.Output, nearest_center_distances tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "KMC2ChainInitialization", + Type: "NearestNeighbors", Input: []tf.Input{ - distances, seed, + points, centers, k, }, } op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1) } // Selects num_to_sample rows of input using the KMeans++ criterion. @@ -5012,46 +4509,6 @@ func KmeansPlusPlusInitialization(scope *Scope, points tf.Output, num_to_sample return op.Output(0) } -// Reshapes a quantized tensor as per the Reshape op. -// -// ``` -// -// Arguments: -// -// shape: Defines the shape of the output tensor. -// input_min: The minimum value of the input. -// input_max: The maximum value of the input. -// -// Returns This value is copied from input_min.This value is copied from input_max. -func QuantizedReshape(scope *Scope, tensor tf.Output, shape tf.Output, input_min tf.Output, input_max tf.Output) (output tf.Output, output_min tf.Output, output_max tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "QuantizedReshape", - Input: []tf.Input{ - tensor, shape, input_min, input_max, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Receives a tensor value broadcast from another device. -func CollectiveBcastRecv(scope *Scope, T tf.DataType, group_size int64, group_key int64, instance_key int64, shape tf.Shape) (data tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"T": T, "group_size": group_size, "group_key": group_key, "instance_key": instance_key, "shape": shape} - opspec := tf.OpSpec{ - Type: "CollectiveBcastRecv", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Broadcasts a tensor value to one or more other devices. func CollectiveBcastSend(scope *Scope, input tf.Output, group_size int64, group_key int64, instance_key int64, shape tf.Shape) (data tf.Output) { if scope.Err() != nil { @@ -5069,23 +4526,6 @@ func CollectiveBcastSend(scope *Scope, input tf.Output, group_size int64, group_ return op.Output(0) } -// Mutually accumulates multiple tensors of identical type and shape. -func CollectiveGather(scope *Scope, input tf.Output, group_size int64, group_key int64, instance_key int64, shape tf.Shape) (data tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"group_size": group_size, "group_key": group_key, "instance_key": instance_key, "shape": shape} - opspec := tf.OpSpec{ - Type: "CollectiveGather", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // AbortAttr is an optional argument to Abort. type AbortAttr func(optionalAttr) @@ -5201,47 +4641,6 @@ func ControlTrigger(scope *Scope) (o *tf.Operation) { return scope.AddOperation(opspec) } -// Forwards the input to the output. -// -// This operator represents the loop termination condition used by the -// "pivot" switches of a loop. -// -// Arguments: -// input: A boolean scalar, representing the branch predicate of the Switch op. -// -// Returns The same tensor as `input`. -func LoopCond(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "LoopCond", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Elementwise computes the bitwise AND of `x` and `y`. -// -// The result will have those bits set, that are set in both `x` and `y`. The -// computation is performed on the underlying representations of `x` and `y`. -func BitwiseAnd(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BitwiseAnd", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Makes its input available to the next iteration. // // Arguments: @@ -5262,6 +4661,87 @@ func NextIteration(scope *Scope, data tf.Output) (output tf.Output) { return op.Output(0) } +// EnterAttr is an optional argument to Enter. +type EnterAttr func(optionalAttr) + +// EnterIsConstant sets the optional is_constant attribute to value. +// +// value: If true, the output is constant within the child frame. +// If not specified, defaults to false +func EnterIsConstant(value bool) EnterAttr { + return func(m optionalAttr) { + m["is_constant"] = value + } +} + +// EnterParallelIterations sets the optional parallel_iterations attribute to value. +// +// value: The number of iterations allowed to run in parallel. +// If not specified, defaults to 10 +func EnterParallelIterations(value int64) EnterAttr { + return func(m optionalAttr) { + m["parallel_iterations"] = value + } +} + +// Creates or finds a child frame, and makes `data` available to the child frame. +// +// This op is used together with `Exit` to create loops in the graph. +// The unique `frame_name` is used by the `Executor` to identify frames. If +// `is_constant` is true, `output` is a constant in the child frame; otherwise +// it may be changed in the child frame. At most `parallel_iterations` iterations +// are run in parallel in the child frame. +// +// Arguments: +// data: The tensor to be made available to the child frame. +// frame_name: The name of the child frame. +// +// Returns The same tensor as `data`. +func Enter(scope *Scope, data tf.Output, frame_name string, optional ...EnterAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"frame_name": frame_name} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Enter", + Input: []tf.Input{ + data, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Forwards `data` to the output port determined by `pred`. +// +// If `pred` is true, the `data` input is forwarded to `output_true`. Otherwise, +// the data goes to `output_false`. +// +// See also `RefSwitch` and `Merge`. +// +// Arguments: +// data: The tensor to be forwarded to the appropriate output. +// pred: A scalar that specifies which output port will receive data. +// +// Returns If `pred` is false, data will be forwarded to this output.If `pred` is true, data will be forwarded to this output. +func Switch(scope *Scope, data tf.Output, pred tf.Output) (output_false tf.Output, output_true tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Switch", + Input: []tf.Input{ + data, pred, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + // CTCGreedyDecoderAttr is an optional argument to CTCGreedyDecoder. type CTCGreedyDecoderAttr func(optionalAttr) @@ -5315,120 +4795,6 @@ func CTCGreedyDecoder(scope *Scope, inputs tf.Output, sequence_length tf.Output, return op.Output(0), op.Output(1), op.Output(2), op.Output(3) } -// CudnnRNNParamsToCanonicalAttr is an optional argument to CudnnRNNParamsToCanonical. -type CudnnRNNParamsToCanonicalAttr func(optionalAttr) - -// CudnnRNNParamsToCanonicalRnnMode sets the optional rnn_mode attribute to value. -// If not specified, defaults to "lstm" -func CudnnRNNParamsToCanonicalRnnMode(value string) CudnnRNNParamsToCanonicalAttr { - return func(m optionalAttr) { - m["rnn_mode"] = value - } -} - -// CudnnRNNParamsToCanonicalInputMode sets the optional input_mode attribute to value. -// If not specified, defaults to "linear_input" -func CudnnRNNParamsToCanonicalInputMode(value string) CudnnRNNParamsToCanonicalAttr { - return func(m optionalAttr) { - m["input_mode"] = value - } -} - -// CudnnRNNParamsToCanonicalDirection sets the optional direction attribute to value. -// If not specified, defaults to "unidirectional" -func CudnnRNNParamsToCanonicalDirection(value string) CudnnRNNParamsToCanonicalAttr { - return func(m optionalAttr) { - m["direction"] = value - } -} - -// CudnnRNNParamsToCanonicalDropout sets the optional dropout attribute to value. -// If not specified, defaults to 0 -func CudnnRNNParamsToCanonicalDropout(value float32) CudnnRNNParamsToCanonicalAttr { - return func(m optionalAttr) { - m["dropout"] = value - } -} - -// CudnnRNNParamsToCanonicalSeed sets the optional seed attribute to value. -// If not specified, defaults to 0 -func CudnnRNNParamsToCanonicalSeed(value int64) CudnnRNNParamsToCanonicalAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// CudnnRNNParamsToCanonicalSeed2 sets the optional seed2 attribute to value. -// If not specified, defaults to 0 -func CudnnRNNParamsToCanonicalSeed2(value int64) CudnnRNNParamsToCanonicalAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Retrieves CudnnRNN params in canonical form. -// -// Retrieves a set of weights from the opaque params buffer that can be saved and -// restored in a way compatible with future runs. -// -// Note that the params buffer may not be compatible across different GPUs. So any -// save and restoration should be converted to and from the canonical weights and -// biases. -// -// num_layers: Specifies the number of layers in the RNN model. -// num_units: Specifies the size of the hidden state. -// input_size: Specifies the size of the input state. -// num_params: number of parameter sets for all layers. -// Each layer may contain multiple parameter sets, with each set consisting of -// a weight matrix and a bias vector. -// weights: the canonical form of weights that can be used for saving -// and restoration. They are more likely to be compatible across different -// generations. -// biases: the canonical form of biases that can be used for saving -// and restoration. They are more likely to be compatible across different -// generations. -// rnn_mode: Indicates the type of the RNN model. -// input_mode: Indicate whether there is a linear projection between the input and -// The actual computation before the first layer. 'skip_input' is only allowed -// when input_size == num_units; 'auto_select' implies 'skip_input' when -// input_size == num_units; otherwise, it implies 'linear_input'. -// direction: Indicates whether a bidirectional model will be used. -// dir = (direction == bidirectional) ? 2 : 1 -// dropout: dropout probability. When set to 0., dropout is disabled. -// seed: the 1st part of a seed to initialize dropout. -// seed2: the 2nd part of a seed to initialize dropout. -func CudnnRNNParamsToCanonical(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, params tf.Output, num_params int64, optional ...CudnnRNNParamsToCanonicalAttr) (weights []tf.Output, biases []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_params": num_params} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "CudnnRNNParamsToCanonical", - Input: []tf.Input{ - num_layers, num_units, input_size, params, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if weights, idx, err = makeOutputList(op, idx, "weights"); err != nil { - scope.UpdateErr("CudnnRNNParamsToCanonical", err) - return - } - if biases, idx, err = makeOutputList(op, idx, "biases"); err != nil { - scope.UpdateErr("CudnnRNNParamsToCanonical", err) - return - } - return weights, biases -} - // CudnnRNNBackpropV3Attr is an optional argument to CudnnRNNBackpropV3. type CudnnRNNBackpropV3Attr func(optionalAttr) @@ -5667,6 +5033,119 @@ func CudnnRNNBackprop(scope *Scope, input tf.Output, input_h tf.Output, input_c return op.Output(0), op.Output(1), op.Output(2), op.Output(3) } +// CudnnRNNV2Attr is an optional argument to CudnnRNNV2. +type CudnnRNNV2Attr func(optionalAttr) + +// CudnnRNNV2RnnMode sets the optional rnn_mode attribute to value. +// If not specified, defaults to "lstm" +func CudnnRNNV2RnnMode(value string) CudnnRNNV2Attr { + return func(m optionalAttr) { + m["rnn_mode"] = value + } +} + +// CudnnRNNV2InputMode sets the optional input_mode attribute to value. +// If not specified, defaults to "linear_input" +func CudnnRNNV2InputMode(value string) CudnnRNNV2Attr { + return func(m optionalAttr) { + m["input_mode"] = value + } +} + +// CudnnRNNV2Direction sets the optional direction attribute to value. +// If not specified, defaults to "unidirectional" +func CudnnRNNV2Direction(value string) CudnnRNNV2Attr { + return func(m optionalAttr) { + m["direction"] = value + } +} + +// CudnnRNNV2Dropout sets the optional dropout attribute to value. +// If not specified, defaults to 0 +func CudnnRNNV2Dropout(value float32) CudnnRNNV2Attr { + return func(m optionalAttr) { + m["dropout"] = value + } +} + +// CudnnRNNV2Seed sets the optional seed attribute to value. +// If not specified, defaults to 0 +func CudnnRNNV2Seed(value int64) CudnnRNNV2Attr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// CudnnRNNV2Seed2 sets the optional seed2 attribute to value. +// If not specified, defaults to 0 +func CudnnRNNV2Seed2(value int64) CudnnRNNV2Attr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// CudnnRNNV2IsTraining sets the optional is_training attribute to value. +// If not specified, defaults to true +func CudnnRNNV2IsTraining(value bool) CudnnRNNV2Attr { + return func(m optionalAttr) { + m["is_training"] = value + } +} + +// A RNN backed by cuDNN. +// +// Computes the RNN from the input and initial states, with respect to the params +// buffer. Produces one extra output "host_reserved" than CudnnRNN. +// +// rnn_mode: Indicates the type of the RNN model. +// input_mode: Indicates whether there is a linear projection between the input and +// the actual computation before the first layer. 'skip_input' is only allowed +// when input_size == num_units; 'auto_select' implies 'skip_input' when +// input_size == num_units; otherwise, it implies 'linear_input'. +// direction: Indicates whether a bidirectional model will be used. Should be +// "unidirectional" or "bidirectional". +// dropout: Dropout probability. When set to 0., dropout is disabled. +// seed: The 1st part of a seed to initialize dropout. +// seed2: The 2nd part of a seed to initialize dropout. +// input: A 3-D tensor with the shape of [seq_length, batch_size, input_size]. +// input_h: A 3-D tensor with the shape of [num_layer * dir, batch_size, +// num_units]. +// input_c: For LSTM, a 3-D tensor with the shape of +// [num_layer * dir, batch, num_units]. For other models, it is ignored. +// params: A 1-D tensor that contains the weights and biases in an opaque layout. +// The size must be created through CudnnRNNParamsSize, and initialized +// separately. Note that they might not be compatible across different +// generations. So it is a good idea to save and restore +// output: A 3-D tensor with the shape of [seq_length, batch_size, +// dir * num_units]. +// output_h: The same shape has input_h. +// output_c: The same shape as input_c for LSTM. An empty tensor for other models. +// is_training: Indicates whether this operation is used for inferenece or +// training. +// reserve_space: An opaque tensor that can be used in backprop calculation. It +// is only produced if is_training is true. +// host_reserved: An opaque tensor that can be used in backprop calculation. It is +// only produced if is_training is true. It is output on host memory rather than +// device memory. +func CudnnRNNV2(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, params tf.Output, optional ...CudnnRNNV2Attr) (output tf.Output, output_h tf.Output, output_c tf.Output, reserve_space tf.Output, host_reserved tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CudnnRNNV2", + Input: []tf.Input{ + input, input_h, input_c, params, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) +} + // CudnnRNNAttr is an optional argument to CudnnRNN. type CudnnRNNAttr func(optionalAttr) @@ -5892,76 +5371,6 @@ func OrderedMapIncompleteSize(scope *Scope, dtypes []tf.DataType, optional ...Or return op.Output(0) } -// TensorStridedSliceUpdateAttr is an optional argument to TensorStridedSliceUpdate. -type TensorStridedSliceUpdateAttr func(optionalAttr) - -// TensorStridedSliceUpdateBeginMask sets the optional begin_mask attribute to value. -// If not specified, defaults to 0 -func TensorStridedSliceUpdateBeginMask(value int64) TensorStridedSliceUpdateAttr { - return func(m optionalAttr) { - m["begin_mask"] = value - } -} - -// TensorStridedSliceUpdateEndMask sets the optional end_mask attribute to value. -// If not specified, defaults to 0 -func TensorStridedSliceUpdateEndMask(value int64) TensorStridedSliceUpdateAttr { - return func(m optionalAttr) { - m["end_mask"] = value - } -} - -// TensorStridedSliceUpdateEllipsisMask sets the optional ellipsis_mask attribute to value. -// If not specified, defaults to 0 -func TensorStridedSliceUpdateEllipsisMask(value int64) TensorStridedSliceUpdateAttr { - return func(m optionalAttr) { - m["ellipsis_mask"] = value - } -} - -// TensorStridedSliceUpdateNewAxisMask sets the optional new_axis_mask attribute to value. -// If not specified, defaults to 0 -func TensorStridedSliceUpdateNewAxisMask(value int64) TensorStridedSliceUpdateAttr { - return func(m optionalAttr) { - m["new_axis_mask"] = value - } -} - -// TensorStridedSliceUpdateShrinkAxisMask sets the optional shrink_axis_mask attribute to value. -// If not specified, defaults to 0 -func TensorStridedSliceUpdateShrinkAxisMask(value int64) TensorStridedSliceUpdateAttr { - return func(m optionalAttr) { - m["shrink_axis_mask"] = value - } -} - -// Assign `value` to the sliced l-value reference of `input`. -// -// The values of `value` are assigned to the positions in the tensor `input` that -// are selected by the slice parameters. The slice parameters `begin` `end` -// `strides` etc. work exactly as in `StridedSlice`. -// -// NOTE this op currently does not support broadcasting and so `value`'s shape -// must be exactly the shape produced by the slice of `input`. -func TensorStridedSliceUpdate(scope *Scope, input tf.Output, begin tf.Output, end tf.Output, strides tf.Output, value tf.Output, optional ...TensorStridedSliceUpdateAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "TensorStridedSliceUpdate", - Input: []tf.Input{ - input, begin, end, strides, value, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // OrderedMapUnstageAttr is an optional argument to OrderedMapUnstage. type OrderedMapUnstageAttr func(optionalAttr) @@ -6105,6 +5514,64 @@ func OrderedMapPeek(scope *Scope, key tf.Output, indices tf.Output, dtypes []tf. return values } +// MapClearAttr is an optional argument to MapClear. +type MapClearAttr func(optionalAttr) + +// MapClearCapacity sets the optional capacity attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func MapClearCapacity(value int64) MapClearAttr { + return func(m optionalAttr) { + m["capacity"] = value + } +} + +// MapClearMemoryLimit sets the optional memory_limit attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func MapClearMemoryLimit(value int64) MapClearAttr { + return func(m optionalAttr) { + m["memory_limit"] = value + } +} + +// MapClearContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func MapClearContainer(value string) MapClearAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// MapClearSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func MapClearSharedName(value string) MapClearAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Op removes all elements in the underlying container. +// +// Returns the created operation. +func MapClear(scope *Scope, dtypes []tf.DataType, optional ...MapClearAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtypes": dtypes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "MapClear", + + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + // MapSizeAttr is an optional argument to MapSize. type MapSizeAttr func(optionalAttr) @@ -6380,121 +5847,6 @@ func MapStage(scope *Scope, key tf.Output, indices tf.Output, values []tf.Output return scope.AddOperation(opspec) } -// StageClearAttr is an optional argument to StageClear. -type StageClearAttr func(optionalAttr) - -// StageClearCapacity sets the optional capacity attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func StageClearCapacity(value int64) StageClearAttr { - return func(m optionalAttr) { - m["capacity"] = value - } -} - -// StageClearMemoryLimit sets the optional memory_limit attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func StageClearMemoryLimit(value int64) StageClearAttr { - return func(m optionalAttr) { - m["memory_limit"] = value - } -} - -// StageClearContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func StageClearContainer(value string) StageClearAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// StageClearSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func StageClearSharedName(value string) StageClearAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Op removes all elements in the underlying container. -// -// Returns the created operation. -func StageClear(scope *Scope, dtypes []tf.DataType, optional ...StageClearAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtypes": dtypes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StageClear", - - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// StageSizeAttr is an optional argument to StageSize. -type StageSizeAttr func(optionalAttr) - -// StageSizeCapacity sets the optional capacity attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func StageSizeCapacity(value int64) StageSizeAttr { - return func(m optionalAttr) { - m["capacity"] = value - } -} - -// StageSizeMemoryLimit sets the optional memory_limit attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func StageSizeMemoryLimit(value int64) StageSizeAttr { - return func(m optionalAttr) { - m["memory_limit"] = value - } -} - -// StageSizeContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func StageSizeContainer(value string) StageSizeAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// StageSizeSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func StageSizeSharedName(value string) StageSizeAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Op returns the number of elements in the underlying container. -func StageSize(scope *Scope, dtypes []tf.DataType, optional ...StageSizeAttr) (size tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtypes": dtypes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StageSize", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // StagePeekAttr is an optional argument to StagePeek. type StagePeekAttr func(optionalAttr) @@ -6714,30 +6066,6 @@ func Stage(scope *Scope, values []tf.Output, optional ...StageAttr) (o *tf.Opera return scope.AddOperation(opspec) } -// Output the logits for the given input data -// -// Arguments: -// tree_handle: Handle to the tree resource. -// dense_features: Rank 2 dense features tensor. -// logits_dimension: Scalar, dimension of the logits. -// -// Returns The logits predictions from the tree for each instance in the batch. -func TensorForestTreePredict(scope *Scope, tree_handle tf.Output, dense_features tf.Output, logits_dimension int64) (logits tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"logits_dimension": logits_dimension} - opspec := tf.OpSpec{ - Type: "TensorForestTreePredict", - Input: []tf.Input{ - tree_handle, dense_features, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Get the value of the tensor specified by its handle. // // Arguments: @@ -6968,22 +6296,21 @@ func QuantizeV2(scope *Scope, input tf.Output, min_range tf.Output, max_range tf return op.Output(0), op.Output(1), op.Output(2) } -// Deprecated. Use TensorArrayCloseV3 +// Deprecated. Use TensorArraySizeV3 // -// DEPRECATED at GraphDef version 26: Use TensorArrayCloseV3 -// -// Returns the created operation. -func TensorArrayCloseV2(scope *Scope, handle tf.Output) (o *tf.Operation) { +// DEPRECATED at GraphDef version 26: Use TensorArraySizeV3 +func TensorArraySizeV2(scope *Scope, handle tf.Output, flow_in tf.Output) (size tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "TensorArrayCloseV2", + Type: "TensorArraySizeV2", Input: []tf.Input{ - handle, + handle, flow_in, }, } - return scope.AddOperation(opspec) + op := scope.AddOperation(opspec) + return op.Output(0) } // Deprecated. Use TensorArrayScatterV3 @@ -7053,63 +6380,6 @@ func TensorArrayWriteV2(scope *Scope, handle tf.Output, index tf.Output, value t return op.Output(0) } -// GatherAttr is an optional argument to Gather. -type GatherAttr func(optionalAttr) - -// GatherValidateIndices sets the optional validate_indices attribute to value. -// If not specified, defaults to true -func GatherValidateIndices(value bool) GatherAttr { - return func(m optionalAttr) { - m["validate_indices"] = value - } -} - -// Gather slices from `params` according to `indices`. -// -// `indices` must be an integer tensor of any dimension (usually 0-D or 1-D). -// Produces an output tensor with shape `indices.shape + params.shape[1:]` where: -// -// ```python -// # Scalar indices -// output[:, ..., :] = params[indices, :, ... :] -// -// # Vector indices -// output[i, :, ..., :] = params[indices[i], :, ... :] -// -// # Higher rank indices -// output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :] -// ``` -// -// If `indices` is a permutation and `len(indices) == params.shape[0]` then -// this operation will permute `params` accordingly. -// -// `validate_indices`: DEPRECATED. If this operation is assigned to CPU, values in -// `indices` are always validated to be within range. If assigned to GPU, -// out-of-bound indices result in safe but unspecified behavior, which may include -// raising an error. -// -//
-// -//
-func Gather(scope *Scope, params tf.Output, indices tf.Output, optional ...GatherAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Gather", - Input: []tf.Input{ - params, indices, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // TensorArrayV2Attr is an optional argument to TensorArrayV2. type TensorArrayV2Attr func(optionalAttr) @@ -7209,6 +6479,77 @@ func TensorArraySplitV3(scope *Scope, handle tf.Output, value tf.Output, lengths return op.Output(0) } +// Scatter the data from the input value into specific TensorArray elements. +// +// `indices` must be a vector, its length must match the first dim of `value`. +// +// Arguments: +// handle: The handle to a TensorArray. +// indices: The locations at which to write the tensor elements. +// value: The concatenated tensor to write to the TensorArray. +// flow_in: A float scalar that enforces proper chaining of operations. +// +// Returns A float scalar that enforces proper chaining of operations. +func TensorArrayScatterV3(scope *Scope, handle tf.Output, indices tf.Output, value tf.Output, flow_in tf.Output) (flow_out tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorArrayScatterV3", + Input: []tf.Input{ + handle, indices, value, flow_in, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// TensorArrayGatherV3Attr is an optional argument to TensorArrayGatherV3. +type TensorArrayGatherV3Attr func(optionalAttr) + +// TensorArrayGatherV3ElementShape sets the optional element_shape attribute to value. +// +// value: The expected shape of an element, if known. Used to +// validate the shapes of TensorArray elements. If this shape is not +// fully specified, gathering zero-size TensorArrays is an error. +// If not specified, defaults to +func TensorArrayGatherV3ElementShape(value tf.Shape) TensorArrayGatherV3Attr { + return func(m optionalAttr) { + m["element_shape"] = value + } +} + +// Gather specific elements from the TensorArray into output `value`. +// +// All elements selected by `indices` must have the same shape. +// +// Arguments: +// handle: The handle to a TensorArray. +// indices: The locations in the TensorArray from which to read tensor elements. +// flow_in: A float scalar that enforces proper chaining of operations. +// dtype: The type of the elem that is returned. +// +// Returns All of the elements in the TensorArray, concatenated along a new +// axis (the new dimension 0). +func TensorArrayGatherV3(scope *Scope, handle tf.Output, indices tf.Output, flow_in tf.Output, dtype tf.DataType, optional ...TensorArrayGatherV3Attr) (value tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TensorArrayGatherV3", + Input: []tf.Input{ + handle, indices, flow_in, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Push an element onto the tensor_array. // // Arguments: @@ -7474,56 +6815,6 @@ func StackPushV2(scope *Scope, handle tf.Output, elem tf.Output, optional ...Sta return op.Output(0) } -// Returns the batched diagonal part of a batched tensor. -// -// This operation returns a tensor with the `diagonal` part -// of the batched `input`. The `diagonal` part is computed as follows: -// -// Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a -// tensor of rank `k - 1` with dimensions `[I, J, K, ..., min(M, N)]` where: -// -// `diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n]`. -// -// The input must be at least a matrix. -// -// For example: -// -// ``` -// # 'input' is [[[1, 0, 0, 0] -// [0, 2, 0, 0] -// [0, 0, 3, 0] -// [0, 0, 0, 4]], -// [[5, 0, 0, 0] -// [0, 6, 0, 0] -// [0, 0, 7, 0] -// [0, 0, 0, 8]]] -// -// and input.shape = (2, 4, 4) -// -// tf.matrix_diag_part(input) ==> [[1, 2, 3, 4], [5, 6, 7, 8]] -// -// which has shape (2, 4) -// ``` -// -// Arguments: -// input: Rank `k` tensor where `k >= 2`. -// -// Returns The extracted diagonal(s) having shape -// `diagonal.shape = input.shape[:-2] + [min(input.shape[-2:])]`. -func MatrixDiagPart(scope *Scope, input tf.Output) (diagonal tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "MatrixDiagPart", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Computes the number of elements in the given queue. // // Arguments: @@ -7657,6 +6948,68 @@ func QueueDequeueUpToV2(scope *Scope, handle tf.Output, n tf.Output, component_t return components } +// SqueezeAttr is an optional argument to Squeeze. +type SqueezeAttr func(optionalAttr) + +// SqueezeAxis sets the optional axis attribute to value. +// +// value: If specified, only squeezes the dimensions listed. The dimension +// index starts at 0. It is an error to squeeze a dimension that is not 1. Must +// be in the range `[-rank(input), rank(input))`. +// If not specified, defaults to <> +// +// REQUIRES: len(value) >= 0 +func SqueezeAxis(value []int64) SqueezeAttr { + return func(m optionalAttr) { + m["squeeze_dims"] = value + } +} + +// Removes dimensions of size 1 from the shape of a tensor. +// +// Given a tensor `input`, this operation returns a tensor of the same type with +// all dimensions of size 1 removed. If you don't want to remove all size 1 +// dimensions, you can remove specific size 1 dimensions by specifying +// `axis`. +// +// For example: +// +// ``` +// # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] +// shape(squeeze(t)) ==> [2, 3] +// ``` +// +// Or, to remove specific size 1 dimensions: +// +// ``` +// # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] +// shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1] +// ``` +// +// Arguments: +// input: The `input` to squeeze. +// +// Returns Contains the same data as `input`, but has one or more dimensions of +// size 1 removed. +func Squeeze(scope *Scope, input tf.Output, optional ...SqueezeAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Squeeze", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // QueueEnqueueManyV2Attr is an optional argument to QueueEnqueueManyV2. type QueueEnqueueManyV2Attr func(optionalAttr) @@ -8015,18 +7368,36 @@ func RandomShuffleQueueV2(scope *Scope, component_types []tf.DataType, optional return op.Output(0) } -// Shuffle dimensions of x according to a permutation. +// Receives a tensor value broadcast from another device. +func CollectiveBcastRecv(scope *Scope, T tf.DataType, group_size int64, group_key int64, instance_key int64, shape tf.Shape) (data tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"T": T, "group_size": group_size, "group_key": group_key, "instance_key": instance_key, "shape": shape} + opspec := tf.OpSpec{ + Type: "CollectiveBcastRecv", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Store the input tensor in the state of the current session. // -// The output `y` has the same rank as `x`. The shapes of `x` and `y` satisfy: -// `y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]` -func Transpose(scope *Scope, x tf.Output, perm tf.Output) (y tf.Output) { +// Arguments: +// value: The tensor to be stored. +// +// Returns The handle for the tensor stored in the session state, represented +// as a string. +func GetSessionHandle(scope *Scope, value tf.Output) (handle tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Transpose", + Type: "GetSessionHandle", Input: []tf.Input{ - x, perm, + value, }, } op := scope.AddOperation(opspec) @@ -8189,6 +7560,45 @@ func MultiDeviceIteratorGetNextFromShard(scope *Scope, multi_device_iterator tf. return components } +// BoostedTreesCreateQuantileStreamResourceAttr is an optional argument to BoostedTreesCreateQuantileStreamResource. +type BoostedTreesCreateQuantileStreamResourceAttr func(optionalAttr) + +// BoostedTreesCreateQuantileStreamResourceMaxElements sets the optional max_elements attribute to value. +// +// value: int; The maximum number of data points that can be fed to the stream. +// If not specified, defaults to 1099511627776 +func BoostedTreesCreateQuantileStreamResourceMaxElements(value int64) BoostedTreesCreateQuantileStreamResourceAttr { + return func(m optionalAttr) { + m["max_elements"] = value + } +} + +// Create the Resource for Quantile Streams. +// +// Arguments: +// quantile_stream_resource_handle: resource; Handle to quantile stream resource. +// epsilon: float; The required approximation error of the stream resource. +// num_streams: int; The number of streams managed by the resource that shares the same epsilon. +// +// Returns the created operation. +func BoostedTreesCreateQuantileStreamResource(scope *Scope, quantile_stream_resource_handle tf.Output, epsilon tf.Output, num_streams tf.Output, optional ...BoostedTreesCreateQuantileStreamResourceAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "BoostedTreesCreateQuantileStreamResource", + Input: []tf.Input{ + quantile_stream_resource_handle, epsilon, num_streams, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + // Creates a MultiDeviceIterator resource. // // Arguments: @@ -8215,6 +7625,24 @@ func MultiDeviceIterator(scope *Scope, devices []string, shared_name string, con return op.Output(0) } +// Deprecated. Use TensorArrayCloseV3 +// +// DEPRECATED at GraphDef version 26: Use TensorArrayCloseV3 +// +// Returns the created operation. +func TensorArrayCloseV2(scope *Scope, handle tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorArrayCloseV2", + Input: []tf.Input{ + handle, + }, + } + return scope.AddOperation(opspec) +} + // Gets the next output from the given iterator as an Optional variant. func IteratorGetNextAsOptional(scope *Scope, iterator tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (optional tf.Output) { if scope.Err() != nil { @@ -8259,6 +7687,60 @@ func OptionalNone(scope *Scope) (optional tf.Output) { return op.Output(0) } +// Constructs an Optional variant from a tuple of tensors. +func OptionalFromValue(scope *Scope, components []tf.Output) (optional tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "OptionalFromValue", + Input: []tf.Input{ + tf.OutputList(components), + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// OptimizeDatasetAttr is an optional argument to OptimizeDataset. +type OptimizeDatasetAttr func(optionalAttr) + +// OptimizeDatasetOptimizationConfigs sets the optional optimization_configs attribute to value. +// If not specified, defaults to <> +func OptimizeDatasetOptimizationConfigs(value []string) OptimizeDatasetAttr { + return func(m optionalAttr) { + m["optimization_configs"] = value + } +} + +// Creates a dataset by applying optimizations to `input_dataset`. +// +// Creates a dataset by applying optimizations to `input_dataset`. +// +// Arguments: +// input_dataset: A variant tensor representing the input dataset. +// optimizations: A `tf.string` vector `tf.Tensor` identifying optimizations to use. +// +// +func OptimizeDataset(scope *Scope, input_dataset tf.Output, optimizations tf.Output, output_types []tf.DataType, output_shapes []tf.Shape, optional ...OptimizeDatasetAttr) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "OptimizeDataset", + Input: []tf.Input{ + input_dataset, optimizations, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Returns a serialized GraphDef representing `input_dataset`. // // Returns a graph representation for `input_dataset`. @@ -8323,151 +7805,6 @@ func SerializeIterator(scope *Scope, resource_handle tf.Output) (serialized tf.O return op.Output(0) } -// UniformCandidateSamplerAttr is an optional argument to UniformCandidateSampler. -type UniformCandidateSamplerAttr func(optionalAttr) - -// UniformCandidateSamplerSeed sets the optional seed attribute to value. -// -// value: If either seed or seed2 are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func UniformCandidateSamplerSeed(value int64) UniformCandidateSamplerAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// UniformCandidateSamplerSeed2 sets the optional seed2 attribute to value. -// -// value: An second seed to avoid seed collision. -// If not specified, defaults to 0 -func UniformCandidateSamplerSeed2(value int64) UniformCandidateSamplerAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Generates labels for candidate sampling with a uniform distribution. -// -// See explanations of candidate sampling and the data formats at -// go/candidate-sampling. -// -// For each batch, this op picks a single set of sampled candidate labels. -// -// The advantages of sampling candidates per-batch are simplicity and the -// possibility of efficient dense matrix multiplication. The disadvantage is that -// the sampled candidates must be chosen independently of the context and of the -// true labels. -// -// Arguments: -// true_classes: A batch_size * num_true matrix, in which each row contains the -// IDs of the num_true target_classes in the corresponding original label. -// num_true: Number of true labels per context. -// num_sampled: Number of candidates to randomly sample. -// unique: If unique is true, we sample with rejection, so that all sampled -// candidates in a batch are unique. This requires some approximation to -// estimate the post-rejection sampling probabilities. -// range_max: The sampler will sample integers from the interval [0, range_max). -// -// Returns A vector of length num_sampled, in which each element is -// the ID of a sampled candidate.A batch_size * num_true matrix, representing -// the number of times each candidate is expected to occur in a batch -// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled -// candidate representing the number of times the candidate is expected -// to occur in a batch of sampled candidates. If unique=true, then this is a -// probability. -func UniformCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, range_max int64, optional ...UniformCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique, "range_max": range_max} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "UniformCandidateSampler", - Input: []tf.Input{ - true_classes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Elementwise computes the bitwise left-shift of `x` and `y`. -// -// If `y` is negative, or greater than or equal to the width of `x` in bits the -// result is implementation defined. -func LeftShift(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "LeftShift", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// IteratorFromStringHandleAttr is an optional argument to IteratorFromStringHandle. -type IteratorFromStringHandleAttr func(optionalAttr) - -// IteratorFromStringHandleOutputTypes sets the optional output_types attribute to value. -// -// value: If specified, defines the type of each tuple component in an -// element produced by the resulting iterator. -// If not specified, defaults to <> -// -// REQUIRES: len(value) >= 0 -func IteratorFromStringHandleOutputTypes(value []tf.DataType) IteratorFromStringHandleAttr { - return func(m optionalAttr) { - m["output_types"] = value - } -} - -// IteratorFromStringHandleOutputShapes sets the optional output_shapes attribute to value. -// -// value: If specified, defines the shape of each tuple component in an -// element produced by the resulting iterator. -// If not specified, defaults to <> -// -// REQUIRES: len(value) >= 0 -func IteratorFromStringHandleOutputShapes(value []tf.Shape) IteratorFromStringHandleAttr { - return func(m optionalAttr) { - m["output_shapes"] = value - } -} - -// Converts the given string representing a handle to an iterator to a resource. -// -// Arguments: -// string_handle: A string representation of the given handle. -// -// Returns A handle to an iterator resource. -func IteratorFromStringHandle(scope *Scope, string_handle tf.Output, optional ...IteratorFromStringHandleAttr) (resource_handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "IteratorFromStringHandle", - Input: []tf.Input{ - string_handle, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // SpaceToDepthAttr is an optional argument to SpaceToDepth. type SpaceToDepthAttr func(optionalAttr) @@ -8657,6 +7994,109 @@ func DatasetToSingleElement(scope *Scope, dataset tf.Output, output_types []tf.D return components } +// Gets the next output from the given iterator . +func IteratorGetNext(scope *Scope, iterator tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "IteratorGetNext", + Input: []tf.Input{ + iterator, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if components, idx, err = makeOutputList(op, idx, "components"); err != nil { + scope.UpdateErr("IteratorGetNext", err) + return + } + return components +} + +// QueueDequeueV2Attr is an optional argument to QueueDequeueV2. +type QueueDequeueV2Attr func(optionalAttr) + +// QueueDequeueV2TimeoutMs sets the optional timeout_ms attribute to value. +// +// value: If the queue is empty, this operation will block for up to +// timeout_ms milliseconds. +// Note: This option is not supported yet. +// If not specified, defaults to -1 +func QueueDequeueV2TimeoutMs(value int64) QueueDequeueV2Attr { + return func(m optionalAttr) { + m["timeout_ms"] = value + } +} + +// Dequeues a tuple of one or more tensors from the given queue. +// +// This operation has k outputs, where k is the number of components +// in the tuples stored in the given queue, and output i is the ith +// component of the dequeued tuple. +// +// N.B. If the queue is empty, this operation will block until an element +// has been dequeued (or 'timeout_ms' elapses, if specified). +// +// Arguments: +// handle: The handle to a queue. +// component_types: The type of each component in a tuple. +// +// Returns One or more tensors that were dequeued as a tuple. +func QueueDequeueV2(scope *Scope, handle tf.Output, component_types []tf.DataType, optional ...QueueDequeueV2Attr) (components []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"component_types": component_types} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "QueueDequeueV2", + Input: []tf.Input{ + handle, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if components, idx, err = makeOutputList(op, idx, "components"); err != nil { + scope.UpdateErr("QueueDequeueV2", err) + return + } + return components +} + +// A container for an iterator resource. +// +// Arguments: +// handle: A handle to the iterator to delete. +// deleter: A variant deleter. +// +// Returns the created operation. +func DeleteIterator(scope *Scope, handle tf.Output, deleter tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "DeleteIterator", + Input: []tf.Input{ + handle, deleter, + }, + } + return scope.AddOperation(opspec) +} + // A container for an iterator resource. // // Returns A handle to the iterator that can be passed to a "MakeIterator" or @@ -8697,47 +8137,60 @@ func AnonymousIterator(scope *Scope, output_types []tf.DataType, output_shapes [ return op.Output(0) } -// FakeQuantWithMinMaxVarsAttr is an optional argument to FakeQuantWithMinMaxVars. -type FakeQuantWithMinMaxVarsAttr func(optionalAttr) +// A container for an iterator resource. +// +// Returns A handle to the iterator that can be passed to a "MakeIterator" +// or "IteratorGetNext" op. +func Iterator(scope *Scope, shared_name string, container string, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"shared_name": shared_name, "container": container, "output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "Iterator", -// FakeQuantWithMinMaxVarsNumBits sets the optional num_bits attribute to value. -// If not specified, defaults to 8 -func FakeQuantWithMinMaxVarsNumBits(value int64) FakeQuantWithMinMaxVarsAttr { + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// UniqueWithCountsAttr is an optional argument to UniqueWithCounts. +type UniqueWithCountsAttr func(optionalAttr) + +// UniqueWithCountsOutIdx sets the optional out_idx attribute to value. +// If not specified, defaults to DT_INT32 +func UniqueWithCountsOutIdx(value tf.DataType) UniqueWithCountsAttr { return func(m optionalAttr) { - m["num_bits"] = value + m["out_idx"] = value } } -// FakeQuantWithMinMaxVarsNarrowRange sets the optional narrow_range attribute to value. -// If not specified, defaults to false -func FakeQuantWithMinMaxVarsNarrowRange(value bool) FakeQuantWithMinMaxVarsAttr { - return func(m optionalAttr) { - m["narrow_range"] = value - } -} - -// Fake-quantize the 'inputs' tensor of type float via global float scalars `min` +// Finds unique elements in a 1-D tensor. // -// and `max` to 'outputs' tensor of same shape as `inputs`. +// This operation returns a tensor `y` containing all of the unique elements of `x` +// sorted in the same order that they occur in `x`. This operation also returns a +// tensor `idx` the same size as `x` that contains the index of each value of `x` +// in the unique output `y`. Finally, it returns a third tensor `count` that +// contains the count of each element of `y` in `x`. In other words: // -// `[min; max]` define the clamping range for the `inputs` data. -// `inputs` values are quantized into the quantization range (`[0; 2^num_bits - 1]` -// when `narrow_range` is false and `[1; 2^num_bits - 1]` when it is true) and -// then de-quantized and output as floats in `[min; max]` interval. -// `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive. +// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` // -// Before quantization, `min` and `max` values are adjusted with the following -// logic. -// It is suggested to have `min <= 0 <= max`. If `0` is not in the range of values, -// the behavior can be unexpected: -// If `0 < min < max`: `min_adj = 0` and `max_adj = max - min`. -// If `min < max < 0`: `min_adj = min - max` and `max_adj = 0`. -// If `min <= 0 <= max`: `scale = (max - min) / (2^num_bits - 1) `, -// `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`. +// For example: // -// This operation has a gradient and thus allows for training `min` and `max` -// values. -func FakeQuantWithMinMaxVars(scope *Scope, inputs tf.Output, min tf.Output, max tf.Output, optional ...FakeQuantWithMinMaxVarsAttr) (outputs tf.Output) { +// ``` +// # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] +// y, idx, count = unique_with_counts(x) +// y ==> [1, 2, 4, 7, 8] +// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] +// count ==> [2, 1, 3, 1, 2] +// ``` +// +// Arguments: +// x: 1-D. +// +// Returns 1-D.1-D.1-D. +func UniqueWithCounts(scope *Scope, x tf.Output, optional ...UniqueWithCountsAttr) (y tf.Output, idx tf.Output, count tf.Output) { if scope.Err() != nil { return } @@ -8746,14 +8199,14 @@ func FakeQuantWithMinMaxVars(scope *Scope, inputs tf.Output, min tf.Output, max a(attrs) } opspec := tf.OpSpec{ - Type: "FakeQuantWithMinMaxVars", + Type: "UniqueWithCounts", Input: []tf.Input{ - inputs, min, max, + x, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1), op.Output(2) } // Creates a dataset that emits the records from one or more binary files. @@ -8781,28 +8234,6 @@ func FixedLengthRecordDataset(scope *Scope, filenames tf.Output, header_bytes tf return op.Output(0) } -// Creates a dataset that emits the lines of one or more text files. -// -// Arguments: -// filenames: A scalar or a vector containing the name(s) of the file(s) to be -// read. -// compression_type: A scalar containing either (i) the empty string (no -// compression), (ii) "ZLIB", or (iii) "GZIP". -// buffer_size: A scalar containing the number of bytes to buffer. -func TextLineDataset(scope *Scope, filenames tf.Output, compression_type tf.Output, buffer_size tf.Output) (handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TextLineDataset", - Input: []tf.Input{ - filenames, compression_type, buffer_size, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Creates a dataset that caches elements from `input_dataset`. // // A CacheDataset will iterate over the input_dataset, and store tensors. If the @@ -8881,6 +8312,30 @@ func ShuffleDataset(scope *Scope, input_dataset tf.Output, buffer_size tf.Output return op.Output(0) } +// Creates a dataset with a range of values. Corresponds to python's xrange. +// +// Arguments: +// start: corresponds to start in python's xrange(). +// stop: corresponds to stop in python's xrange(). +// step: corresponds to step in python's xrange(). +// +// +func RangeDataset(scope *Scope, start tf.Output, stop tf.Output, step tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "RangeDataset", + Input: []tf.Input{ + start, stop, step, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // ShardDatasetAttr is an optional argument to ShardDataset. type ShardDatasetAttr func(optionalAttr) @@ -8919,71 +8374,90 @@ func ShardDataset(scope *Scope, input_dataset tf.Output, num_shards tf.Output, i return op.Output(0) } -// MatrixTriangularSolveAttr is an optional argument to MatrixTriangularSolve. -type MatrixTriangularSolveAttr func(optionalAttr) +// FixedLengthRecordReaderV2Attr is an optional argument to FixedLengthRecordReaderV2. +type FixedLengthRecordReaderV2Attr func(optionalAttr) -// MatrixTriangularSolveLower sets the optional lower attribute to value. +// FixedLengthRecordReaderV2HeaderBytes sets the optional header_bytes attribute to value. // -// value: Boolean indicating whether the innermost matrices in `matrix` are -// lower or upper triangular. -// If not specified, defaults to true -func MatrixTriangularSolveLower(value bool) MatrixTriangularSolveAttr { +// value: Number of bytes in the header, defaults to 0. +// If not specified, defaults to 0 +func FixedLengthRecordReaderV2HeaderBytes(value int64) FixedLengthRecordReaderV2Attr { return func(m optionalAttr) { - m["lower"] = value + m["header_bytes"] = value } } -// MatrixTriangularSolveAdjoint sets the optional adjoint attribute to value. +// FixedLengthRecordReaderV2FooterBytes sets the optional footer_bytes attribute to value. // -// value: Boolean indicating whether to solve with `matrix` or its (block-wise) -// adjoint. -// -// @compatibility(numpy) -// Equivalent to scipy.linalg.solve_triangular -// @end_compatibility -// If not specified, defaults to false -func MatrixTriangularSolveAdjoint(value bool) MatrixTriangularSolveAttr { +// value: Number of bytes in the footer, defaults to 0. +// If not specified, defaults to 0 +func FixedLengthRecordReaderV2FooterBytes(value int64) FixedLengthRecordReaderV2Attr { return func(m optionalAttr) { - m["adjoint"] = value + m["footer_bytes"] = value } } -// Solves systems of linear equations with upper or lower triangular matrices by +// FixedLengthRecordReaderV2HopBytes sets the optional hop_bytes attribute to value. // -// backsubstitution. +// value: Number of bytes to hop before each read. Default of 0 means using +// record_bytes. +// If not specified, defaults to 0 +func FixedLengthRecordReaderV2HopBytes(value int64) FixedLengthRecordReaderV2Attr { + return func(m optionalAttr) { + m["hop_bytes"] = value + } +} + +// FixedLengthRecordReaderV2Container sets the optional container attribute to value. // -// `matrix` is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions form -// square matrices. If `lower` is `True` then the strictly upper triangular part -// of each inner-most matrix is assumed to be zero and not accessed. -// If `lower` is False then the strictly lower triangular part of each inner-most -// matrix is assumed to be zero and not accessed. -// `rhs` is a tensor of shape `[..., M, K]`. +// value: If non-empty, this reader is placed in the given container. +// Otherwise, a default container is used. +// If not specified, defaults to "" +func FixedLengthRecordReaderV2Container(value string) FixedLengthRecordReaderV2Attr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// FixedLengthRecordReaderV2SharedName sets the optional shared_name attribute to value. // -// The output is a tensor of shape `[..., M, K]`. If `adjoint` is -// `True` then the innermost matrices in `output` satisfy matrix equations -// `matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]`. -// If `adjoint` is `False` then the strictly then the innermost matrices in -// `output` satisfy matrix equations -// `adjoint(matrix[..., i, k]) * output[..., k, j] = rhs[..., i, j]`. +// value: If non-empty, this reader is named in the given bucket +// with this shared_name. Otherwise, the node name is used instead. +// If not specified, defaults to "" +func FixedLengthRecordReaderV2SharedName(value string) FixedLengthRecordReaderV2Attr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// FixedLengthRecordReaderV2Encoding sets the optional encoding attribute to value. +// +// value: The type of encoding for the file. Currently ZLIB and GZIP +// are supported. Defaults to none. +// If not specified, defaults to "" +func FixedLengthRecordReaderV2Encoding(value string) FixedLengthRecordReaderV2Attr { + return func(m optionalAttr) { + m["encoding"] = value + } +} + +// A Reader that outputs fixed-length records from a file. // // Arguments: -// matrix: Shape is `[..., M, M]`. -// rhs: Shape is `[..., M, K]`. +// record_bytes: Number of bytes in the record. // -// Returns Shape is `[..., M, K]`. -func MatrixTriangularSolve(scope *Scope, matrix tf.Output, rhs tf.Output, optional ...MatrixTriangularSolveAttr) (output tf.Output) { +// Returns The handle to reference the Reader. +func FixedLengthRecordReaderV2(scope *Scope, record_bytes int64, optional ...FixedLengthRecordReaderV2Attr) (reader_handle tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + attrs := map[string]interface{}{"record_bytes": record_bytes} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "MatrixTriangularSolve", - Input: []tf.Input{ - matrix, rhs, - }, + Type: "FixedLengthRecordReaderV2", + Attrs: attrs, } op := scope.AddOperation(opspec) @@ -9038,78 +8512,62 @@ func QuantizedBatchNormWithGlobalNormalization(scope *Scope, t tf.Output, t_min return op.Output(0), op.Output(1), op.Output(2) } -// StackV2Attr is an optional argument to StackV2. -type StackV2Attr func(optionalAttr) +// QuantizedConv2DAttr is an optional argument to QuantizedConv2D. +type QuantizedConv2DAttr func(optionalAttr) -// StackV2StackName sets the optional stack_name attribute to value. -// -// value: Overrides the name used for the temporary stack resource. Default -// value is the name of the 'Stack' op (which is guaranteed unique). -// If not specified, defaults to "" -func StackV2StackName(value string) StackV2Attr { - return func(m optionalAttr) { - m["stack_name"] = value - } -} - -// A stack that produces elements in first-in last-out order. -// -// Arguments: -// max_size: The maximum size of the stack if non-negative. If negative, the stack -// size is unlimited. -// elem_type: The type of the elements on the stack. -// -// Returns The handle to the stack. -func StackV2(scope *Scope, max_size tf.Output, elem_type tf.DataType, optional ...StackV2Attr) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"elem_type": elem_type} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StackV2", - Input: []tf.Input{ - max_size, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// QuantizedReluAttr is an optional argument to QuantizedRelu. -type QuantizedReluAttr func(optionalAttr) - -// QuantizedReluOutType sets the optional out_type attribute to value. -// If not specified, defaults to DT_QUINT8 -func QuantizedReluOutType(value tf.DataType) QuantizedReluAttr { +// QuantizedConv2DOutType sets the optional out_type attribute to value. +// If not specified, defaults to DT_QINT32 +func QuantizedConv2DOutType(value tf.DataType) QuantizedConv2DAttr { return func(m optionalAttr) { m["out_type"] = value } } -// Computes Quantized Rectified Linear: `max(features, 0)` +// QuantizedConv2DDilations sets the optional dilations attribute to value. +// +// value: 1-D tensor of length 4. The dilation factor for each dimension of +// `input`. If set to k > 1, there will be k-1 skipped cells between each +// filter element on that dimension. The dimension order is determined by the +// value of `data_format`, see above for details. Dilations in the batch and +// depth dimensions must be 1. +// If not specified, defaults to +func QuantizedConv2DDilations(value []int64) QuantizedConv2DAttr { + return func(m optionalAttr) { + m["dilations"] = value + } +} + +// Computes a 2D convolution given quantized 4D input and filter tensors. +// +// The inputs are quantized tensors where the lowest value represents the real +// number of the associated minimum, and the highest represents the maximum. +// This means that you can only interpret the quantized output in the same way, by +// taking the returned minimum and maximum values into account. // // Arguments: // -// min_features: The float value that the lowest quantized value represents. -// max_features: The float value that the highest quantized value represents. +// filter: filter's input_depth dimension must match input's depth dimensions. +// min_input: The float value that the lowest quantized input value represents. +// max_input: The float value that the highest quantized input value represents. +// min_filter: The float value that the lowest quantized filter value represents. +// max_filter: The float value that the highest quantized filter value represents. +// strides: The stride of the sliding window for each dimension of the input +// tensor. +// padding: The type of padding algorithm to use. // -// Returns Has the same output shape as "features".The float value that the lowest quantized value represents.The float value that the highest quantized value represents. -func QuantizedRelu(scope *Scope, features tf.Output, min_features tf.Output, max_features tf.Output, optional ...QuantizedReluAttr) (activations tf.Output, min_activations tf.Output, max_activations tf.Output) { +// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. +func QuantizedConv2D(scope *Scope, input tf.Output, filter tf.Output, min_input tf.Output, max_input tf.Output, min_filter tf.Output, max_filter tf.Output, strides []int64, padding string, optional ...QuantizedConv2DAttr) (output tf.Output, min_output tf.Output, max_output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + attrs := map[string]interface{}{"strides": strides, "padding": padding} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "QuantizedRelu", + Type: "QuantizedConv2D", Input: []tf.Input{ - features, min_features, max_features, + input, filter, min_input, max_input, min_filter, max_filter, }, Attrs: attrs, } @@ -9117,10 +8575,82 @@ func QuantizedRelu(scope *Scope, features tf.Output, min_features tf.Output, max return op.Output(0), op.Output(1), op.Output(2) } -// FractionalMaxPoolGradAttr is an optional argument to FractionalMaxPoolGrad. -type FractionalMaxPoolGradAttr func(optionalAttr) +// Fast Fourier transform. +// +// Computes the 1-dimensional discrete Fourier transform over the inner-most +// dimension of `input`. +// +// Arguments: +// input: A complex tensor. +// +// Returns A complex tensor of the same shape as `input`. The inner-most +// dimension of `input` is replaced with its 1D Fourier transform. +// +// @compatibility(numpy) +// Equivalent to np.fft.fft +// @end_compatibility +func FFT(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "FFT", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} -// FractionalMaxPoolGradOverlapping sets the optional overlapping attribute to value. +// Computes the sign and the log of the absolute value of the determinant of +// +// one or more square matrices. +// +// The input is a tensor of shape `[N, M, M]` whose inner-most 2 dimensions +// form square matrices. The outputs are two tensors containing the signs and +// absolute values of the log determinants for all N input submatrices +// `[..., :, :]` such that the determinant = sign*exp(log_abs_determinant). +// The log_abs_determinant is computed as det(P)*sum(log(diag(LU))) where LU +// is the LU decomposition of the input and P is the corresponding +// permutation matrix. +// +// Arguments: +// input: Shape is `[N, M, M]`. +// +// Returns The signs of the log determinants of the inputs. Shape is `[N]`.The logs of the absolute values of the determinants +// of the N input matrices. Shape is `[N]`. +func LogMatrixDeterminant(scope *Scope, input tf.Output) (sign tf.Output, log_abs_determinant tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "LogMatrixDeterminant", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// FractionalAvgPoolAttr is an optional argument to FractionalAvgPool. +type FractionalAvgPoolAttr func(optionalAttr) + +// FractionalAvgPoolPseudoRandom sets the optional pseudo_random attribute to value. +// +// value: When set to True, generates the pooling sequence in a +// pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin +// Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for +// difference between pseudorandom and random. +// If not specified, defaults to false +func FractionalAvgPoolPseudoRandom(value bool) FractionalAvgPoolAttr { + return func(m optionalAttr) { + m["pseudo_random"] = value + } +} + +// FractionalAvgPoolOverlapping sets the optional overlapping attribute to value. // // value: When set to True, it means when pooling, the values at the boundary // of adjacent pooling cells are used by both cells. For example: @@ -9130,44 +8660,82 @@ type FractionalMaxPoolGradAttr func(optionalAttr) // `value 20 5 16 3 7` // // If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. -// The result would be [20, 16] for fractional max pooling. +// The result would be [41/3, 26/3] for fractional avg pooling. // If not specified, defaults to false -func FractionalMaxPoolGradOverlapping(value bool) FractionalMaxPoolGradAttr { +func FractionalAvgPoolOverlapping(value bool) FractionalAvgPoolAttr { return func(m optionalAttr) { m["overlapping"] = value } } -// Computes gradient of the FractionalMaxPool function. +// FractionalAvgPoolDeterministic sets the optional deterministic attribute to value. +// +// value: When set to True, a fixed pooling region will be used when +// iterating over a FractionalAvgPool node in the computation graph. Mainly used +// in unit test to make FractionalAvgPool deterministic. +// If not specified, defaults to false +func FractionalAvgPoolDeterministic(value bool) FractionalAvgPoolAttr { + return func(m optionalAttr) { + m["deterministic"] = value + } +} + +// FractionalAvgPoolSeed sets the optional seed attribute to value. +// +// value: If either seed or seed2 are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func FractionalAvgPoolSeed(value int64) FractionalAvgPoolAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// FractionalAvgPoolSeed2 sets the optional seed2 attribute to value. +// +// value: An second seed to avoid seed collision. +// If not specified, defaults to 0 +func FractionalAvgPoolSeed2(value int64) FractionalAvgPoolAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Performs fractional average pooling on the input. +// +// Fractional average pooling is similar to Fractional max pooling in the pooling +// region generation step. The only difference is that after pooling regions are +// generated, a mean operation is performed instead of a max operation in each +// pooling region. // // Arguments: -// orig_input: Original input for `fractional_max_pool` -// orig_output: Original output for `fractional_max_pool` -// out_backprop: 4-D with shape `[batch, height, width, channels]`. Gradients -// w.r.t. the output of `fractional_max_pool`. -// row_pooling_sequence: row pooling sequence, form pooling region with -// col_pooling_sequence. -// col_pooling_sequence: column pooling sequence, form pooling region with -// row_pooling sequence. +// value: 4-D with shape `[batch, height, width, channels]`. +// pooling_ratio: Pooling ratio for each dimension of `value`, currently only +// supports row and col dimension and should be >= 1.0. For example, a valid +// pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements +// must be 1.0 because we don't allow pooling on batch and channels +// dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions +// respectively. // -// Returns 4-D. Gradients w.r.t. the input of `fractional_max_pool`. -func FractionalMaxPoolGrad(scope *Scope, orig_input tf.Output, orig_output tf.Output, out_backprop tf.Output, row_pooling_sequence tf.Output, col_pooling_sequence tf.Output, optional ...FractionalMaxPoolGradAttr) (output tf.Output) { +// Returns output tensor after fractional avg pooling.row pooling sequence, needed to calculate gradient.column pooling sequence, needed to calculate gradient. +func FractionalAvgPool(scope *Scope, value tf.Output, pooling_ratio []float32, optional ...FractionalAvgPoolAttr) (output tf.Output, row_pooling_sequence tf.Output, col_pooling_sequence tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + attrs := map[string]interface{}{"pooling_ratio": pooling_ratio} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "FractionalMaxPoolGrad", + Type: "FractionalAvgPool", Input: []tf.Input{ - orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence, + value, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1), op.Output(2) } // Greedily selects a subset of bounding boxes in descending order of score, @@ -9392,6 +8960,172 @@ func NthElement(scope *Scope, input tf.Output, n tf.Output, optional ...NthEleme return op.Output(0) } +// PaddingFIFOQueueV2Attr is an optional argument to PaddingFIFOQueueV2. +type PaddingFIFOQueueV2Attr func(optionalAttr) + +// PaddingFIFOQueueV2Shapes sets the optional shapes attribute to value. +// +// value: The shape of each component in a value. The length of this attr must +// be either 0 or the same as the length of component_types. +// Shapes of fixed rank but variable size are allowed by setting +// any shape dimension to -1. In this case, the inputs' shape may vary along +// the given dimension, and DequeueMany will pad the given dimension with +// zeros up to the maximum shape of all elements in the given batch. +// If the length of this attr is 0, different queue elements may have +// different ranks and shapes, but only one element may be dequeued at a time. +// If not specified, defaults to <> +// +// REQUIRES: len(value) >= 0 +func PaddingFIFOQueueV2Shapes(value []tf.Shape) PaddingFIFOQueueV2Attr { + return func(m optionalAttr) { + m["shapes"] = value + } +} + +// PaddingFIFOQueueV2Capacity sets the optional capacity attribute to value. +// +// value: The upper bound on the number of elements in this queue. +// Negative numbers mean no limit. +// If not specified, defaults to -1 +func PaddingFIFOQueueV2Capacity(value int64) PaddingFIFOQueueV2Attr { + return func(m optionalAttr) { + m["capacity"] = value + } +} + +// PaddingFIFOQueueV2Container sets the optional container attribute to value. +// +// value: If non-empty, this queue is placed in the given container. +// Otherwise, a default container is used. +// If not specified, defaults to "" +func PaddingFIFOQueueV2Container(value string) PaddingFIFOQueueV2Attr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// PaddingFIFOQueueV2SharedName sets the optional shared_name attribute to value. +// +// value: If non-empty, this queue will be shared under the given name +// across multiple sessions. +// If not specified, defaults to "" +func PaddingFIFOQueueV2SharedName(value string) PaddingFIFOQueueV2Attr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// A queue that produces elements in first-in first-out order. +// +// Variable-size shapes are allowed by setting the corresponding shape dimensions +// to 0 in the shape attr. In this case DequeueMany will pad up to the maximum +// size of any given element in the minibatch. See below for details. +// +// Arguments: +// component_types: The type of each component in a value. +// +// Returns The handle to the queue. +func PaddingFIFOQueueV2(scope *Scope, component_types []tf.DataType, optional ...PaddingFIFOQueueV2Attr) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"component_types": component_types} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "PaddingFIFOQueueV2", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Adds `bias` to `value`. +// +// This is a deprecated version of BiasAdd and will be soon removed. +// +// This is a special case of `tf.add` where `bias` is restricted to be 1-D. +// Broadcasting is supported, so `value` may have any number of dimensions. +// +// Arguments: +// value: Any number of dimensions. +// bias: 1-D with size the last dimension of `value`. +// +// Returns Broadcasted sum of `value` and `bias`. +func BiasAddV1(scope *Scope, value tf.Output, bias tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "BiasAddV1", + Input: []tf.Input{ + value, bias, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// TensorArrayConcatV3Attr is an optional argument to TensorArrayConcatV3. +type TensorArrayConcatV3Attr func(optionalAttr) + +// TensorArrayConcatV3ElementShapeExcept0 sets the optional element_shape_except0 attribute to value. +// +// value: The expected shape of an element, if known, +// excluding the first dimension. Used to validate the shapes of +// TensorArray elements. If this shape is not fully specified, concatenating +// zero-size TensorArrays is an error. +// If not specified, defaults to +func TensorArrayConcatV3ElementShapeExcept0(value tf.Shape) TensorArrayConcatV3Attr { + return func(m optionalAttr) { + m["element_shape_except0"] = value + } +} + +// Concat the elements from the TensorArray into value `value`. +// +// Takes `T` elements of shapes +// +// ``` +// (n0 x d0 x d1 x ...), (n1 x d0 x d1 x ...), ..., (n(T-1) x d0 x d1 x ...) +// ``` +// +// and concatenates them into a Tensor of shape: +// +// ```(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)``` +// +// All elements must have the same shape (excepting the first dimension). +// +// Arguments: +// handle: The handle to a TensorArray. +// flow_in: A float scalar that enforces proper chaining of operations. +// dtype: The type of the elem that is returned. +// +// Returns All of the elements in the TensorArray, concatenated along the first +// axis.A vector of the row sizes of the original T elements in the +// value output. In the example above, this would be the values: +// `(n1, n2, ..., n(T-1))`. +func TensorArrayConcatV3(scope *Scope, handle tf.Output, flow_in tf.Output, dtype tf.DataType, optional ...TensorArrayConcatV3Attr) (value tf.Output, lengths tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TensorArrayConcatV3", + Input: []tf.Input{ + handle, flow_in, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + // TopKV2Attr is an optional argument to TopKV2. type TopKV2Attr func(optionalAttr) @@ -9444,188 +9178,6 @@ func TopKV2(scope *Scope, input tf.Output, k tf.Output, optional ...TopKV2Attr) return op.Output(0), op.Output(1) } -// StringFormatAttr is an optional argument to StringFormat. -type StringFormatAttr func(optionalAttr) - -// StringFormatTemplate sets the optional template attribute to value. -// -// value: A string, the template to format tensor summaries into. -// If not specified, defaults to "%s" -func StringFormatTemplate(value string) StringFormatAttr { - return func(m optionalAttr) { - m["template"] = value - } -} - -// StringFormatPlaceholder sets the optional placeholder attribute to value. -// -// value: A string, at each placeholder in the template a subsequent tensor summary will be inserted. -// If not specified, defaults to "%s" -func StringFormatPlaceholder(value string) StringFormatAttr { - return func(m optionalAttr) { - m["placeholder"] = value - } -} - -// StringFormatSummarize sets the optional summarize attribute to value. -// -// value: When formatting the tensor summaries print the first and last summarize entries of each tensor dimension. -// If not specified, defaults to 3 -func StringFormatSummarize(value int64) StringFormatAttr { - return func(m optionalAttr) { - m["summarize"] = value - } -} - -// Formats a string template using a list of tensors. -// -// Formats a string template using a list of tensors, pretty-printing tensor summaries. -// -// Arguments: -// inputs: The list of tensors to format into the placeholder string. -// -// Returns = The resulting string scalar. -func StringFormat(scope *Scope, inputs []tf.Output, optional ...StringFormatAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StringFormat", - Input: []tf.Input{ - tf.OutputList(inputs), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// QuantizedConv2DAttr is an optional argument to QuantizedConv2D. -type QuantizedConv2DAttr func(optionalAttr) - -// QuantizedConv2DOutType sets the optional out_type attribute to value. -// If not specified, defaults to DT_QINT32 -func QuantizedConv2DOutType(value tf.DataType) QuantizedConv2DAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// QuantizedConv2DDilations sets the optional dilations attribute to value. -// -// value: 1-D tensor of length 4. The dilation factor for each dimension of -// `input`. If set to k > 1, there will be k-1 skipped cells between each -// filter element on that dimension. The dimension order is determined by the -// value of `data_format`, see above for details. Dilations in the batch and -// depth dimensions must be 1. -// If not specified, defaults to -func QuantizedConv2DDilations(value []int64) QuantizedConv2DAttr { - return func(m optionalAttr) { - m["dilations"] = value - } -} - -// Computes a 2D convolution given quantized 4D input and filter tensors. -// -// The inputs are quantized tensors where the lowest value represents the real -// number of the associated minimum, and the highest represents the maximum. -// This means that you can only interpret the quantized output in the same way, by -// taking the returned minimum and maximum values into account. -// -// Arguments: -// -// filter: filter's input_depth dimension must match input's depth dimensions. -// min_input: The float value that the lowest quantized input value represents. -// max_input: The float value that the highest quantized input value represents. -// min_filter: The float value that the lowest quantized filter value represents. -// max_filter: The float value that the highest quantized filter value represents. -// strides: The stride of the sliding window for each dimension of the input -// tensor. -// padding: The type of padding algorithm to use. -// -// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. -func QuantizedConv2D(scope *Scope, input tf.Output, filter tf.Output, min_input tf.Output, max_input tf.Output, min_filter tf.Output, max_filter tf.Output, strides []int64, padding string, optional ...QuantizedConv2DAttr) (output tf.Output, min_output tf.Output, max_output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "QuantizedConv2D", - Input: []tf.Input{ - input, filter, min_input, max_input, min_filter, max_filter, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Fast Fourier transform. -// -// Computes the 1-dimensional discrete Fourier transform over the inner-most -// dimension of `input`. -// -// Arguments: -// input: A complex tensor. -// -// Returns A complex tensor of the same shape as `input`. The inner-most -// dimension of `input` is replaced with its 1D Fourier transform. -// -// @compatibility(numpy) -// Equivalent to np.fft.fft -// @end_compatibility -func FFT(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "FFT", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the sign and the log of the absolute value of the determinant of -// -// one or more square matrices. -// -// The input is a tensor of shape `[N, M, M]` whose inner-most 2 dimensions -// form square matrices. The outputs are two tensors containing the signs and -// absolute values of the log determinants for all N input submatrices -// `[..., :, :]` such that the determinant = sign*exp(log_abs_determinant). -// The log_abs_determinant is computed as det(P)*sum(log(diag(LU))) where LU -// is the LU decomposition of the input and P is the corresponding -// permutation matrix. -// -// Arguments: -// input: Shape is `[N, M, M]`. -// -// Returns The signs of the log determinants of the inputs. Shape is `[N]`.The logs of the absolute values of the determinants -// of the N input matrices. Shape is `[N]`. -func LogMatrixDeterminant(scope *Scope, input tf.Output) (sign tf.Output, log_abs_determinant tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "LogMatrixDeterminant", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - // Says whether the targets are in the top `K` predictions. // // This outputs a `batch_size` bool array, an entry `out[i]` is `true` if the @@ -9663,6 +9215,93 @@ func InTopKV2(scope *Scope, predictions tf.Output, targets tf.Output, k tf.Outpu return op.Output(0) } +// Says whether the targets are in the top `K` predictions. +// +// This outputs a `batch_size` bool array, an entry `out[i]` is `true` if the +// prediction for the target class is among the top `k` predictions among +// all predictions for example `i`. Note that the behavior of `InTopK` differs +// from the `TopK` op in its handling of ties; if multiple classes have the +// same prediction value and straddle the top-`k` boundary, all of those +// classes are considered to be in the top `k`. +// +// More formally, let +// +// \\(predictions_i\\) be the predictions for all classes for example `i`, +// \\(targets_i\\) be the target class for example `i`, +// \\(out_i\\) be the output for example `i`, +// +// $$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$ +// +// Arguments: +// predictions: A `batch_size` x `classes` tensor. +// targets: A `batch_size` vector of class ids. +// k: Number of top elements to look at for computing precision. +// +// Returns Computed Precision at `k` as a `bool Tensor`. +func InTopK(scope *Scope, predictions tf.Output, targets tf.Output, k int64) (precision tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"k": k} + opspec := tf.OpSpec{ + Type: "InTopK", + Input: []tf.Input{ + predictions, targets, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes softmax cross entropy cost and gradients to backpropagate. +// +// Inputs are the logits, not probabilities. +// +// Arguments: +// features: batch_size x num_classes matrix +// labels: batch_size x num_classes matrix +// The caller must ensure that each batch of labels represents a valid +// probability distribution. +// +// Returns Per example loss (batch_size vector).backpropagated gradients (batch_size x num_classes matrix). +func SoftmaxCrossEntropyWithLogits(scope *Scope, features tf.Output, labels tf.Output) (loss tf.Output, backprop tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SoftmaxCrossEntropyWithLogits", + Input: []tf.Input{ + features, labels, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// Forwards the input to the output. +// +// This operator represents the loop termination condition used by the +// "pivot" switches of a loop. +// +// Arguments: +// input: A boolean scalar, representing the branch predicate of the Switch op. +// +// Returns The same tensor as `input`. +func LoopCond(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "LoopCond", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Computes log softmax activations. // // For each batch `i` and class `j` we have @@ -9687,54 +9326,6 @@ func LogSoftmax(scope *Scope, logits tf.Output) (logsoftmax tf.Output) { return op.Output(0) } -// WholeFileReaderV2Attr is an optional argument to WholeFileReaderV2. -type WholeFileReaderV2Attr func(optionalAttr) - -// WholeFileReaderV2Container sets the optional container attribute to value. -// -// value: If non-empty, this reader is placed in the given container. -// Otherwise, a default container is used. -// If not specified, defaults to "" -func WholeFileReaderV2Container(value string) WholeFileReaderV2Attr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// WholeFileReaderV2SharedName sets the optional shared_name attribute to value. -// -// value: If non-empty, this reader is named in the given bucket -// with this shared_name. Otherwise, the node name is used instead. -// If not specified, defaults to "" -func WholeFileReaderV2SharedName(value string) WholeFileReaderV2Attr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// A Reader that outputs the entire contents of a file as a value. -// -// To use, enqueue filenames in a Queue. The output of ReaderRead will -// be a filename (key) and the contents of that file (value). -// -// Returns The handle to reference the Reader. -func WholeFileReaderV2(scope *Scope, optional ...WholeFileReaderV2Attr) (reader_handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "WholeFileReaderV2", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Computes gradients for the exponential linear (Elu) operation. // // Arguments: @@ -9795,59 +9386,47 @@ func LeakyReluGrad(scope *Scope, gradients tf.Output, features tf.Output, option return op.Output(0) } -// Computes rectified linear 6: `min(max(features, 0), 6)`. -func Relu6(scope *Scope, features tf.Output) (activations tf.Output) { +// Returns which elements of x are finite. +// +// @compatibility(numpy) +// Equivalent to np.isfinite +// @end_compatibility +func IsFinite(scope *Scope, x tf.Output) (y tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Relu6", + Type: "IsFinite", Input: []tf.Input{ - features, + x, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// MaxPoolGradGradWithArgmaxAttr is an optional argument to MaxPoolGradGradWithArgmax. -type MaxPoolGradGradWithArgmaxAttr func(optionalAttr) - -// MaxPoolGradGradWithArgmaxIncludeBatchInIndex sets the optional include_batch_in_index attribute to value. -// -// value: Whether to include batch dimension in flattened index of `argmax`. -// If not specified, defaults to false -func MaxPoolGradGradWithArgmaxIncludeBatchInIndex(value bool) MaxPoolGradGradWithArgmaxAttr { - return func(m optionalAttr) { - m["include_batch_in_index"] = value - } -} - -// Computes second-order gradients of the maxpooling function. +// Computes the gradient of morphological 2-D dilation with respect to the filter. // // Arguments: -// input: The original input. -// grad: 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. the -// input of `max_pool`. -// argmax: The indices of the maximum values chosen for each output of `max_pool`. -// ksize: The size of the window for each dimension of the input tensor. -// strides: The stride of the sliding window for each dimension of the -// input tensor. +// input: 4-D with shape `[batch, in_height, in_width, depth]`. +// filter: 3-D with shape `[filter_height, filter_width, depth]`. +// out_backprop: 4-D with shape `[batch, out_height, out_width, depth]`. +// strides: 1-D of length 4. The stride of the sliding window for each dimension of +// the input tensor. Must be: `[1, stride_height, stride_width, 1]`. +// rates: 1-D of length 4. The input stride for atrous morphological dilation. +// Must be: `[1, rate_height, rate_width, 1]`. // padding: The type of padding algorithm to use. // -// Returns Gradients of gradients w.r.t. the input of `max_pool`. -func MaxPoolGradGradWithArgmax(scope *Scope, input tf.Output, grad tf.Output, argmax tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolGradGradWithArgmaxAttr) (output tf.Output) { +// Returns 3-D with shape `[filter_height, filter_width, depth]`. +func Dilation2DBackpropFilter(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, rates []int64, padding string) (filter_backprop tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } + attrs := map[string]interface{}{"strides": strides, "rates": rates, "padding": padding} opspec := tf.OpSpec{ - Type: "MaxPoolGradGradWithArgmax", + Type: "Dilation2DBackpropFilter", Input: []tf.Input{ - input, grad, argmax, + input, filter, out_backprop, }, Attrs: attrs, } @@ -9855,13 +9434,122 @@ func MaxPoolGradGradWithArgmax(scope *Scope, input tf.Output, grad tf.Output, ar return op.Output(0) } -// CompilationResultProto indicating the status of the TPU compilation. -func TPUCompilationResult(scope *Scope) (output tf.Output) { +// QueueDequeueManyV2Attr is an optional argument to QueueDequeueManyV2. +type QueueDequeueManyV2Attr func(optionalAttr) + +// QueueDequeueManyV2TimeoutMs sets the optional timeout_ms attribute to value. +// +// value: If the queue has fewer than n elements, this operation +// will block for up to timeout_ms milliseconds. +// Note: This option is not supported yet. +// If not specified, defaults to -1 +func QueueDequeueManyV2TimeoutMs(value int64) QueueDequeueManyV2Attr { + return func(m optionalAttr) { + m["timeout_ms"] = value + } +} + +// Dequeues `n` tuples of one or more tensors from the given queue. +// +// If the queue is closed and there are fewer than `n` elements, then an +// OutOfRange error is returned. +// +// This operation concatenates queue-element component tensors along the +// 0th dimension to make a single component tensor. All of the components +// in the dequeued tuple will have size `n` in the 0th dimension. +// +// This operation has `k` outputs, where `k` is the number of components in +// the tuples stored in the given queue, and output `i` is the ith +// component of the dequeued tuple. +// +// N.B. If the queue is empty, this operation will block until `n` elements +// have been dequeued (or 'timeout_ms' elapses, if specified). +// +// Arguments: +// handle: The handle to a queue. +// n: The number of tuples to dequeue. +// component_types: The type of each component in a tuple. +// +// Returns One or more tensors that were dequeued as a tuple. +func QueueDequeueManyV2(scope *Scope, handle tf.Output, n tf.Output, component_types []tf.DataType, optional ...QueueDequeueManyV2Attr) (components []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"component_types": component_types} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "QueueDequeueManyV2", + Input: []tf.Input{ + handle, n, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if components, idx, err = makeOutputList(op, idx, "components"); err != nil { + scope.UpdateErr("QueueDequeueManyV2", err) + return + } + return components +} + +// Computes Psi, the derivative of Lgamma (the log of the absolute value of +// +// `Gamma(x)`), element-wise. +func Digamma(scope *Scope, x tf.Output) (y tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "TPUCompilationResult", + Type: "Digamma", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// BatchDatasetV2Attr is an optional argument to BatchDatasetV2. +type BatchDatasetV2Attr func(optionalAttr) + +// BatchDatasetV2ParallelCopy sets the optional parallel_copy attribute to value. +// If not specified, defaults to false +func BatchDatasetV2ParallelCopy(value bool) BatchDatasetV2Attr { + return func(m optionalAttr) { + m["parallel_copy"] = value + } +} + +// Creates a dataset that batches `batch_size` elements from `input_dataset`. +// +// Arguments: +// +// batch_size: A scalar representing the number of elements to accumulate in a batch. +// drop_remainder: A scalar representing whether the last batch should be dropped in case its size +// is smaller than desired. +// +// +func BatchDatasetV2(scope *Scope, input_dataset tf.Output, batch_size tf.Output, drop_remainder tf.Output, output_types []tf.DataType, output_shapes []tf.Shape, optional ...BatchDatasetV2Attr) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "BatchDatasetV2", + Input: []tf.Input{ + input_dataset, batch_size, drop_remainder, + }, + Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) @@ -9927,6 +9615,93 @@ func MaxPoolWithArgmax(scope *Scope, input tf.Output, ksize []int64, strides []i return op.Output(0), op.Output(1) } +// Conv2DBackpropInputAttr is an optional argument to Conv2DBackpropInput. +type Conv2DBackpropInputAttr func(optionalAttr) + +// Conv2DBackpropInputUseCudnnOnGpu sets the optional use_cudnn_on_gpu attribute to value. +// If not specified, defaults to true +func Conv2DBackpropInputUseCudnnOnGpu(value bool) Conv2DBackpropInputAttr { + return func(m optionalAttr) { + m["use_cudnn_on_gpu"] = value + } +} + +// Conv2DBackpropInputExplicitPaddings sets the optional explicit_paddings attribute to value. +// +// value: If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith +// dimension, the amount of padding inserted before and after the dimension is +// `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If +// `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. +// If not specified, defaults to <> +func Conv2DBackpropInputExplicitPaddings(value []int64) Conv2DBackpropInputAttr { + return func(m optionalAttr) { + m["explicit_paddings"] = value + } +} + +// Conv2DBackpropInputDataFormat sets the optional data_format attribute to value. +// +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the data is stored in the order of: +// [batch, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, in_channels, in_height, in_width]. +// If not specified, defaults to "NHWC" +func Conv2DBackpropInputDataFormat(value string) Conv2DBackpropInputAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Conv2DBackpropInputDilations sets the optional dilations attribute to value. +// +// value: 1-D tensor of length 4. The dilation factor for each dimension of +// `input`. If set to k > 1, there will be k-1 skipped cells between each filter +// element on that dimension. The dimension order is determined by the value of +// `data_format`, see above for details. Dilations in the batch and depth +// dimensions must be 1. +// If not specified, defaults to +func Conv2DBackpropInputDilations(value []int64) Conv2DBackpropInputAttr { + return func(m optionalAttr) { + m["dilations"] = value + } +} + +// Computes the gradients of convolution with respect to the input. +// +// Arguments: +// input_sizes: An integer vector representing the shape of `input`, +// where `input` is a 4-D `[batch, height, width, channels]` tensor. +// filter: 4-D with shape +// `[filter_height, filter_width, in_channels, out_channels]`. +// out_backprop: 4-D with shape `[batch, out_height, out_width, out_channels]`. +// Gradients w.r.t. the output of the convolution. +// strides: The stride of the sliding window for each dimension of the input +// of the convolution. Must be in the same order as the dimension specified with +// format. +// padding: The type of padding algorithm to use. +// +// Returns 4-D with shape `[batch, in_height, in_width, in_channels]`. Gradient +// w.r.t. the input of the convolution. +func Conv2DBackpropInput(scope *Scope, input_sizes tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv2DBackpropInputAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Conv2DBackpropInput", + Input: []tf.Input{ + input_sizes, filter, out_backprop, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // UniqueWithCountsV2Attr is an optional argument to UniqueWithCountsV2. type UniqueWithCountsV2Attr func(optionalAttr) @@ -10014,45 +9789,6 @@ func UniqueWithCountsV2(scope *Scope, x tf.Output, axis tf.Output, optional ...U return op.Output(0), op.Output(1), op.Output(2) } -// OptimizeDatasetAttr is an optional argument to OptimizeDataset. -type OptimizeDatasetAttr func(optionalAttr) - -// OptimizeDatasetOptimizationConfigs sets the optional optimization_configs attribute to value. -// If not specified, defaults to <> -func OptimizeDatasetOptimizationConfigs(value []string) OptimizeDatasetAttr { - return func(m optionalAttr) { - m["optimization_configs"] = value - } -} - -// Creates a dataset by applying optimizations to `input_dataset`. -// -// Creates a dataset by applying optimizations to `input_dataset`. -// -// Arguments: -// input_dataset: A variant tensor representing the input dataset. -// optimizations: A `tf.string` vector `tf.Tensor` identifying optimizations to use. -// -// -func OptimizeDataset(scope *Scope, input_dataset tf.Output, optimizations tf.Output, output_types []tf.DataType, output_shapes []tf.Shape, optional ...OptimizeDatasetAttr) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "OptimizeDataset", - Input: []tf.Input{ - input_dataset, optimizations, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Adds up a SparseTensor and a dense Tensor, using these special rules: // // (1) Broadcasts the dense side to have the same shape as the sparse side, if @@ -10117,6 +9853,21 @@ func CollectiveReduce(scope *Scope, input tf.Output, group_size int64, group_key return op.Output(0) } +// Produces a summary of any statistics recorded by the given statistics manager. +func ExperimentalStatsAggregatorSummary(scope *Scope, iterator tf.Output) (summary tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ExperimentalStatsAggregatorSummary", + Input: []tf.Input{ + iterator, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // MaxPoolGradGradV2Attr is an optional argument to MaxPoolGradGradV2. type MaxPoolGradGradV2Attr func(optionalAttr) @@ -10165,164 +9916,10 @@ func MaxPoolGradGradV2(scope *Scope, orig_input tf.Output, orig_output tf.Output return op.Output(0) } -// NonMaxSuppressionAttr is an optional argument to NonMaxSuppression. -type NonMaxSuppressionAttr func(optionalAttr) +// MaxPoolV2Attr is an optional argument to MaxPoolV2. +type MaxPoolV2Attr func(optionalAttr) -// NonMaxSuppressionIouThreshold sets the optional iou_threshold attribute to value. -// -// value: A float representing the threshold for deciding whether boxes -// overlap too much with respect to IOU. -// If not specified, defaults to 0.5 -func NonMaxSuppressionIouThreshold(value float32) NonMaxSuppressionAttr { - return func(m optionalAttr) { - m["iou_threshold"] = value - } -} - -// Greedily selects a subset of bounding boxes in descending order of score, -// -// pruning away boxes that have high intersection-over-union (IOU) overlap -// with previously selected boxes. Bounding boxes are supplied as -// [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any -// diagonal pair of box corners and the coordinates can be provided as normalized -// (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm -// is agnostic to where the origin is in the coordinate system. Note that this -// algorithm is invariant to orthogonal transformations and translations -// of the coordinate system; thus translating or reflections of the coordinate -// system result in the same boxes being selected by the algorithm. -// The output of this operation is a set of integers indexing into the input -// collection of bounding boxes representing the selected boxes. The bounding -// box coordinates corresponding to the selected indices can then be obtained -// using the `tf.gather operation`. For example: -// selected_indices = tf.image.non_max_suppression( -// boxes, scores, max_output_size, iou_threshold) -// selected_boxes = tf.gather(boxes, selected_indices) -// -// Arguments: -// boxes: A 2-D float tensor of shape `[num_boxes, 4]`. -// scores: A 1-D float tensor of shape `[num_boxes]` representing a single -// score corresponding to each box (each row of boxes). -// max_output_size: A scalar integer tensor representing the maximum number of -// boxes to be selected by non max suppression. -// -// Returns A 1-D integer tensor of shape `[M]` representing the selected -// indices from the boxes tensor, where `M <= max_output_size`. -func NonMaxSuppression(scope *Scope, boxes tf.Output, scores tf.Output, max_output_size tf.Output, optional ...NonMaxSuppressionAttr) (selected_indices tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "NonMaxSuppression", - Input: []tf.Input{ - boxes, scores, max_output_size, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a Dataset that returns pseudorandom numbers. -// -// Arguments: -// seed: A scalar seed for the random number generator. If either seed or -// seed2 is set to be non-zero, the random number generator is seeded -// by the given seed. Otherwise, a random seed is used. -// seed2: A second scalar seed to avoid seed collision. -// -// -func ExperimentalRandomDataset(scope *Scope, seed tf.Output, seed2 tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ExperimentalRandomDataset", - Input: []tf.Input{ - seed, seed2, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// AudioSpectrogramAttr is an optional argument to AudioSpectrogram. -type AudioSpectrogramAttr func(optionalAttr) - -// AudioSpectrogramMagnitudeSquared sets the optional magnitude_squared attribute to value. -// -// value: Whether to return the squared magnitude or just the -// magnitude. Using squared magnitude can avoid extra calculations. -// If not specified, defaults to false -func AudioSpectrogramMagnitudeSquared(value bool) AudioSpectrogramAttr { - return func(m optionalAttr) { - m["magnitude_squared"] = value - } -} - -// Produces a visualization of audio data over time. -// -// Spectrograms are a standard way of representing audio information as a series of -// slices of frequency information, one slice for each window of time. By joining -// these together into a sequence, they form a distinctive fingerprint of the sound -// over time. -// -// This op expects to receive audio data as an input, stored as floats in the range -// -1 to 1, together with a window width in samples, and a stride specifying how -// far to move the window between slices. From this it generates a three -// dimensional output. The first dimension is for the channels in the input, so a -// stereo audio input would have two here for example. The second dimension is time, -// with successive frequency slices. The third dimension has an amplitude value for -// each frequency during that time slice. -// -// This means the layout when converted and saved as an image is rotated 90 degrees -// clockwise from a typical spectrogram. Time is descending down the Y axis, and -// the frequency decreases from left to right. -// -// Each value in the result represents the square root of the sum of the real and -// imaginary parts of an FFT on the current window of samples. In this way, the -// lowest dimension represents the power of each frequency in the current window, -// and adjacent windows are concatenated in the next dimension. -// -// To get a more intuitive and visual look at what this operation does, you can run -// tensorflow/examples/wav_to_spectrogram to read in an audio file and save out the -// resulting spectrogram as a PNG image. -// -// Arguments: -// input: Float representation of audio data. -// window_size: How wide the input window is in samples. For the highest efficiency -// this should be a power of two, but other values are accepted. -// stride: How widely apart the center of adjacent sample windows should be. -// -// Returns 3D representation of the audio frequencies as an image. -func AudioSpectrogram(scope *Scope, input tf.Output, window_size int64, stride int64, optional ...AudioSpectrogramAttr) (spectrogram tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"window_size": window_size, "stride": stride} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AudioSpectrogram", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// MaxPoolAttr is an optional argument to MaxPool. -type MaxPoolAttr func(optionalAttr) - -// MaxPoolDataFormat sets the optional data_format attribute to value. +// MaxPoolV2DataFormat sets the optional data_format attribute to value. // // value: Specify the data format of the input and output data. With the // default format "NHWC", the data is stored in the order of: @@ -10330,7 +9927,7 @@ type MaxPoolAttr func(optionalAttr) // Alternatively, the format could be "NCHW", the data storage order of: // [batch, in_channels, in_height, in_width]. // If not specified, defaults to "NHWC" -func MaxPoolDataFormat(value string) MaxPoolAttr { +func MaxPoolV2DataFormat(value string) MaxPoolV2Attr { return func(m optionalAttr) { m["data_format"] = value } @@ -10346,18 +9943,18 @@ func MaxPoolDataFormat(value string) MaxPoolAttr { // padding: The type of padding algorithm to use. // // Returns The max pooled output tensor. -func MaxPool(scope *Scope, input tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolAttr) (output tf.Output) { +func MaxPoolV2(scope *Scope, input tf.Output, ksize tf.Output, strides tf.Output, padding string, optional ...MaxPoolV2Attr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + attrs := map[string]interface{}{"padding": padding} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "MaxPool", + Type: "MaxPoolV2", Input: []tf.Input{ - input, + input, ksize, strides, }, Attrs: attrs, } @@ -10414,6 +10011,167 @@ func MaxPool3DGradGrad(scope *Scope, orig_input tf.Output, orig_output tf.Output return op.Output(0) } +// Enqueue a Tensor on the computation outfeed. +// +// Arguments: +// input: A tensor that will be inserted into the outfeed queue. +// +// Returns the created operation. +func OutfeedEnqueue(scope *Scope, input tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "OutfeedEnqueue", + Input: []tf.Input{ + input, + }, + } + return scope.AddOperation(opspec) +} + +// AvgPool3DGradAttr is an optional argument to AvgPool3DGrad. +type AvgPool3DGradAttr func(optionalAttr) + +// AvgPool3DGradDataFormat sets the optional data_format attribute to value. +// +// value: The data format of the input and output data. With the +// default format "NDHWC", the data is stored in the order of: +// [batch, in_depth, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCDHW", the data storage order is: +// [batch, in_channels, in_depth, in_height, in_width]. +// If not specified, defaults to "NDHWC" +func AvgPool3DGradDataFormat(value string) AvgPool3DGradAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Computes gradients of average pooling function. +// +// Arguments: +// orig_input_shape: The original input dimensions. +// grad: Output backprop of shape `[batch, depth, rows, cols, channels]`. +// ksize: 1-D tensor of length 5. The size of the window for each dimension of +// the input tensor. Must have `ksize[0] = ksize[4] = 1`. +// strides: 1-D tensor of length 5. The stride of the sliding window for each +// dimension of `input`. Must have `strides[0] = strides[4] = 1`. +// padding: The type of padding algorithm to use. +// +// Returns The backprop for input. +func AvgPool3DGrad(scope *Scope, orig_input_shape tf.Output, grad tf.Output, ksize []int64, strides []int64, padding string, optional ...AvgPool3DGradAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "AvgPool3DGrad", + Input: []tf.Input{ + orig_input_shape, grad, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// AvgPool3DAttr is an optional argument to AvgPool3D. +type AvgPool3DAttr func(optionalAttr) + +// AvgPool3DDataFormat sets the optional data_format attribute to value. +// +// value: The data format of the input and output data. With the +// default format "NDHWC", the data is stored in the order of: +// [batch, in_depth, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCDHW", the data storage order is: +// [batch, in_channels, in_depth, in_height, in_width]. +// If not specified, defaults to "NDHWC" +func AvgPool3DDataFormat(value string) AvgPool3DAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Performs 3D average pooling on the input. +// +// Arguments: +// input: Shape `[batch, depth, rows, cols, channels]` tensor to pool over. +// ksize: 1-D tensor of length 5. The size of the window for each dimension of +// the input tensor. Must have `ksize[0] = ksize[4] = 1`. +// strides: 1-D tensor of length 5. The stride of the sliding window for each +// dimension of `input`. Must have `strides[0] = strides[4] = 1`. +// padding: The type of padding algorithm to use. +// +// Returns The average pooled output tensor. +func AvgPool3D(scope *Scope, input tf.Output, ksize []int64, strides []int64, padding string, optional ...AvgPool3DAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "AvgPool3D", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Produces the average pool of the input tensor for quantized types. +// +// Arguments: +// input: 4-D with shape `[batch, height, width, channels]`. +// min_input: The float value that the lowest quantized input value represents. +// max_input: The float value that the highest quantized input value represents. +// ksize: The size of the window for each dimension of the input tensor. +// The length must be 4 to match the number of dimensions of the input. +// strides: The stride of the sliding window for each dimension of the input +// tensor. The length must be 4 to match the number of dimensions of the input. +// padding: The type of padding algorithm to use. +// +// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. +func QuantizedAvgPool(scope *Scope, input tf.Output, min_input tf.Output, max_input tf.Output, ksize []int64, strides []int64, padding string) (output tf.Output, min_output tf.Output, max_output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + opspec := tf.OpSpec{ + Type: "QuantizedAvgPool", + Input: []tf.Input{ + input, min_input, max_input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Computes the gradient of the sigmoid of `x` wrt its input. +// +// Specifically, `grad = dy * y * (1 - y)`, where `y = sigmoid(x)`, and +// `dy` is the corresponding input gradient. +func SigmoidGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SigmoidGrad", + Input: []tf.Input{ + y, dy, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Pads a tensor with zeros. // // This operation pads a `input` with zeros according to the `paddings` you @@ -10563,6 +10321,140 @@ func Conv3DBackpropFilterV2(scope *Scope, input tf.Output, filter_sizes tf.Outpu return op.Output(0) } +// MaxPoolGradV2Attr is an optional argument to MaxPoolGradV2. +type MaxPoolGradV2Attr func(optionalAttr) + +// MaxPoolGradV2DataFormat sets the optional data_format attribute to value. +// +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the data is stored in the order of: +// [batch, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, in_channels, in_height, in_width]. +// If not specified, defaults to "NHWC" +func MaxPoolGradV2DataFormat(value string) MaxPoolGradV2Attr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Computes gradients of the maxpooling function. +// +// Arguments: +// orig_input: The original input tensor. +// orig_output: The original output tensor. +// grad: 4-D. Gradients w.r.t. the output of `max_pool`. +// ksize: The size of the window for each dimension of the input tensor. +// strides: The stride of the sliding window for each dimension of the +// input tensor. +// padding: The type of padding algorithm to use. +// +// Returns Gradients w.r.t. the input to `max_pool`. +func MaxPoolGradV2(scope *Scope, orig_input tf.Output, orig_output tf.Output, grad tf.Output, ksize tf.Output, strides tf.Output, padding string, optional ...MaxPoolGradV2Attr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "MaxPoolGradV2", + Input: []tf.Input{ + orig_input, orig_output, grad, ksize, strides, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// MaxPoolGradAttr is an optional argument to MaxPoolGrad. +type MaxPoolGradAttr func(optionalAttr) + +// MaxPoolGradDataFormat sets the optional data_format attribute to value. +// +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the data is stored in the order of: +// [batch, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, in_channels, in_height, in_width]. +// If not specified, defaults to "NHWC" +func MaxPoolGradDataFormat(value string) MaxPoolGradAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Computes gradients of the maxpooling function. +// +// Arguments: +// orig_input: The original input tensor. +// orig_output: The original output tensor. +// grad: 4-D. Gradients w.r.t. the output of `max_pool`. +// ksize: The size of the window for each dimension of the input tensor. +// strides: The stride of the sliding window for each dimension of the +// input tensor. +// padding: The type of padding algorithm to use. +// +// Returns Gradients w.r.t. the input to `max_pool`. +func MaxPoolGrad(scope *Scope, orig_input tf.Output, orig_output tf.Output, grad tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolGradAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "MaxPoolGrad", + Input: []tf.Input{ + orig_input, orig_output, grad, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Batch normalization. +// +// DEPRECATED at GraphDef version 9: Use tf.nn.batch_normalization() +// +// This op is deprecated. Prefer `tf.nn.batch_normalization`. +// +// Arguments: +// t: A 4D input Tensor. +// m: A 1D mean Tensor with size matching the last dimension of t. +// This is the first output from tf.nn.moments, +// or a saved moving average thereof. +// v: A 1D variance Tensor with size matching the last dimension of t. +// This is the second output from tf.nn.moments, +// or a saved moving average thereof. +// beta: A 1D beta Tensor with size matching the last dimension of t. +// An offset to be added to the normalized tensor. +// gamma: A 1D gamma Tensor with size matching the last dimension of t. +// If "scale_after_normalization" is true, this tensor will be multiplied +// with the normalized tensor. +// variance_epsilon: A small float number to avoid dividing by 0. +// scale_after_normalization: A bool indicating whether the resulted tensor +// needs to be multiplied with gamma. +func BatchNormWithGlobalNormalization(scope *Scope, t tf.Output, m tf.Output, v tf.Output, beta tf.Output, gamma tf.Output, variance_epsilon float32, scale_after_normalization bool) (result tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"variance_epsilon": variance_epsilon, "scale_after_normalization": scale_after_normalization} + opspec := tf.OpSpec{ + Type: "BatchNormWithGlobalNormalization", + Input: []tf.Input{ + t, m, v, beta, gamma, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Converts each string in the input Tensor to its hash mod by a number of buckets. // // The hash function is deterministic on the content of the string within the @@ -10658,6 +10550,59 @@ func Conv3D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, pa return op.Output(0) } +// TFRecordReaderV2Attr is an optional argument to TFRecordReaderV2. +type TFRecordReaderV2Attr func(optionalAttr) + +// TFRecordReaderV2Container sets the optional container attribute to value. +// +// value: If non-empty, this reader is placed in the given container. +// Otherwise, a default container is used. +// If not specified, defaults to "" +func TFRecordReaderV2Container(value string) TFRecordReaderV2Attr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// TFRecordReaderV2SharedName sets the optional shared_name attribute to value. +// +// value: If non-empty, this reader is named in the given bucket +// with this shared_name. Otherwise, the node name is used instead. +// If not specified, defaults to "" +func TFRecordReaderV2SharedName(value string) TFRecordReaderV2Attr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// TFRecordReaderV2CompressionType sets the optional compression_type attribute to value. +// If not specified, defaults to "" +func TFRecordReaderV2CompressionType(value string) TFRecordReaderV2Attr { + return func(m optionalAttr) { + m["compression_type"] = value + } +} + +// A Reader that outputs the records from a TensorFlow Records file. +// +// Returns The handle to reference the Reader. +func TFRecordReaderV2(scope *Scope, optional ...TFRecordReaderV2Attr) (reader_handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TFRecordReaderV2", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // DepthwiseConv2dNativeBackpropFilterAttr is an optional argument to DepthwiseConv2dNativeBackpropFilter. type DepthwiseConv2dNativeBackpropFilterAttr func(optionalAttr) @@ -10824,153 +10769,268 @@ func DepthwiseConv2dNativeBackpropInput(scope *Scope, input_sizes tf.Output, fil return op.Output(0) } -// LogUniformCandidateSamplerAttr is an optional argument to LogUniformCandidateSampler. -type LogUniformCandidateSamplerAttr func(optionalAttr) +// MaxPoolGradGradWithArgmaxAttr is an optional argument to MaxPoolGradGradWithArgmax. +type MaxPoolGradGradWithArgmaxAttr func(optionalAttr) -// LogUniformCandidateSamplerSeed sets the optional seed attribute to value. +// MaxPoolGradGradWithArgmaxIncludeBatchInIndex sets the optional include_batch_in_index attribute to value. // -// value: If either seed or seed2 are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func LogUniformCandidateSamplerSeed(value int64) LogUniformCandidateSamplerAttr { +// value: Whether to include batch dimension in flattened index of `argmax`. +// If not specified, defaults to false +func MaxPoolGradGradWithArgmaxIncludeBatchInIndex(value bool) MaxPoolGradGradWithArgmaxAttr { return func(m optionalAttr) { - m["seed"] = value + m["include_batch_in_index"] = value } } -// LogUniformCandidateSamplerSeed2 sets the optional seed2 attribute to value. -// -// value: An second seed to avoid seed collision. -// If not specified, defaults to 0 -func LogUniformCandidateSamplerSeed2(value int64) LogUniformCandidateSamplerAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Generates labels for candidate sampling with a log-uniform distribution. -// -// See explanations of candidate sampling and the data formats at -// go/candidate-sampling. -// -// For each batch, this op picks a single set of sampled candidate labels. -// -// The advantages of sampling candidates per-batch are simplicity and the -// possibility of efficient dense matrix multiplication. The disadvantage is that -// the sampled candidates must be chosen independently of the context and of the -// true labels. +// Computes second-order gradients of the maxpooling function. // // Arguments: -// true_classes: A batch_size * num_true matrix, in which each row contains the -// IDs of the num_true target_classes in the corresponding original label. -// num_true: Number of true labels per context. -// num_sampled: Number of candidates to randomly sample. -// unique: If unique is true, we sample with rejection, so that all sampled -// candidates in a batch are unique. This requires some approximation to -// estimate the post-rejection sampling probabilities. -// range_max: The sampler will sample integers from the interval [0, range_max). +// input: The original input. +// grad: 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. the +// input of `max_pool`. +// argmax: The indices of the maximum values chosen for each output of `max_pool`. +// ksize: The size of the window for each dimension of the input tensor. +// strides: The stride of the sliding window for each dimension of the +// input tensor. +// padding: The type of padding algorithm to use. // -// Returns A vector of length num_sampled, in which each element is -// the ID of a sampled candidate.A batch_size * num_true matrix, representing -// the number of times each candidate is expected to occur in a batch -// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled -// candidate representing the number of times the candidate is expected -// to occur in a batch of sampled candidates. If unique=true, then this is a -// probability. -func LogUniformCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, range_max int64, optional ...LogUniformCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { +// Returns Gradients of gradients w.r.t. the input of `max_pool`. +func MaxPoolGradGradWithArgmax(scope *Scope, input tf.Output, grad tf.Output, argmax tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolGradGradWithArgmaxAttr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique, "range_max": range_max} + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "LogUniformCandidateSampler", + Type: "MaxPoolGradGradWithArgmax", Input: []tf.Input{ - true_classes, + input, grad, argmax, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) + return op.Output(0) } -// Computes the maximum along segments of a tensor. +// LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingRMSPropParametersGradAccumDebug. +type LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr func(optionalAttr) + +// LoadTPUEmbeddingRMSPropParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 // -// Read -// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) -// for an explanation of segments. -// -// This operator is similar to the unsorted segment sum operator found -// [(here)](../../../api_docs/python/math_ops.md#UnsortedSegmentSum). -// Instead of computing the sum over segments, it computes the maximum such that: -// -// \\(output_i = \max_{j...} data[j...]\\) where max is over tuples `j...` such -// that `segment_ids[j...] == i`. -// -// If the maximum is empty for a given segment ID `i`, it outputs the smallest -// possible value for the specific numeric type, -// `output[i] = numeric_limits::lowest()`. -// -// If the given segment ID `i` is negative, then the corresponding value is -// dropped, and will not be included in the result. -// -//
-// -//
-// -// For example: -// -// ``` python -// c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]]) -// tf.unsorted_segment_max(c, tf.constant([0, 1, 0]), num_segments=2) -// # ==> [[ 4, 3, 3, 4], -// # [5, 6, 7, 8]] -// ``` +// REQUIRES: value >= -1 +func LoadTPUEmbeddingRMSPropParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingRMSPropParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingRMSPropParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load RMSProp embedding parameters with debug support. // +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. // // Arguments: -// -// segment_ids: A tensor whose shape is a prefix of `data.shape`. +// parameters: Value of parameters used in the RMSProp optimization algorithm. +// ms: Value of ms used in the RMSProp optimization algorithm. +// mom: Value of mom used in the RMSProp optimization algorithm. +// gradient_accumulators: Value of gradient_accumulators used in the RMSProp optimization algorithm. // // -// Returns Has same shape as data, except for the first `segment_ids.rank` -// dimensions, which are replaced with a single dimension which has size -// `num_segments`. -func UnsortedSegmentMax(scope *Scope, data tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { +// +// Returns the created operation. +func LoadTPUEmbeddingRMSPropParametersGradAccumDebug(scope *Scope, parameters tf.Output, ms tf.Output, mom tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingRMSPropParametersGradAccumDebug", + Input: []tf.Input{ + parameters, ms, mom, gradient_accumulators, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// CompilationResultProto indicating the status of the TPU compilation. +func TPUCompilationResult(scope *Scope) (output tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "UnsortedSegmentMax", + Type: "TPUCompilationResult", + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. +// +// See [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) +// ](http://arxiv.org/abs/1511.07289) +func Elu(scope *Scope, features tf.Output) (activations tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Elu", Input: []tf.Input{ - data, segment_ids, num_segments, + features, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// DepthwiseConv2dNativeAttr is an optional argument to DepthwiseConv2dNative. -type DepthwiseConv2dNativeAttr func(optionalAttr) +// Inverse real-valued fast Fourier transform. +// +// Computes the inverse 1-dimensional discrete Fourier transform of a real-valued +// signal over the inner-most dimension of `input`. +// +// The inner-most dimension of `input` is assumed to be the result of `RFFT`: the +// `fft_length / 2 + 1` unique components of the DFT of a real-valued signal. If +// `fft_length` is not provided, it is computed from the size of the inner-most +// dimension of `input` (`fft_length = 2 * (inner - 1)`). If the FFT length used to +// compute `input` is odd, it should be provided since it cannot be inferred +// properly. +// +// Along the axis `IRFFT` is computed on, if `fft_length / 2 + 1` is smaller +// than the corresponding dimension of `input`, the dimension is cropped. If it is +// larger, the dimension is padded with zeros. +// +// Arguments: +// input: A complex64 tensor. +// fft_length: An int32 tensor of shape [1]. The FFT length. +// +// Returns A float32 tensor of the same rank as `input`. The inner-most +// dimension of `input` is replaced with the `fft_length` samples of its inverse +// 1D Fourier transform. +// +// @compatibility(numpy) +// Equivalent to np.fft.irfft +// @end_compatibility +func IRFFT(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "IRFFT", + Input: []tf.Input{ + input, fft_length, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} -// DepthwiseConv2dNativeDataFormat sets the optional data_format attribute to value. +// DataFormatDimMapAttr is an optional argument to DataFormatDimMap. +type DataFormatDimMapAttr func(optionalAttr) + +// DataFormatDimMapSrcFormat sets the optional src_format attribute to value. +// +// value: source data format. +// If not specified, defaults to "NHWC" +func DataFormatDimMapSrcFormat(value string) DataFormatDimMapAttr { + return func(m optionalAttr) { + m["src_format"] = value + } +} + +// DataFormatDimMapDstFormat sets the optional dst_format attribute to value. +// +// value: destination data format. +// If not specified, defaults to "NCHW" +func DataFormatDimMapDstFormat(value string) DataFormatDimMapAttr { + return func(m optionalAttr) { + m["dst_format"] = value + } +} + +// Returns the dimension index in the destination data format given the one in +// +// the source data format. +// +// Arguments: +// x: A Tensor with each element as a dimension index in source data format. +// Must be in the range [-4, 4). +// +// Returns A Tensor with each element as a dimension index in destination data format. +func DataFormatDimMap(scope *Scope, x tf.Output, optional ...DataFormatDimMapAttr) (y tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DataFormatDimMap", + Input: []tf.Input{ + x, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Conv2DBackpropFilterAttr is an optional argument to Conv2DBackpropFilter. +type Conv2DBackpropFilterAttr func(optionalAttr) + +// Conv2DBackpropFilterUseCudnnOnGpu sets the optional use_cudnn_on_gpu attribute to value. +// If not specified, defaults to true +func Conv2DBackpropFilterUseCudnnOnGpu(value bool) Conv2DBackpropFilterAttr { + return func(m optionalAttr) { + m["use_cudnn_on_gpu"] = value + } +} + +// Conv2DBackpropFilterExplicitPaddings sets the optional explicit_paddings attribute to value. +// +// value: If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith +// dimension, the amount of padding inserted before and after the dimension is +// `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If +// `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. +// If not specified, defaults to <> +func Conv2DBackpropFilterExplicitPaddings(value []int64) Conv2DBackpropFilterAttr { + return func(m optionalAttr) { + m["explicit_paddings"] = value + } +} + +// Conv2DBackpropFilterDataFormat sets the optional data_format attribute to value. // // value: Specify the data format of the input and output data. With the // default format "NHWC", the data is stored in the order of: -// [batch, height, width, channels]. +// [batch, in_height, in_width, in_channels]. // Alternatively, the format could be "NCHW", the data storage order of: -// [batch, channels, height, width]. +// [batch, in_channels, in_height, in_width]. // If not specified, defaults to "NHWC" -func DepthwiseConv2dNativeDataFormat(value string) DepthwiseConv2dNativeAttr { +func Conv2DBackpropFilterDataFormat(value string) Conv2DBackpropFilterAttr { return func(m optionalAttr) { m["data_format"] = value } } -// DepthwiseConv2dNativeDilations sets the optional dilations attribute to value. +// Conv2DBackpropFilterDilations sets the optional dilations attribute to value. // // value: 1-D tensor of length 4. The dilation factor for each dimension of // `input`. If set to k > 1, there will be k-1 skipped cells between each filter @@ -10978,40 +11038,30 @@ func DepthwiseConv2dNativeDataFormat(value string) DepthwiseConv2dNativeAttr { // `data_format`, see above for details. Dilations in the batch and depth // dimensions must be 1. // If not specified, defaults to -func DepthwiseConv2dNativeDilations(value []int64) DepthwiseConv2dNativeAttr { +func Conv2DBackpropFilterDilations(value []int64) Conv2DBackpropFilterAttr { return func(m optionalAttr) { m["dilations"] = value } } -// Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. -// -// Given an input tensor of shape `[batch, in_height, in_width, in_channels]` -// and a filter / kernel tensor of shape -// `[filter_height, filter_width, in_channels, channel_multiplier]`, containing -// `in_channels` convolutional filters of depth 1, `depthwise_conv2d` applies -// a different filter to each input channel (expanding from 1 channel to -// `channel_multiplier` channels for each), then concatenates the results -// together. Thus, the output has `in_channels * channel_multiplier` channels. -// -// ``` -// for k in 0..in_channels-1 -// for q in 0..channel_multiplier-1 -// output[b, i, j, k * channel_multiplier + q] = -// sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] * -// filter[di, dj, k, q] -// ``` -// -// Must have `strides[0] = strides[3] = 1`. For the most common case of the same -// horizontal and vertices strides, `strides = [1, stride, stride, 1]`. +// Computes the gradients of convolution with respect to the filter. // // Arguments: -// -// -// strides: 1-D of length 4. The stride of the sliding window for each dimension -// of `input`. +// input: 4-D with shape `[batch, in_height, in_width, in_channels]`. +// filter_sizes: An integer vector representing the tensor shape of `filter`, +// where `filter` is a 4-D +// `[filter_height, filter_width, in_channels, out_channels]` tensor. +// out_backprop: 4-D with shape `[batch, out_height, out_width, out_channels]`. +// Gradients w.r.t. the output of the convolution. +// strides: The stride of the sliding window for each dimension of the input +// of the convolution. Must be in the same order as the dimension specified with +// format. // padding: The type of padding algorithm to use. -func DepthwiseConv2dNative(scope *Scope, input tf.Output, filter tf.Output, strides []int64, padding string, optional ...DepthwiseConv2dNativeAttr) (output tf.Output) { +// +// Returns 4-D with shape +// `[filter_height, filter_width, in_channels, out_channels]`. Gradient w.r.t. +// the `filter` input of the convolution. +func Conv2DBackpropFilter(scope *Scope, input tf.Output, filter_sizes tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv2DBackpropFilterAttr) (output tf.Output) { if scope.Err() != nil { return } @@ -11020,7 +11070,172 @@ func DepthwiseConv2dNative(scope *Scope, input tf.Output, filter tf.Output, stri a(attrs) } opspec := tf.OpSpec{ - Type: "DepthwiseConv2dNative", + Type: "Conv2DBackpropFilter", + Input: []tf.Input{ + input, filter_sizes, out_backprop, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// UnbatchAttr is an optional argument to Unbatch. +type UnbatchAttr func(optionalAttr) + +// UnbatchContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func UnbatchContainer(value string) UnbatchAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// UnbatchSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func UnbatchSharedName(value string) UnbatchAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Reverses the operation of Batch for a single output Tensor. +// +// An instance of Unbatch either receives an empty batched_tensor, in which case it +// asynchronously waits until the values become available from a concurrently +// running instance of Unbatch with the same container and shared_name, or receives +// a non-empty batched_tensor in which case it finalizes all other concurrently +// running instances and outputs its own element from the batch. +// +// batched_tensor: The possibly transformed output of Batch. The size of the first +// dimension should remain unchanged by the transformations for the operation to +// work. +// batch_index: The matching batch_index obtained from Batch. +// id: The id scalar emitted by Batch. +// unbatched_tensor: The Tensor corresponding to this execution. +// timeout_micros: Maximum amount of time (in microseconds) to wait to receive the +// batched input tensor associated with a given invocation of the op. +// container: Container to control resource sharing. +// shared_name: Instances of Unbatch with the same container and shared_name are +// assumed to possibly belong to the same batch. If left empty, the op name will +// be used as the shared name. +func Unbatch(scope *Scope, batched_tensor tf.Output, batch_index tf.Output, id tf.Output, timeout_micros int64, optional ...UnbatchAttr) (unbatched_tensor tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"timeout_micros": timeout_micros} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Unbatch", + Input: []tf.Input{ + batched_tensor, batch_index, id, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Conv2DAttr is an optional argument to Conv2D. +type Conv2DAttr func(optionalAttr) + +// Conv2DUseCudnnOnGpu sets the optional use_cudnn_on_gpu attribute to value. +// If not specified, defaults to true +func Conv2DUseCudnnOnGpu(value bool) Conv2DAttr { + return func(m optionalAttr) { + m["use_cudnn_on_gpu"] = value + } +} + +// Conv2DExplicitPaddings sets the optional explicit_paddings attribute to value. +// +// value: If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith +// dimension, the amount of padding inserted before and after the dimension is +// `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If +// `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. +// If not specified, defaults to <> +func Conv2DExplicitPaddings(value []int64) Conv2DAttr { + return func(m optionalAttr) { + m["explicit_paddings"] = value + } +} + +// Conv2DDataFormat sets the optional data_format attribute to value. +// +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the data is stored in the order of: +// [batch, height, width, channels]. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, channels, height, width]. +// If not specified, defaults to "NHWC" +func Conv2DDataFormat(value string) Conv2DAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Conv2DDilations sets the optional dilations attribute to value. +// +// value: 1-D tensor of length 4. The dilation factor for each dimension of +// `input`. If set to k > 1, there will be k-1 skipped cells between each +// filter element on that dimension. The dimension order is determined by the +// value of `data_format`, see above for details. Dilations in the batch and +// depth dimensions must be 1. +// If not specified, defaults to +func Conv2DDilations(value []int64) Conv2DAttr { + return func(m optionalAttr) { + m["dilations"] = value + } +} + +// Computes a 2-D convolution given 4-D `input` and `filter` tensors. +// +// Given an input tensor of shape `[batch, in_height, in_width, in_channels]` +// and a filter / kernel tensor of shape +// `[filter_height, filter_width, in_channels, out_channels]`, this op +// performs the following: +// +// 1. Flattens the filter to a 2-D matrix with shape +// `[filter_height * filter_width * in_channels, output_channels]`. +// 2. Extracts image patches from the input tensor to form a *virtual* +// tensor of shape `[batch, out_height, out_width, +// filter_height * filter_width * in_channels]`. +// 3. For each patch, right-multiplies the filter matrix and the image patch +// vector. +// +// In detail, with the default NHWC format, +// +// output[b, i, j, k] = +// sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] * +// filter[di, dj, q, k] +// +// Must have `strides[0] = strides[3] = 1`. For the most common case of the same +// horizontal and vertices strides, `strides = [1, stride, stride, 1]`. +// +// Arguments: +// input: A 4-D tensor. The dimension order is interpreted according to the value +// of `data_format`, see below for details. +// filter: A 4-D tensor of shape +// `[filter_height, filter_width, in_channels, out_channels]` +// strides: 1-D tensor of length 4. The stride of the sliding window for each +// dimension of `input`. The dimension order is determined by the value of +// `data_format`, see below for details. +// padding: The type of padding algorithm to use. +// +// Returns A 4-D tensor. The dimension order is determined by the value of +// `data_format`, see below for details. +func Conv2D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, padding string, optional ...Conv2DAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Conv2D", Input: []tf.Input{ input, filter, }, @@ -11030,265 +11245,81 @@ func DepthwiseConv2dNative(scope *Scope, input tf.Output, filter tf.Output, stri return op.Output(0) } -// Forwards `data` to the output port determined by `pred`. -// -// If `pred` is true, the `data` input is forwarded to `output_true`. Otherwise, -// the data goes to `output_false`. -// -// See also `RefSwitch` and `Merge`. -// -// Arguments: -// data: The tensor to be forwarded to the appropriate output. -// pred: A scalar that specifies which output port will receive data. -// -// Returns If `pred` is false, data will be forwarded to this output.If `pred` is true, data will be forwarded to this output. -func Switch(scope *Scope, data tf.Output, pred tf.Output) (output_false tf.Output, output_true tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Switch", - Input: []tf.Input{ - data, pred, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} +// MaxPoolGradWithArgmaxAttr is an optional argument to MaxPoolGradWithArgmax. +type MaxPoolGradWithArgmaxAttr func(optionalAttr) -// RaggedRangeAttr is an optional argument to RaggedRange. -type RaggedRangeAttr func(optionalAttr) - -// RaggedRangeTsplits sets the optional Tsplits attribute to value. -// If not specified, defaults to DT_INT64 -func RaggedRangeTsplits(value tf.DataType) RaggedRangeAttr { +// MaxPoolGradWithArgmaxIncludeBatchInIndex sets the optional include_batch_in_index attribute to value. +// +// value: Whether to include batch dimension in flattened index of `argmax`. +// If not specified, defaults to false +func MaxPoolGradWithArgmaxIncludeBatchInIndex(value bool) MaxPoolGradWithArgmaxAttr { return func(m optionalAttr) { - m["Tsplits"] = value + m["include_batch_in_index"] = value } } -// Returns a `RaggedTensor` containing the specified sequences of numbers. -// -// -// Returns a `RaggedTensor` `result` composed from `rt_dense_values` and -// `rt_nested_splits`, such that -// `result[i] = range(starts[i], limits[i], deltas[i])`. -// -// ```python -// >>> (rt_nested_splits, rt_dense_values) = gen_ragged_ops.ragged_range( -// ... starts=[2, 5, 8], limits=[3, 5, 12], deltas=1) -// >>> result = ragged.from_nested_row_splits(rt_dense_values, rt_nested_splits) -// >>> print result.eval().tolist() -// [[2], # result[0] = range(2, 3) -// [], # result[1] = range(5, 5) -// [8, 9, 10, 11]] # result[2] = range(8, 12) -// ``` -// -// The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. -// The vector inputs must all have the same size. Scalar inputs are broadcast -// to match the size of the vector inputs. +// Computes gradients of the maxpooling function. // // Arguments: -// starts: The starts of each range. -// limits: The limits of each range. -// deltas: The deltas of each range. +// input: The original input. +// grad: 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. the +// output of `max_pool`. +// argmax: The indices of the maximum values chosen for each output of `max_pool`. +// ksize: The size of the window for each dimension of the input tensor. +// strides: The stride of the sliding window for each dimension of the +// input tensor. +// padding: The type of padding algorithm to use. // -// Returns The `row_splits` for the returned `RaggedTensor`.The `flat_values` for the returned `RaggedTensor`. -func RaggedRange(scope *Scope, starts tf.Output, limits tf.Output, deltas tf.Output, optional ...RaggedRangeAttr) (rt_nested_splits tf.Output, rt_dense_values tf.Output) { +// Returns Gradients w.r.t. the input of `max_pool`. +func MaxPoolGradWithArgmax(scope *Scope, input tf.Output, grad tf.Output, argmax tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolGradWithArgmaxAttr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "RaggedRange", + Type: "MaxPoolGradWithArgmax", Input: []tf.Input{ - starts, limits, deltas, + input, grad, argmax, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// Concatenates tensors along one dimension. -// -// Arguments: -// concat_dim: 0-D. The dimension along which to concatenate. Must be in the -// range [0, rank(values)). -// values: The `N` Tensors to concatenate. Their ranks and types must match, -// and their sizes must match in all dimensions except `concat_dim`. -// -// Returns A `Tensor` with the concatenation of values stacked along the -// `concat_dim` dimension. This tensor's shape matches that of `values` except -// in `concat_dim` where it has the sum of the sizes. -func Concat(scope *Scope, concat_dim tf.Output, values []tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Concat", - Input: []tf.Input{ - concat_dim, tf.OutputList(values), - }, - } - op := scope.AddOperation(opspec) return op.Output(0) } -// Computes cos of x element-wise. -func Cos(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Cos", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} +// BiasAddAttr is an optional argument to BiasAdd. +type BiasAddAttr func(optionalAttr) -// Deserialize `SparseTensor` objects. +// BiasAddDataFormat sets the optional data_format attribute to value. // -// The input `serialized_sparse` must have the shape `[?, ?, ..., ?, 3]` where -// the last dimension stores serialized `SparseTensor` objects and the other N -// dimensions (N >= 0) correspond to a batch. The ranks of the original -// `SparseTensor` objects must all match. When the final `SparseTensor` is -// created, its rank is the rank of the incoming `SparseTensor` objects plus N; -// the sparse tensors have been concatenated along new dimensions, one for each -// batch. -// -// The output `SparseTensor` object's shape values for the original dimensions -// are the max across the input `SparseTensor` objects' shape values for the -// corresponding dimensions. The new dimensions match the size of the batch. -// -// The input `SparseTensor` objects' indices are assumed ordered in -// standard lexicographic order. If this is not the case, after this -// step run `SparseReorder` to restore index ordering. -// -// For example, if the serialized input is a `[2 x 3]` matrix representing two -// original `SparseTensor` objects: -// -// index = [ 0] -// [10] -// [20] -// values = [1, 2, 3] -// shape = [50] -// -// and -// -// index = [ 2] -// [10] -// values = [4, 5] -// shape = [30] -// -// then the final deserialized `SparseTensor` will be: -// -// index = [0 0] -// [0 10] -// [0 20] -// [1 2] -// [1 10] -// values = [1, 2, 3, 4, 5] -// shape = [2 50] -// -// Arguments: -// serialized_sparse: The serialized `SparseTensor` objects. The last dimension -// must have 3 columns. -// dtype: The `dtype` of the serialized `SparseTensor` objects. -func DeserializeSparse(scope *Scope, serialized_sparse tf.Output, dtype tf.DataType) (sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - opspec := tf.OpSpec{ - Type: "DeserializeSparse", - Input: []tf.Input{ - serialized_sparse, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Produces a summary of any statistics recorded by the given statistics manager. -func ExperimentalStatsAggregatorSummary(scope *Scope, iterator tf.Output) (summary tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ExperimentalStatsAggregatorSummary", - Input: []tf.Input{ - iterator, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// FusedBatchNormGradAttr is an optional argument to FusedBatchNormGrad. -type FusedBatchNormGradAttr func(optionalAttr) - -// FusedBatchNormGradEpsilon sets the optional epsilon attribute to value. -// -// value: A small float number added to the variance of x. -// If not specified, defaults to 0.0001 -func FusedBatchNormGradEpsilon(value float32) FusedBatchNormGradAttr { - return func(m optionalAttr) { - m["epsilon"] = value - } -} - -// FusedBatchNormGradDataFormat sets the optional data_format attribute to value. -// -// value: The data format for y_backprop, x, x_backprop. -// Either "NHWC" (default) or "NCHW". +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the bias tensor will be added to the last dimension +// of the value tensor. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, in_channels, in_height, in_width]. +// The tensor will be added to "in_channels", the third-to-the-last +// dimension. // If not specified, defaults to "NHWC" -func FusedBatchNormGradDataFormat(value string) FusedBatchNormGradAttr { +func BiasAddDataFormat(value string) BiasAddAttr { return func(m optionalAttr) { m["data_format"] = value } } -// FusedBatchNormGradIsTraining sets the optional is_training attribute to value. +// Adds `bias` to `value`. // -// value: A bool value to indicate the operation is for training (default) -// or inference. -// If not specified, defaults to true -func FusedBatchNormGradIsTraining(value bool) FusedBatchNormGradAttr { - return func(m optionalAttr) { - m["is_training"] = value - } -} - -// Gradient for batch normalization. -// -// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". -// The size of 1D Tensors matches the dimension C of the 4D Tensors. +// This is a special case of `tf.add` where `bias` is restricted to be 1-D. +// Broadcasting is supported, so `value` may have any number of dimensions. // // Arguments: -// y_backprop: A 4D Tensor for the gradient with respect to y. -// x: A 4D Tensor for input data. -// scale: A 1D Tensor for scaling factor, to scale the normalized x. -// reserve_space_1: When is_training is True, a 1D Tensor for the computed batch -// mean to be reused in gradient computation. When is_training is -// False, a 1D Tensor for the population mean to be reused in both -// 1st and 2nd order gradient computation. -// reserve_space_2: When is_training is True, a 1D Tensor for the computed batch -// variance (inverted variance in the cuDNN case) to be reused in -// gradient computation. When is_training is False, a 1D Tensor -// for the population variance to be reused in both 1st and 2nd -// order gradient computation. +// value: Any number of dimensions. +// bias: 1-D with size the last dimension of `value`. // -// Returns A 4D Tensor for the gradient with respect to x.A 1D Tensor for the gradient with respect to scale.A 1D Tensor for the gradient with respect to offset.Unused placeholder to match the mean input in FusedBatchNorm.Unused placeholder to match the variance input -// in FusedBatchNorm. -func FusedBatchNormGrad(scope *Scope, y_backprop tf.Output, x tf.Output, scale tf.Output, reserve_space_1 tf.Output, reserve_space_2 tf.Output, optional ...FusedBatchNormGradAttr) (x_backprop tf.Output, scale_backprop tf.Output, offset_backprop tf.Output, reserve_space_3 tf.Output, reserve_space_4 tf.Output) { +// Returns Broadcasted sum of `value` and `bias`. +func BiasAdd(scope *Scope, value tf.Output, bias tf.Output, optional ...BiasAddAttr) (output tf.Output) { if scope.Err() != nil { return } @@ -11297,52 +11328,9 @@ func FusedBatchNormGrad(scope *Scope, y_backprop tf.Output, x tf.Output, scale t a(attrs) } opspec := tf.OpSpec{ - Type: "FusedBatchNormGrad", + Type: "BiasAdd", Input: []tf.Input{ - y_backprop, x, scale, reserve_space_1, reserve_space_2, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) -} - -// RealAttr is an optional argument to Real. -type RealAttr func(optionalAttr) - -// RealTout sets the optional Tout attribute to value. -// If not specified, defaults to DT_FLOAT -func RealTout(value tf.DataType) RealAttr { - return func(m optionalAttr) { - m["Tout"] = value - } -} - -// Returns the real part of a complex number. -// -// Given a tensor `input` of complex numbers, this operation returns a tensor of -// type `float` that is the real part of each element in `input`. All elements in -// `input` must be complex numbers of the form \\(a + bj\\), where *a* is the real -// part returned by this operation and *b* is the imaginary part. -// -// For example: -// -// ``` -// # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] -// tf.real(input) ==> [-2.25, 3.25] -// ``` -func Real(scope *Scope, input tf.Output, optional ...RealAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Real", - Input: []tf.Input{ - input, + value, bias, }, Attrs: attrs, } @@ -11422,37 +11410,47 @@ func FusedBatchNorm(scope *Scope, x tf.Output, scale tf.Output, offset tf.Output return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) } -// Batch normalization. +// AvgPoolAttr is an optional argument to AvgPool. +type AvgPoolAttr func(optionalAttr) + +// AvgPoolDataFormat sets the optional data_format attribute to value. // -// DEPRECATED at GraphDef version 9: Use tf.nn.batch_normalization() +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the data is stored in the order of: +// [batch, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, in_channels, in_height, in_width]. +// If not specified, defaults to "NHWC" +func AvgPoolDataFormat(value string) AvgPoolAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Performs average pooling on the input. // -// This op is deprecated. Prefer `tf.nn.batch_normalization`. +// Each entry in `output` is the mean of the corresponding size `ksize` +// window in `value`. // // Arguments: -// t: A 4D input Tensor. -// m: A 1D mean Tensor with size matching the last dimension of t. -// This is the first output from tf.nn.moments, -// or a saved moving average thereof. -// v: A 1D variance Tensor with size matching the last dimension of t. -// This is the second output from tf.nn.moments, -// or a saved moving average thereof. -// beta: A 1D beta Tensor with size matching the last dimension of t. -// An offset to be added to the normalized tensor. -// gamma: A 1D gamma Tensor with size matching the last dimension of t. -// If "scale_after_normalization" is true, this tensor will be multiplied -// with the normalized tensor. -// variance_epsilon: A small float number to avoid dividing by 0. -// scale_after_normalization: A bool indicating whether the resulted tensor -// needs to be multiplied with gamma. -func BatchNormWithGlobalNormalization(scope *Scope, t tf.Output, m tf.Output, v tf.Output, beta tf.Output, gamma tf.Output, variance_epsilon float32, scale_after_normalization bool) (result tf.Output) { +// value: 4-D with shape `[batch, height, width, channels]`. +// ksize: The size of the sliding window for each dimension of `value`. +// strides: The stride of the sliding window for each dimension of `value`. +// padding: The type of padding algorithm to use. +// +// Returns The average pooled output tensor. +func AvgPool(scope *Scope, value tf.Output, ksize []int64, strides []int64, padding string, optional ...AvgPoolAttr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"variance_epsilon": variance_epsilon, "scale_after_normalization": scale_after_normalization} + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } opspec := tf.OpSpec{ - Type: "BatchNormWithGlobalNormalization", + Type: "AvgPool", Input: []tf.Input{ - t, m, v, beta, gamma, + value, }, Attrs: attrs, } @@ -11460,110 +11458,169 @@ func BatchNormWithGlobalNormalization(scope *Scope, t tf.Output, m tf.Output, v return op.Output(0) } -// RetrieveTPUEmbeddingFTRLParametersAttr is an optional argument to RetrieveTPUEmbeddingFTRLParameters. -type RetrieveTPUEmbeddingFTRLParametersAttr func(optionalAttr) - -// RetrieveTPUEmbeddingFTRLParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 +// Does nothing. Only useful as a placeholder for control edges. // -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingFTRLParametersTableId(value int64) RetrieveTPUEmbeddingFTRLParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// RetrieveTPUEmbeddingFTRLParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingFTRLParametersTableName(value string) RetrieveTPUEmbeddingFTRLParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Retrieve FTRL embedding parameters. -// -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. -// -// Returns Parameter parameters updated by the FTRL optimization algorithm.Parameter accumulators updated by the FTRL optimization algorithm.Parameter linears updated by the FTRL optimization algorithm. -func RetrieveTPUEmbeddingFTRLParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingFTRLParametersAttr) (parameters tf.Output, accumulators tf.Output, linears tf.Output) { +// Returns the created operation. +func NoOp(scope *Scope) (o *tf.Operation) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingFTRLParameters", + Type: "NoOp", + } + return scope.AddOperation(opspec) +} +// Transforms a serialized tensorflow.TensorProto proto into a Tensor. +// +// Arguments: +// serialized: A scalar string containing a serialized TensorProto proto. +// out_type: The type of the serialized tensor. The provided type must match the +// type of the serialized tensor and no implicit conversion will take place. +// +// Returns A Tensor of type `out_type`. +func ParseTensor(scope *Scope, serialized tf.Output, out_type tf.DataType) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"out_type": out_type} + opspec := tf.OpSpec{ + Type: "ParseTensor", + Input: []tf.Input{ + serialized, + }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) + return op.Output(0) } -// DecodeCSVAttr is an optional argument to DecodeCSV. -type DecodeCSVAttr func(optionalAttr) +// SampleDistortedBoundingBoxV2Attr is an optional argument to SampleDistortedBoundingBoxV2. +type SampleDistortedBoundingBoxV2Attr func(optionalAttr) -// DecodeCSVFieldDelim sets the optional field_delim attribute to value. +// SampleDistortedBoundingBoxV2Seed sets the optional seed attribute to value. // -// value: char delimiter to separate fields in a record. -// If not specified, defaults to "," -func DecodeCSVFieldDelim(value string) DecodeCSVAttr { +// value: If either `seed` or `seed2` are set to non-zero, the random number +// generator is seeded by the given `seed`. Otherwise, it is seeded by a random +// seed. +// If not specified, defaults to 0 +func SampleDistortedBoundingBoxV2Seed(value int64) SampleDistortedBoundingBoxV2Attr { return func(m optionalAttr) { - m["field_delim"] = value + m["seed"] = value } } -// DecodeCSVUseQuoteDelim sets the optional use_quote_delim attribute to value. +// SampleDistortedBoundingBoxV2Seed2 sets the optional seed2 attribute to value. // -// value: If false, treats double quotation marks as regular -// characters inside of the string fields (ignoring RFC 4180, Section 2, -// Bullet 5). -// If not specified, defaults to true -func DecodeCSVUseQuoteDelim(value bool) DecodeCSVAttr { +// value: A second seed to avoid seed collision. +// If not specified, defaults to 0 +func SampleDistortedBoundingBoxV2Seed2(value int64) SampleDistortedBoundingBoxV2Attr { return func(m optionalAttr) { - m["use_quote_delim"] = value + m["seed2"] = value } } -// DecodeCSVNaValue sets the optional na_value attribute to value. +// SampleDistortedBoundingBoxV2AspectRatioRange sets the optional aspect_ratio_range attribute to value. // -// value: Additional string to recognize as NA/NaN. -// If not specified, defaults to "" -func DecodeCSVNaValue(value string) DecodeCSVAttr { +// value: The cropped area of the image must have an aspect ratio = +// width / height within this range. +// If not specified, defaults to +func SampleDistortedBoundingBoxV2AspectRatioRange(value []float32) SampleDistortedBoundingBoxV2Attr { return func(m optionalAttr) { - m["na_value"] = value + m["aspect_ratio_range"] = value } } -// DecodeCSVSelectCols sets the optional select_cols attribute to value. -// If not specified, defaults to <> -func DecodeCSVSelectCols(value []int64) DecodeCSVAttr { +// SampleDistortedBoundingBoxV2AreaRange sets the optional area_range attribute to value. +// +// value: The cropped area of the image must contain a fraction of the +// supplied image within this range. +// If not specified, defaults to +func SampleDistortedBoundingBoxV2AreaRange(value []float32) SampleDistortedBoundingBoxV2Attr { return func(m optionalAttr) { - m["select_cols"] = value + m["area_range"] = value } } -// Convert CSV records to tensors. Each column maps to one tensor. +// SampleDistortedBoundingBoxV2MaxAttempts sets the optional max_attempts attribute to value. // -// RFC 4180 format is expected for the CSV records. -// (https://tools.ietf.org/html/rfc4180) -// Note that we allow leading and trailing spaces with int or float field. +// value: Number of attempts at generating a cropped region of the image +// of the specified constraints. After `max_attempts` failures, return the entire +// image. +// If not specified, defaults to 100 +func SampleDistortedBoundingBoxV2MaxAttempts(value int64) SampleDistortedBoundingBoxV2Attr { + return func(m optionalAttr) { + m["max_attempts"] = value + } +} + +// SampleDistortedBoundingBoxV2UseImageIfNoBoundingBoxes sets the optional use_image_if_no_bounding_boxes attribute to value. +// +// value: Controls behavior if no bounding boxes supplied. +// If true, assume an implicit bounding box covering the whole input. If false, +// raise an error. +// If not specified, defaults to false +func SampleDistortedBoundingBoxV2UseImageIfNoBoundingBoxes(value bool) SampleDistortedBoundingBoxV2Attr { + return func(m optionalAttr) { + m["use_image_if_no_bounding_boxes"] = value + } +} + +// Generate a single randomly distorted bounding box for an image. +// +// Bounding box annotations are often supplied in addition to ground-truth labels +// in image recognition or object localization tasks. A common technique for +// training such a system is to randomly distort an image while preserving +// its content, i.e. *data augmentation*. This Op outputs a randomly distorted +// localization of an object, i.e. bounding box, given an `image_size`, +// `bounding_boxes` and a series of constraints. +// +// The output of this Op is a single bounding box that may be used to crop the +// original image. The output is returned as 3 tensors: `begin`, `size` and +// `bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the +// image. The latter may be supplied to `tf.image.draw_bounding_boxes` to visualize +// what the bounding box looks like. +// +// Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`. The +// bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and +// height of the underlying image. +// +// For example, +// +// ```python +// # Generate a single distorted bounding box. +// begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box( +// tf.shape(image), +// bounding_boxes=bounding_boxes) +// +// # Draw the bounding box in an image summary. +// image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), +// bbox_for_draw) +// tf.summary.image('images_with_box', image_with_box) +// +// # Employ the bounding box to distort the image. +// distorted_image = tf.slice(image, begin, size) +// ``` +// +// Note that if no bounding box information is available, setting +// `use_image_if_no_bounding_boxes = true` will assume there is a single implicit +// bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is +// false and no bounding boxes are supplied, an error is raised. // // Arguments: -// records: Each string is a record/row in the csv and all records should have -// the same format. -// record_defaults: One tensor per column of the input record, with either a -// scalar default value for that column or an empty vector if the column is -// required. +// image_size: 1-D, containing `[height, width, channels]`. +// bounding_boxes: 3-D with shape `[batch, N, 4]` describing the N bounding boxes +// associated with the image. +// min_object_covered: The cropped area of the image must contain at least this +// fraction of any bounding box supplied. The value of this parameter should be +// non-negative. In the case of 0, the cropped area does not need to overlap +// any of the bounding boxes supplied. // -// Returns Each tensor will have the same shape as records. -func DecodeCSV(scope *Scope, records tf.Output, record_defaults []tf.Output, optional ...DecodeCSVAttr) (output []tf.Output) { +// Returns 1-D, containing `[offset_height, offset_width, 0]`. Provide as input to +// `tf.slice`.1-D, containing `[target_height, target_width, -1]`. Provide as input to +// `tf.slice`.3-D with shape `[1, 1, 4]` containing the distorted bounding box. +// Provide as input to `tf.image.draw_bounding_boxes`. +func SampleDistortedBoundingBoxV2(scope *Scope, image_size tf.Output, bounding_boxes tf.Output, min_object_covered tf.Output, optional ...SampleDistortedBoundingBoxV2Attr) (begin tf.Output, size tf.Output, bboxes tf.Output) { if scope.Err() != nil { return } @@ -11572,88 +11629,14 @@ func DecodeCSV(scope *Scope, records tf.Output, record_defaults []tf.Output, opt a(attrs) } opspec := tf.OpSpec{ - Type: "DecodeCSV", + Type: "SampleDistortedBoundingBoxV2", Input: []tf.Input{ - records, tf.OutputList(record_defaults), + image_size, bounding_boxes, min_object_covered, }, Attrs: attrs, } op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if output, idx, err = makeOutputList(op, idx, "output"); err != nil { - scope.UpdateErr("DecodeCSV", err) - return - } - return output -} - -// Computes the Cholesky decomposition of one or more square matrices. -// -// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions -// form square matrices. -// -// The input has to be symmetric and positive definite. Only the lower-triangular -// part of the input will be used for this operation. The upper-triangular part -// will not be read. -// -// The output is a tensor of the same shape as the input -// containing the Cholesky decompositions for all input submatrices `[..., :, :]`. -// -// **Note**: The gradient computation on GPU is faster for large matrices but -// not for large batch dimensions when the submatrices are small. In this -// case it might be faster to use the CPU. -// -// Arguments: -// input: Shape is `[..., M, M]`. -// -// Returns Shape is `[..., M, M]`. -func Cholesky(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Cholesky", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the mean along sparse segments of a tensor. -// -// Like `SparseSegmentMean`, but allows missing ids in `segment_ids`. If an id is -// misisng, the `output` tensor at that position will be zeroed. -// -// Read -// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) -// for an explanation of segments. -// -// Arguments: -// -// indices: A 1-D tensor. Has same rank as `segment_ids`. -// segment_ids: A 1-D tensor. Values should be sorted and can be repeated. -// num_segments: Should equal the number of distinct segment IDs. -// -// Returns Has same shape as data, except for dimension 0 which has size -// `num_segments`. -func SparseSegmentMeanWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSegmentMeanWithNumSegments", - Input: []tf.Input{ - data, indices, segment_ids, num_segments, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1), op.Output(2) } // ParseSequenceExampleAttr is an optional argument to ParseSequenceExample. @@ -11864,79 +11847,6 @@ func ParseSequenceExample(scope *Scope, serialized tf.Output, debug_name tf.Outp return context_sparse_indices, context_sparse_values, context_sparse_shapes, context_dense_values, feature_list_sparse_indices, feature_list_sparse_values, feature_list_sparse_shapes, feature_list_dense_values, feature_list_dense_lengths } -// Add the quantile summaries to each quantile stream resource. -// -// An op that adds a list of quantile summaries to a quantile stream resource. Each -// summary Tensor is rank 2, containing summaries (value, weight, min_rank, max_rank) -// for a single feature. -// -// Arguments: -// quantile_stream_resource_handle: resource handle referring to a QuantileStreamResource. -// summaries: string; List of Rank 2 Tensor each containing the summaries for a single feature. -// -// Returns the created operation. -func BoostedTreesQuantileStreamResourceAddSummaries(scope *Scope, quantile_stream_resource_handle tf.Output, summaries []tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BoostedTreesQuantileStreamResourceAddSummaries", - Input: []tf.Input{ - quantile_stream_resource_handle, tf.OutputList(summaries), - }, - } - return scope.AddOperation(opspec) -} - -// Assigns sparse updates to the variable referenced by `resource`. -// -// This operation computes -// -// # Scalar indices -// ref[indices, ...] = updates[...] -// -// # Vector indices (for each i) -// ref[indices[i], ...] = updates[i, ...] -// -// # High rank indices (for each i, ..., j) -// ref[indices[i, ..., j], ...] = updates[i, ..., j, ...] -// -// Arguments: -// resource: Should be from a `Variable` node. -// indices: A tensor of indices into the first dimension of `ref`. -// updates: A tensor of updated values to add to `ref`. -// -// Returns the created operation. -func ResourceScatterUpdate(scope *Scope, resource tf.Output, indices tf.Output, updates tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ResourceScatterUpdate", - Input: []tf.Input{ - resource, indices, updates, - }, - } - return scope.AddOperation(opspec) -} - -// Creates a dataset that zips together `input_datasets`. -func ZipDataset(scope *Scope, input_datasets []tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ZipDataset", - Input: []tf.Input{ - tf.OutputList(input_datasets), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Transforms a tf.Example proto (as a string) into typed tensors. // // Arguments: @@ -12086,60 +11996,192 @@ func RetrieveTPUEmbeddingFTRLParametersGradAccumDebug(scope *Scope, num_shards i return op.Output(0), op.Output(1), op.Output(2), op.Output(3) } -// CTCLossAttr is an optional argument to CTCLoss. -type CTCLossAttr func(optionalAttr) - -// CTCLossPreprocessCollapseRepeated sets the optional preprocess_collapse_repeated attribute to value. +// Encodes a `RaggedTensor` into a `variant` Tensor. // -// value: Scalar, if true then repeated labels are -// collapsed prior to the CTC calculation. -// If not specified, defaults to false -func CTCLossPreprocessCollapseRepeated(value bool) CTCLossAttr { - return func(m optionalAttr) { - m["preprocess_collapse_repeated"] = value - } -} - -// CTCLossCtcMergeRepeated sets the optional ctc_merge_repeated attribute to value. // -// value: Scalar. If set to false, *during* CTC calculation -// repeated non-blank labels will not be merged and are interpreted as -// individual labels. This is a simplified version of CTC. -// If not specified, defaults to true -func CTCLossCtcMergeRepeated(value bool) CTCLossAttr { - return func(m optionalAttr) { - m["ctc_merge_repeated"] = value - } -} - -// CTCLossIgnoreLongerOutputsThanInputs sets the optional ignore_longer_outputs_than_inputs attribute to value. +// Encodes the given `RaggedTensor` and returns a `variant` Tensor. If +// `batched_input` is True, then input `RaggedTensor` is unbatched along the +// zero-th dimension, each component `RaggedTensor` is encoded into a scalar +// `variant` Tensor, and these are stacked to return a 1-D `variant` Tensor. +// If `batched_input` is False, then the input `RaggedTensor` is encoded as is and +// a scalar `variant` Tensor is returned. A `RaggedTensor` is encoded by first +// creating a 1-D `variant` Tensor with `ragged_rank + 1` elements, containing the +// splits and values Tensors of the `RaggedTensor`. Then the 1-D `variant` Tensor +// is wrapped in a scalar `variant` Tensor. See `RaggedTensorFromVariant` for the +// corresponding decoding logic. // -// value: Scalar. If set to true, during CTC -// calculation, items that have longer output sequences than input sequences -// are skipped: they don't contribute to the loss term and have zero-gradient. -// If not specified, defaults to false -func CTCLossIgnoreLongerOutputsThanInputs(value bool) CTCLossAttr { - return func(m optionalAttr) { - m["ignore_longer_outputs_than_inputs"] = value - } -} - -// Calculates the CTC Loss (log probability) for each batch entry. Also calculates -// -// the gradient. This class performs the softmax operation for you, so inputs -// should be e.g. linear projections of outputs by an LSTM. // // Arguments: -// inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. -// labels_indices: The indices of a `SparseTensor`. -// `labels_indices(i, :) == [b, t]` means `labels_values(i)` stores the id for -// `(batch b, time t)`. -// labels_values: The values (labels) associated with the given batch and time. -// sequence_length: A vector containing sequence lengths (batch). +// rt_nested_splits: A list of one or more Tensors representing the splits of the input +// `RaggedTensor`. +// rt_dense_values: A Tensor representing the values of the input `RaggedTensor`. +// batched_input: A `bool` denoting whether the input is a batched `RaggedTensor`. // -// Returns A vector (batch) containing log-probabilities.The gradient of `loss`. 3-D, shape: -// `(max_time x batch_size x num_classes)`. -func CTCLoss(scope *Scope, inputs tf.Output, labels_indices tf.Output, labels_values tf.Output, sequence_length tf.Output, optional ...CTCLossAttr) (loss tf.Output, gradient tf.Output) { +// Returns A `variant` Tensor that containing encoded `RaggedTensor`. +func RaggedTensorToVariant(scope *Scope, rt_nested_splits []tf.Output, rt_dense_values tf.Output, batched_input bool) (encoded_ragged tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"batched_input": batched_input} + opspec := tf.OpSpec{ + Type: "RaggedTensorToVariant", + Input: []tf.Input{ + tf.OutputList(rt_nested_splits), rt_dense_values, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Gather slices from `params` into a Tensor with shape specified by `indices`. +// +// `indices` is an K-dimensional integer tensor, best thought of as a +// (K-1)-dimensional tensor of indices into `params`, where each element defines a +// slice of `params`: +// +// output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]] +// +// Whereas in `tf.gather` `indices` defines slices into the first +// dimension of `params`, in `tf.gather_nd`, `indices` defines slices into the +// first `N` dimensions of `params`, where `N = indices.shape[-1]`. +// +// The last dimension of `indices` can be at most the rank of +// `params`: +// +// indices.shape[-1] <= params.rank +// +// The last dimension of `indices` corresponds to elements +// (if `indices.shape[-1] == params.rank`) or slices +// (if `indices.shape[-1] < params.rank`) along dimension `indices.shape[-1]` +// of `params`. The output tensor has shape +// +// indices.shape[:-1] + params.shape[indices.shape[-1]:] +// +// Note that on CPU, if an out of bound index is found, an error is returned. +// On GPU, if an out of bound index is found, a 0 is stored in the +// corresponding output value. +// +// Some examples below. +// +// Simple indexing into a matrix: +// +// ```python +// indices = [[0, 0], [1, 1]] +// params = [['a', 'b'], ['c', 'd']] +// output = ['a', 'd'] +// ``` +// +// Slice indexing into a matrix: +// +// ```python +// indices = [[1], [0]] +// params = [['a', 'b'], ['c', 'd']] +// output = [['c', 'd'], ['a', 'b']] +// ``` +// +// Indexing into a 3-tensor: +// +// ```python +// indices = [[1]] +// params = [[['a0', 'b0'], ['c0', 'd0']], +// [['a1', 'b1'], ['c1', 'd1']]] +// output = [[['a1', 'b1'], ['c1', 'd1']]] +// +// +// indices = [[0, 1], [1, 0]] +// params = [[['a0', 'b0'], ['c0', 'd0']], +// [['a1', 'b1'], ['c1', 'd1']]] +// output = [['c0', 'd0'], ['a1', 'b1']] +// +// +// indices = [[0, 0, 1], [1, 0, 1]] +// params = [[['a0', 'b0'], ['c0', 'd0']], +// [['a1', 'b1'], ['c1', 'd1']]] +// output = ['b0', 'b1'] +// ``` +// +// Batched indexing into a matrix: +// +// ```python +// indices = [[[0, 0]], [[0, 1]]] +// params = [['a', 'b'], ['c', 'd']] +// output = [['a'], ['b']] +// ``` +// +// Batched slice indexing into a matrix: +// +// ```python +// indices = [[[1]], [[0]]] +// params = [['a', 'b'], ['c', 'd']] +// output = [[['c', 'd']], [['a', 'b']]] +// ``` +// +// Batched indexing into a 3-tensor: +// +// ```python +// indices = [[[1]], [[0]]] +// params = [[['a0', 'b0'], ['c0', 'd0']], +// [['a1', 'b1'], ['c1', 'd1']]] +// output = [[[['a1', 'b1'], ['c1', 'd1']]], +// [[['a0', 'b0'], ['c0', 'd0']]]] +// +// indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]] +// params = [[['a0', 'b0'], ['c0', 'd0']], +// [['a1', 'b1'], ['c1', 'd1']]] +// output = [[['c0', 'd0'], ['a1', 'b1']], +// [['a0', 'b0'], ['c1', 'd1']]] +// +// +// indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]] +// params = [[['a0', 'b0'], ['c0', 'd0']], +// [['a1', 'b1'], ['c1', 'd1']]] +// output = [['b0', 'b1'], ['d0', 'c1']] +// ``` +// +// See also `tf.gather` and `tf.batch_gather`. +// +// Arguments: +// params: The tensor from which to gather values. +// indices: Index tensor. +// +// Returns Values from `params` gathered from indices given by `indices`, with +// shape `indices.shape[:-1] + params.shape[indices.shape[-1]:]`. +func GatherNd(scope *Scope, params tf.Output, indices tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "GatherNd", + Input: []tf.Input{ + params, indices, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// SerializeSparseAttr is an optional argument to SerializeSparse. +type SerializeSparseAttr func(optionalAttr) + +// SerializeSparseOutType sets the optional out_type attribute to value. +// +// value: The `dtype` to use for serialization; the supported types are `string` +// (default) and `variant`. +// If not specified, defaults to DT_STRING +func SerializeSparseOutType(value tf.DataType) SerializeSparseAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// Serialize a `SparseTensor` into a `[3]` `Tensor` object. +// +// Arguments: +// sparse_indices: 2-D. The `indices` of the `SparseTensor`. +// sparse_values: 1-D. The `values` of the `SparseTensor`. +// sparse_shape: 1-D. The `shape` of the `SparseTensor`. +func SerializeSparse(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output, optional ...SerializeSparseAttr) (serialized_sparse tf.Output) { if scope.Err() != nil { return } @@ -12148,53 +12190,9 @@ func CTCLoss(scope *Scope, inputs tf.Output, labels_indices tf.Output, labels_va a(attrs) } opspec := tf.OpSpec{ - Type: "CTCLoss", + Type: "SerializeSparse", Input: []tf.Input{ - inputs, labels_indices, labels_values, sequence_length, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// DecodePaddedRawAttr is an optional argument to DecodePaddedRaw. -type DecodePaddedRawAttr func(optionalAttr) - -// DecodePaddedRawLittleEndian sets the optional little_endian attribute to value. -// -// value: Whether the input `input_bytes` is in little-endian order. Ignored for -// `out_type` values that are stored in a single byte, like `uint8` -// If not specified, defaults to true -func DecodePaddedRawLittleEndian(value bool) DecodePaddedRawAttr { - return func(m optionalAttr) { - m["little_endian"] = value - } -} - -// Reinterpret the bytes of a string as a vector of numbers. -// -// Arguments: -// input_bytes: Tensor of string to be decoded. -// fixed_length: Length in bytes for each element of the decoded output. Must be a multiple -// of the size of the output type. -// -// -// Returns A Tensor with one more dimension than the input `bytes`. The added dimension -// will have size equal to the length of the elements of `bytes` divided by the -// number of bytes to represent `out_type`. -func DecodePaddedRaw(scope *Scope, input_bytes tf.Output, fixed_length tf.Output, out_type tf.DataType, optional ...DecodePaddedRawAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"out_type": out_type} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "DecodePaddedRaw", - Input: []tf.Input{ - input_bytes, fixed_length, + sparse_indices, sparse_values, sparse_shape, }, Attrs: attrs, } @@ -12202,138 +12200,518 @@ func DecodePaddedRaw(scope *Scope, input_bytes tf.Output, fixed_length tf.Output return op.Output(0) } -// Gather ragged slices from `params` axis `0` according to `indices`. +// NonMaxSuppressionAttr is an optional argument to NonMaxSuppression. +type NonMaxSuppressionAttr func(optionalAttr) + +// NonMaxSuppressionIouThreshold sets the optional iou_threshold attribute to value. // -// Outputs a `RaggedTensor` output composed from `output_dense_values` and -// `output_nested_splits`, such that: -// -// ```python -// output.shape = indices.shape + params.shape[1:] -// output.ragged_rank = indices.shape.ndims + params.ragged_rank -// output[i...j, d0...dn] = params[indices[i...j], d0...dn] -// ``` -// -// where -// -// * `params = -// ragged.from_nested_row_splits(params_dense_values, params_nested_splits)` -// provides the values that should be gathered. -// * `indices` ia a dense tensor with dtype `int32` or `int64`, indicating which -// values should be gathered. -// * `output = -// ragged.from_nested_row_splits(output_dense_values, output_nested_splits)` -// is the output tensor. -// -// (Note: This c++ op is used to implement the higher-level python -// `tf.ragged.gather` op, which also supports ragged indices.) +// value: A float representing the threshold for deciding whether boxes +// overlap too much with respect to IOU. +// If not specified, defaults to 0.5 +func NonMaxSuppressionIouThreshold(value float32) NonMaxSuppressionAttr { + return func(m optionalAttr) { + m["iou_threshold"] = value + } +} + +// Greedily selects a subset of bounding boxes in descending order of score, // +// pruning away boxes that have high intersection-over-union (IOU) overlap +// with previously selected boxes. Bounding boxes are supplied as +// [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any +// diagonal pair of box corners and the coordinates can be provided as normalized +// (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm +// is agnostic to where the origin is in the coordinate system. Note that this +// algorithm is invariant to orthogonal transformations and translations +// of the coordinate system; thus translating or reflections of the coordinate +// system result in the same boxes being selected by the algorithm. +// The output of this operation is a set of integers indexing into the input +// collection of bounding boxes representing the selected boxes. The bounding +// box coordinates corresponding to the selected indices can then be obtained +// using the `tf.gather operation`. For example: +// selected_indices = tf.image.non_max_suppression( +// boxes, scores, max_output_size, iou_threshold) +// selected_boxes = tf.gather(boxes, selected_indices) // // Arguments: -// params_nested_splits: The `nested_row_splits` tensors that define the row-partitioning for the -// `params` RaggedTensor input. -// params_dense_values: The `flat_values` for the `params` RaggedTensor. There was a terminology change -// at the python level from dense_values to flat_values, so dense_values is the -// deprecated name. -// indices: Indices in the outermost dimension of `params` of the values that should be -// gathered. -// OUTPUT_RAGGED_RANK: The ragged rank of the output RaggedTensor. `output_nested_splits` will contain -// this number of `row_splits` tensors. This value should equal -// `indices.shape.ndims + params.ragged_rank - 1`. +// boxes: A 2-D float tensor of shape `[num_boxes, 4]`. +// scores: A 1-D float tensor of shape `[num_boxes]` representing a single +// score corresponding to each box (each row of boxes). +// max_output_size: A scalar integer tensor representing the maximum number of +// boxes to be selected by non max suppression. // -// Returns The `nested_row_splits` tensors that define the row-partitioning for the -// returned RaggedTensor.The `flat_values` for the returned RaggedTensor. -func RaggedGather(scope *Scope, params_nested_splits []tf.Output, params_dense_values tf.Output, indices tf.Output, OUTPUT_RAGGED_RANK int64) (output_nested_splits []tf.Output, output_dense_values tf.Output) { +// Returns A 1-D integer tensor of shape `[M]` representing the selected +// indices from the boxes tensor, where `M <= max_output_size`. +func NonMaxSuppression(scope *Scope, boxes tf.Output, scores tf.Output, max_output_size tf.Output, optional ...NonMaxSuppressionAttr) (selected_indices tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"OUTPUT_RAGGED_RANK": OUTPUT_RAGGED_RANK} - opspec := tf.OpSpec{ - Type: "RaggedGather", - Input: []tf.Input{ - tf.OutputList(params_nested_splits), params_dense_values, indices, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if output_nested_splits, idx, err = makeOutputList(op, idx, "output_nested_splits"); err != nil { - scope.UpdateErr("RaggedGather", err) - return - } - output_dense_values = op.Output(idx) - return output_nested_splits, output_dense_values -} - -// RetrieveTPUEmbeddingCenteredRMSPropParametersAttr is an optional argument to RetrieveTPUEmbeddingCenteredRMSPropParameters. -type RetrieveTPUEmbeddingCenteredRMSPropParametersAttr func(optionalAttr) - -// RetrieveTPUEmbeddingCenteredRMSPropParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingCenteredRMSPropParametersTableId(value int64) RetrieveTPUEmbeddingCenteredRMSPropParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// RetrieveTPUEmbeddingCenteredRMSPropParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingCenteredRMSPropParametersTableName(value string) RetrieveTPUEmbeddingCenteredRMSPropParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Retrieve centered RMSProp embedding parameters. -// -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. -// -// Returns Parameter parameters updated by the centered RMSProp optimization algorithm.Parameter ms updated by the centered RMSProp optimization algorithm.Parameter mom updated by the centered RMSProp optimization algorithm.Parameter mg updated by the centered RMSProp optimization algorithm. -func RetrieveTPUEmbeddingCenteredRMSPropParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingCenteredRMSPropParametersAttr) (parameters tf.Output, ms tf.Output, mom tf.Output, mg tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingCenteredRMSPropParameters", - + Type: "NonMaxSuppression", + Input: []tf.Input{ + boxes, scores, max_output_size, + }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3) + return op.Output(0) } -// Writes the given dataset to the given file using the TFRecord format. +// MaxPoolAttr is an optional argument to MaxPool. +type MaxPoolAttr func(optionalAttr) + +// MaxPoolDataFormat sets the optional data_format attribute to value. +// +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the data is stored in the order of: +// [batch, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, in_channels, in_height, in_width]. +// If not specified, defaults to "NHWC" +func MaxPoolDataFormat(value string) MaxPoolAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Performs max pooling on the input. // // Arguments: -// input_dataset: A variant tensor representing the dataset to write. -// filename: A scalar string tensor representing the filename to use. -// compression_type: A scalar string tensor containing either (i) the empty string (no -// compression), (ii) "ZLIB", or (iii) "GZIP". +// input: 4-D input to pool over. +// ksize: The size of the window for each dimension of the input tensor. +// strides: The stride of the sliding window for each dimension of the +// input tensor. +// padding: The type of padding algorithm to use. // -// Returns the created operation. -func ExperimentalDatasetToTFRecord(scope *Scope, input_dataset tf.Output, filename tf.Output, compression_type tf.Output) (o *tf.Operation) { +// Returns The max pooled output tensor. +func MaxPool(scope *Scope, input tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "MaxPool", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Converts a `RaggedTensor` into a `SparseTensor` with the same values. +// +// input=ragged.from_nested_row_splits(rt_dense_values, rt_nested_splits) +// output=SparseTensor(indices=sparse_indices, values=sparse_values, +// dense_shape=sparse_dense_shape) +// +// Arguments: +// rt_nested_splits: The `row_splits` for the `RaggedTensor`. +// rt_dense_values: The `flat_values` for the `RaggedTensor`. +// +// Returns The indices for the `SparseTensor`.The values of the `SparseTensor`.`sparse_dense_shape` is a tight bounding box of the input `RaggedTensor`. +func RaggedTensorToSparse(scope *Scope, rt_nested_splits []tf.Output, rt_dense_values tf.Output) (sparse_indices tf.Output, sparse_values tf.Output, sparse_dense_shape tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "ExperimentalDatasetToTFRecord", + Type: "RaggedTensorToSparse", Input: []tf.Input{ - input_dataset, filename, compression_type, + tf.OutputList(rt_nested_splits), rt_dense_values, }, } - return scope.AddOperation(opspec) + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// AllCandidateSamplerAttr is an optional argument to AllCandidateSampler. +type AllCandidateSamplerAttr func(optionalAttr) + +// AllCandidateSamplerSeed sets the optional seed attribute to value. +// +// value: If either seed or seed2 are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func AllCandidateSamplerSeed(value int64) AllCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// AllCandidateSamplerSeed2 sets the optional seed2 attribute to value. +// +// value: An second seed to avoid seed collision. +// If not specified, defaults to 0 +func AllCandidateSamplerSeed2(value int64) AllCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Generates labels for candidate sampling with a learned unigram distribution. +// +// See explanations of candidate sampling and the data formats at +// go/candidate-sampling. +// +// For each batch, this op picks a single set of sampled candidate labels. +// +// The advantages of sampling candidates per-batch are simplicity and the +// possibility of efficient dense matrix multiplication. The disadvantage is that +// the sampled candidates must be chosen independently of the context and of the +// true labels. +// +// Arguments: +// true_classes: A batch_size * num_true matrix, in which each row contains the +// IDs of the num_true target_classes in the corresponding original label. +// num_true: Number of true labels per context. +// num_sampled: Number of candidates to produce. +// unique: If unique is true, we sample with rejection, so that all sampled +// candidates in a batch are unique. This requires some approximation to +// estimate the post-rejection sampling probabilities. +// +// Returns A vector of length num_sampled, in which each element is +// the ID of a sampled candidate.A batch_size * num_true matrix, representing +// the number of times each candidate is expected to occur in a batch +// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled +// candidate representing the number of times the candidate is expected +// to occur in a batch of sampled candidates. If unique=true, then this is a +// probability. +func AllCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, optional ...AllCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "AllCandidateSampler", + Input: []tf.Input{ + true_classes, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Returns element-wise smallest integer not less than x. +func Ceil(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Ceil", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// EncodeProtoAttr is an optional argument to EncodeProto. +type EncodeProtoAttr func(optionalAttr) + +// EncodeProtoDescriptorSource sets the optional descriptor_source attribute to value. +// If not specified, defaults to "local://" +func EncodeProtoDescriptorSource(value string) EncodeProtoAttr { + return func(m optionalAttr) { + m["descriptor_source"] = value + } +} + +// The op serializes protobuf messages provided in the input tensors. +// +// The types of the tensors in `values` must match the schema for the +// fields specified in `field_names`. All the tensors in `values` must +// have a common shape prefix, *batch_shape*. +// +// The `sizes` tensor specifies repeat counts for each field. The repeat +// count (last dimension) of a each tensor in `values` must be greater +// than or equal to corresponding repeat count in `sizes`. +// +// A `message_type` name must be provided to give context for the field +// names. The actual message descriptor can be looked up either in the +// linked-in descriptor pool or a filename provided by the caller using +// the `descriptor_source` attribute. +// +// The `descriptor_source` attribute selects a source of protocol +// descriptors to consult when looking up `message_type`. This may be a +// filename containing a serialized `FileDescriptorSet` message, +// or the special value `local://`, in which case only descriptors linked +// into the code will be searched; the filename can be on any filesystem +// accessible to TensorFlow. +// +// You can build a `descriptor_source` file using the `--descriptor_set_out` +// and `--include_imports` options to the protocol compiler `protoc`. +// +// The `local://` database only covers descriptors linked into the +// code via C++ libraries, not Python imports. You can link in a proto descriptor +// by creating a cc_library target with alwayslink=1. +// +// There are a few special cases in the value mapping: +// +// Submessage and group fields must be pre-serialized as TensorFlow strings. +// +// TensorFlow lacks support for unsigned int64s, so they must be +// represented as `tf.int64` with the same twos-complement bit pattern +// (the obvious way). +// +// Unsigned int32 values can be represented exactly with `tf.int64`, or +// with sign wrapping if the input is of type `tf.int32`. +// +// Arguments: +// sizes: Tensor of int32 with shape `[batch_shape, len(field_names)]`. +// values: List of tensors containing values for the corresponding field. +// field_names: List of strings containing proto field names. +// message_type: Name of the proto message type to decode. +// +// Returns Tensor of serialized protos with shape `batch_shape`. +func EncodeProto(scope *Scope, sizes tf.Output, values []tf.Output, field_names []string, message_type string, optional ...EncodeProtoAttr) (bytes tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"field_names": field_names, "message_type": message_type} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "EncodeProto", + Input: []tf.Input{ + sizes, tf.OutputList(values), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// RaggedRangeAttr is an optional argument to RaggedRange. +type RaggedRangeAttr func(optionalAttr) + +// RaggedRangeTsplits sets the optional Tsplits attribute to value. +// If not specified, defaults to DT_INT64 +func RaggedRangeTsplits(value tf.DataType) RaggedRangeAttr { + return func(m optionalAttr) { + m["Tsplits"] = value + } +} + +// Returns a `RaggedTensor` containing the specified sequences of numbers. +// +// +// Returns a `RaggedTensor` `result` composed from `rt_dense_values` and +// `rt_nested_splits`, such that +// `result[i] = range(starts[i], limits[i], deltas[i])`. +// +// ```python +// >>> (rt_nested_splits, rt_dense_values) = gen_ragged_ops.ragged_range( +// ... starts=[2, 5, 8], limits=[3, 5, 12], deltas=1) +// >>> result = ragged.from_nested_row_splits(rt_dense_values, rt_nested_splits) +// >>> print result.eval().tolist() +// [[2], # result[0] = range(2, 3) +// [], # result[1] = range(5, 5) +// [8, 9, 10, 11]] # result[2] = range(8, 12) +// ``` +// +// The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. +// The vector inputs must all have the same size. Scalar inputs are broadcast +// to match the size of the vector inputs. +// +// Arguments: +// starts: The starts of each range. +// limits: The limits of each range. +// deltas: The deltas of each range. +// +// Returns The `row_splits` for the returned `RaggedTensor`.The `flat_values` for the returned `RaggedTensor`. +func RaggedRange(scope *Scope, starts tf.Output, limits tf.Output, deltas tf.Output, optional ...RaggedRangeAttr) (rt_nested_splits tf.Output, rt_dense_values tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RaggedRange", + Input: []tf.Input{ + starts, limits, deltas, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// DepthwiseConv2dNativeAttr is an optional argument to DepthwiseConv2dNative. +type DepthwiseConv2dNativeAttr func(optionalAttr) + +// DepthwiseConv2dNativeDataFormat sets the optional data_format attribute to value. +// +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the data is stored in the order of: +// [batch, height, width, channels]. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, channels, height, width]. +// If not specified, defaults to "NHWC" +func DepthwiseConv2dNativeDataFormat(value string) DepthwiseConv2dNativeAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// DepthwiseConv2dNativeDilations sets the optional dilations attribute to value. +// +// value: 1-D tensor of length 4. The dilation factor for each dimension of +// `input`. If set to k > 1, there will be k-1 skipped cells between each filter +// element on that dimension. The dimension order is determined by the value of +// `data_format`, see above for details. Dilations in the batch and depth +// dimensions must be 1. +// If not specified, defaults to +func DepthwiseConv2dNativeDilations(value []int64) DepthwiseConv2dNativeAttr { + return func(m optionalAttr) { + m["dilations"] = value + } +} + +// Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. +// +// Given an input tensor of shape `[batch, in_height, in_width, in_channels]` +// and a filter / kernel tensor of shape +// `[filter_height, filter_width, in_channels, channel_multiplier]`, containing +// `in_channels` convolutional filters of depth 1, `depthwise_conv2d` applies +// a different filter to each input channel (expanding from 1 channel to +// `channel_multiplier` channels for each), then concatenates the results +// together. Thus, the output has `in_channels * channel_multiplier` channels. +// +// ``` +// for k in 0..in_channels-1 +// for q in 0..channel_multiplier-1 +// output[b, i, j, k * channel_multiplier + q] = +// sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] * +// filter[di, dj, k, q] +// ``` +// +// Must have `strides[0] = strides[3] = 1`. For the most common case of the same +// horizontal and vertices strides, `strides = [1, stride, stride, 1]`. +// +// Arguments: +// +// +// strides: 1-D of length 4. The stride of the sliding window for each dimension +// of `input`. +// padding: The type of padding algorithm to use. +func DepthwiseConv2dNative(scope *Scope, input tf.Output, filter tf.Output, strides []int64, padding string, optional ...DepthwiseConv2dNativeAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DepthwiseConv2dNative", + Input: []tf.Input{ + input, filter, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// RandomPoissonAttr is an optional argument to RandomPoisson. +type RandomPoissonAttr func(optionalAttr) + +// RandomPoissonSeed sets the optional seed attribute to value. +// If not specified, defaults to 0 +func RandomPoissonSeed(value int64) RandomPoissonAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// RandomPoissonSeed2 sets the optional seed2 attribute to value. +// If not specified, defaults to 0 +func RandomPoissonSeed2(value int64) RandomPoissonAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Use RandomPoissonV2 instead. +// +// DEPRECATED at GraphDef version 25: Replaced by RandomPoissonV2 +func RandomPoisson(scope *Scope, shape tf.Output, rate tf.Output, optional ...RandomPoissonAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RandomPoisson", + Input: []tf.Input{ + shape, rate, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the reverse mode backpropagated gradient of the Cholesky algorithm. +// +// For an explanation see "Differentiation of the Cholesky algorithm" by +// Iain Murray http://arxiv.org/abs/1602.07527. +// +// Arguments: +// l: Output of batch Cholesky algorithm l = cholesky(A). Shape is `[..., M, M]`. +// Algorithm depends only on lower triangular part of the innermost matrices of +// this tensor. +// grad: df/dl where f is some scalar function. Shape is `[..., M, M]`. +// Algorithm depends only on lower triangular part of the innermost matrices of +// this tensor. +// +// Returns Symmetrized version of df/dA . Shape is `[..., M, M]` +func CholeskyGrad(scope *Scope, l tf.Output, grad tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "CholeskyGrad", + Input: []tf.Input{ + l, grad, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the derivative of a Gamma random sample w.r.t. `alpha`. +func RandomGammaGrad(scope *Scope, alpha tf.Output, sample tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "RandomGammaGrad", + Input: []tf.Input{ + alpha, sample, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) } // RandomGammaAttr is an optional argument to RandomGamma. @@ -12395,44 +12773,42 @@ func RandomGamma(scope *Scope, shape tf.Output, alpha tf.Output, optional ...Ran return op.Output(0) } -// MaxPoolGradWithArgmaxAttr is an optional argument to MaxPoolGradWithArgmax. -type MaxPoolGradWithArgmaxAttr func(optionalAttr) - -// MaxPoolGradWithArgmaxIncludeBatchInIndex sets the optional include_batch_in_index attribute to value. -// -// value: Whether to include batch dimension in flattened index of `argmax`. -// If not specified, defaults to false -func MaxPoolGradWithArgmaxIncludeBatchInIndex(value bool) MaxPoolGradWithArgmaxAttr { - return func(m optionalAttr) { - m["include_batch_in_index"] = value - } -} - -// Computes gradients of the maxpooling function. +// Extract `patches` from `images` and put them in the "depth" output dimension. // // Arguments: -// input: The original input. -// grad: 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. the -// output of `max_pool`. -// argmax: The indices of the maximum values chosen for each output of `max_pool`. -// ksize: The size of the window for each dimension of the input tensor. -// strides: The stride of the sliding window for each dimension of the -// input tensor. +// images: 4-D Tensor with shape `[batch, in_rows, in_cols, depth]`. +// ksizes: The size of the sliding window for each dimension of `images`. +// strides: 1-D of length 4. How far the centers of two consecutive patches are in +// the images. Must be: `[1, stride_rows, stride_cols, 1]`. +// rates: 1-D of length 4. Must be: `[1, rate_rows, rate_cols, 1]`. This is the +// input stride, specifying how far two consecutive patch samples are in the +// input. Equivalent to extracting patches with +// `patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by +// subsampling them spatially by a factor of `rates`. This is equivalent to +// `rate` in dilated (a.k.a. Atrous) convolutions. // padding: The type of padding algorithm to use. // -// Returns Gradients w.r.t. the input of `max_pool`. -func MaxPoolGradWithArgmax(scope *Scope, input tf.Output, grad tf.Output, argmax tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolGradWithArgmaxAttr) (output tf.Output) { +// We specify the size-related attributes as: +// +// ```python +// ksizes = [1, ksize_rows, ksize_cols, 1] +// strides = [1, strides_rows, strides_cols, 1] +// rates = [1, rates_rows, rates_cols, 1] +// ``` +// +// Returns 4-D Tensor with shape `[batch, out_rows, out_cols, ksize_rows * +// ksize_cols * depth]` containing image patches with size +// `ksize_rows x ksize_cols x depth` vectorized in the "depth" dimension. Note +// `out_rows` and `out_cols` are the dimensions of the output patches. +func ExtractImagePatches(scope *Scope, images tf.Output, ksizes []int64, strides []int64, rates []int64, padding string) (patches tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } + attrs := map[string]interface{}{"ksizes": ksizes, "strides": strides, "rates": rates, "padding": padding} opspec := tf.OpSpec{ - Type: "MaxPoolGradWithArgmax", + Type: "ExtractImagePatches", Input: []tf.Input{ - input, grad, argmax, + images, }, Attrs: attrs, } @@ -12440,36 +12816,49 @@ func MaxPoolGradWithArgmax(scope *Scope, input tf.Output, grad tf.Output, argmax return op.Output(0) } -// BiasAddAttr is an optional argument to BiasAdd. -type BiasAddAttr func(optionalAttr) +// RandomShuffleAttr is an optional argument to RandomShuffle. +type RandomShuffleAttr func(optionalAttr) -// BiasAddDataFormat sets the optional data_format attribute to value. +// RandomShuffleSeed sets the optional seed attribute to value. // -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the bias tensor will be added to the last dimension -// of the value tensor. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// The tensor will be added to "in_channels", the third-to-the-last -// dimension. -// If not specified, defaults to "NHWC" -func BiasAddDataFormat(value string) BiasAddAttr { +// value: If either `seed` or `seed2` are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func RandomShuffleSeed(value int64) RandomShuffleAttr { return func(m optionalAttr) { - m["data_format"] = value + m["seed"] = value } } -// Adds `bias` to `value`. +// RandomShuffleSeed2 sets the optional seed2 attribute to value. // -// This is a special case of `tf.add` where `bias` is restricted to be 1-D. -// Broadcasting is supported, so `value` may have any number of dimensions. +// value: A second seed to avoid seed collision. +// If not specified, defaults to 0 +func RandomShuffleSeed2(value int64) RandomShuffleAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Randomly shuffles a tensor along its first dimension. +// +// The tensor is shuffled along dimension 0, such that each `value[j]` is mapped +// to one and only one `output[i]`. For example, a mapping that might occur for a +// 3x2 tensor is: +// +// ``` +// [[1, 2], [[5, 6], +// [3, 4], ==> [1, 2], +// [5, 6]] [3, 4]] +// ``` // // Arguments: -// value: Any number of dimensions. -// bias: 1-D with size the last dimension of `value`. +// value: The tensor to be shuffled. // -// Returns Broadcasted sum of `value` and `bias`. -func BiasAdd(scope *Scope, value tf.Output, bias tf.Output, optional ...BiasAddAttr) (output tf.Output) { +// Returns A tensor of same shape and type as `value`, shuffled along its first +// dimension. +func RandomShuffle(scope *Scope, value tf.Output, optional ...RandomShuffleAttr) (output tf.Output) { if scope.Err() != nil { return } @@ -12478,9 +12867,9 @@ func BiasAdd(scope *Scope, value tf.Output, bias tf.Output, optional ...BiasAddA a(attrs) } opspec := tf.OpSpec{ - Type: "BiasAdd", + Type: "RandomShuffle", Input: []tf.Input{ - value, bias, + value, }, Attrs: attrs, } @@ -12488,55 +12877,157 @@ func BiasAdd(scope *Scope, value tf.Output, bias tf.Output, optional ...BiasAddA return op.Output(0) } -// TruncatedNormalAttr is an optional argument to TruncatedNormal. -type TruncatedNormalAttr func(optionalAttr) +// ShapeAttr is an optional argument to Shape. +type ShapeAttr func(optionalAttr) -// TruncatedNormalSeed sets the optional seed attribute to value. -// -// value: If either `seed` or `seed2` are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func TruncatedNormalSeed(value int64) TruncatedNormalAttr { +// ShapeOutType sets the optional out_type attribute to value. +// If not specified, defaults to DT_INT32 +func ShapeOutType(value tf.DataType) ShapeAttr { return func(m optionalAttr) { - m["seed"] = value + m["out_type"] = value } } -// TruncatedNormalSeed2 sets the optional seed2 attribute to value. +// Returns the shape of a tensor. // -// value: A second seed to avoid seed collision. -// If not specified, defaults to 0 -func TruncatedNormalSeed2(value int64) TruncatedNormalAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Outputs random values from a truncated normal distribution. +// This operation returns a 1-D integer tensor representing the shape of `input`. // -// The generated values follow a normal distribution with mean 0 and standard -// deviation 1, except that values whose magnitude is more than 2 standard -// deviations from the mean are dropped and re-picked. +// For example: // -// Arguments: -// shape: The shape of the output tensor. -// dtype: The type of the output. -// -// Returns A tensor of the specified shape filled with random truncated normal -// values. -func TruncatedNormal(scope *Scope, shape tf.Output, dtype tf.DataType, optional ...TruncatedNormalAttr) (output tf.Output) { +// ``` +// # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] +// shape(t) ==> [2, 2, 3] +// ``` +func Shape(scope *Scope, input tf.Output, optional ...ShapeAttr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"dtype": dtype} + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "TruncatedNormal", + Type: "Shape", Input: []tf.Input{ - shape, + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// FusedBatchNormGradAttr is an optional argument to FusedBatchNormGrad. +type FusedBatchNormGradAttr func(optionalAttr) + +// FusedBatchNormGradEpsilon sets the optional epsilon attribute to value. +// +// value: A small float number added to the variance of x. +// If not specified, defaults to 0.0001 +func FusedBatchNormGradEpsilon(value float32) FusedBatchNormGradAttr { + return func(m optionalAttr) { + m["epsilon"] = value + } +} + +// FusedBatchNormGradDataFormat sets the optional data_format attribute to value. +// +// value: The data format for y_backprop, x, x_backprop. +// Either "NHWC" (default) or "NCHW". +// If not specified, defaults to "NHWC" +func FusedBatchNormGradDataFormat(value string) FusedBatchNormGradAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// FusedBatchNormGradIsTraining sets the optional is_training attribute to value. +// +// value: A bool value to indicate the operation is for training (default) +// or inference. +// If not specified, defaults to true +func FusedBatchNormGradIsTraining(value bool) FusedBatchNormGradAttr { + return func(m optionalAttr) { + m["is_training"] = value + } +} + +// Gradient for batch normalization. +// +// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". +// The size of 1D Tensors matches the dimension C of the 4D Tensors. +// +// Arguments: +// y_backprop: A 4D Tensor for the gradient with respect to y. +// x: A 4D Tensor for input data. +// scale: A 1D Tensor for scaling factor, to scale the normalized x. +// reserve_space_1: When is_training is True, a 1D Tensor for the computed batch +// mean to be reused in gradient computation. When is_training is +// False, a 1D Tensor for the population mean to be reused in both +// 1st and 2nd order gradient computation. +// reserve_space_2: When is_training is True, a 1D Tensor for the computed batch +// variance (inverted variance in the cuDNN case) to be reused in +// gradient computation. When is_training is False, a 1D Tensor +// for the population variance to be reused in both 1st and 2nd +// order gradient computation. +// +// Returns A 4D Tensor for the gradient with respect to x.A 1D Tensor for the gradient with respect to scale.A 1D Tensor for the gradient with respect to offset.Unused placeholder to match the mean input in FusedBatchNorm.Unused placeholder to match the variance input +// in FusedBatchNorm. +func FusedBatchNormGrad(scope *Scope, y_backprop tf.Output, x tf.Output, scale tf.Output, reserve_space_1 tf.Output, reserve_space_2 tf.Output, optional ...FusedBatchNormGradAttr) (x_backprop tf.Output, scale_backprop tf.Output, offset_backprop tf.Output, reserve_space_3 tf.Output, reserve_space_4 tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "FusedBatchNormGrad", + Input: []tf.Input{ + y_backprop, x, scale, reserve_space_1, reserve_space_2, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) +} + +// RealAttr is an optional argument to Real. +type RealAttr func(optionalAttr) + +// RealTout sets the optional Tout attribute to value. +// If not specified, defaults to DT_FLOAT +func RealTout(value tf.DataType) RealAttr { + return func(m optionalAttr) { + m["Tout"] = value + } +} + +// Returns the real part of a complex number. +// +// Given a tensor `input` of complex numbers, this operation returns a tensor of +// type `float` that is the real part of each element in `input`. All elements in +// `input` must be complex numbers of the form \\(a + bj\\), where *a* is the real +// part returned by this operation and *b* is the imaginary part. +// +// For example: +// +// ``` +// # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] +// tf.real(input) ==> [-2.25, 3.25] +// ``` +func Real(scope *Scope, input tf.Output, optional ...RealAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Real", + Input: []tf.Input{ + input, }, Attrs: attrs, } @@ -12603,254 +13094,103 @@ func ParameterizedTruncatedNormal(scope *Scope, shape tf.Output, means tf.Output return op.Output(0) } -// Greedily selects a subset of bounding boxes in descending order of score, +// Computes element-wise population count (a.k.a. popcount, bitsum, bitcount). // -// pruning away boxes that have high intersection-over-union (IOU) overlap -// with previously selected boxes. Bounding boxes are supplied as -// [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any -// diagonal pair of box corners and the coordinates can be provided as normalized -// (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm -// is agnostic to where the origin is in the coordinate system. Note that this -// algorithm is invariant to orthogonal transformations and translations -// of the coordinate system; thus translating or reflections of the coordinate -// system result in the same boxes being selected by the algorithm. +// For each entry in `x`, calculates the number of `1` (on) bits in the binary +// representation of that entry. // -// The output of this operation is a set of integers indexing into the input -// collection of bounding boxes representing the selected boxes. The bounding -// box coordinates corresponding to the selected indices can then be obtained -// using the `tf.gather operation`. For example: -// -// selected_indices = tf.image.non_max_suppression_v2( -// boxes, scores, max_output_size, iou_threshold) -// selected_boxes = tf.gather(boxes, selected_indices) -// -// Arguments: -// boxes: A 2-D float tensor of shape `[num_boxes, 4]`. -// scores: A 1-D float tensor of shape `[num_boxes]` representing a single -// score corresponding to each box (each row of boxes). -// max_output_size: A scalar integer tensor representing the maximum number of -// boxes to be selected by non max suppression. -// iou_threshold: A 0-D float tensor representing the threshold for deciding whether -// boxes overlap too much with respect to IOU. -// -// Returns A 1-D integer tensor of shape `[M]` representing the selected -// indices from the boxes tensor, where `M <= max_output_size`. -func NonMaxSuppressionV2(scope *Scope, boxes tf.Output, scores tf.Output, max_output_size tf.Output, iou_threshold tf.Output) (selected_indices tf.Output) { +// **NOTE**: It is more efficient to first `tf.bitcast` your tensors into +// `int32` or `int64` and perform the bitcount on the result, than to feed in +// 8- or 16-bit inputs and then aggregate the resulting counts. +func PopulationCount(scope *Scope, x tf.Output) (y tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "NonMaxSuppressionV2", + Type: "PopulationCount", Input: []tf.Input{ - boxes, scores, max_output_size, iou_threshold, + x, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// AvgPoolAttr is an optional argument to AvgPool. -type AvgPoolAttr func(optionalAttr) - -// AvgPoolDataFormat sets the optional data_format attribute to value. +// Deserialize bucket boundaries and ready flag into current QuantileAccumulator. // -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the data is stored in the order of: -// [batch, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// If not specified, defaults to "NHWC" -func AvgPoolDataFormat(value string) AvgPoolAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Performs average pooling on the input. -// -// Each entry in `output` is the mean of the corresponding size `ksize` -// window in `value`. +// An op that deserializes bucket boundaries and are boundaries ready flag into current QuantileAccumulator. // // Arguments: -// value: 4-D with shape `[batch, height, width, channels]`. -// ksize: The size of the sliding window for each dimension of `value`. -// strides: The stride of the sliding window for each dimension of `value`. -// padding: The type of padding algorithm to use. -// -// Returns The average pooled output tensor. -func AvgPool(scope *Scope, value tf.Output, ksize []int64, strides []int64, padding string, optional ...AvgPoolAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AvgPool", - Input: []tf.Input{ - value, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that batches and pads `batch_size` elements from the input. -// -// Arguments: -// -// batch_size: A scalar representing the number of elements to accumulate in a -// batch. -// padded_shapes: A list of int64 tensors representing the desired padded shapes -// of the corresponding output components. These shapes may be partially -// specified, using `-1` to indicate that a particular dimension should be -// padded to the maximum size of all batch elements. -// padding_values: A list of scalars containing the padding value to use for -// each of the outputs. -// -func PaddedBatchDataset(scope *Scope, input_dataset tf.Output, batch_size tf.Output, padded_shapes []tf.Output, padding_values []tf.Output, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "PaddedBatchDataset", - Input: []tf.Input{ - input_dataset, batch_size, tf.OutputList(padded_shapes), tf.OutputList(padding_values), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// This op consumes a lock created by `MutexLock`. -// -// This op exists to consume a tensor created by `MutexLock` (other than -// direct control dependencies). It should be the only that consumes the tensor, -// and will raise an error if it is not. Its only purpose is to keep the -// mutex lock tensor alive until it is consumed by this op. -// -// **NOTE**: This operation must run on the same device as its input. This may -// be enforced via the `colocate_with` mechanism. -// -// Arguments: -// mutex_lock: A tensor returned by `MutexLock`. +// quantile_stream_resource_handle: resource handle referring to a QuantileStreamResource. +// bucket_boundaries: float; List of Rank 1 Tensors each containing the bucket boundaries for a feature. // // Returns the created operation. -func ConsumeMutexLock(scope *Scope, mutex_lock tf.Output) (o *tf.Operation) { +func BoostedTreesQuantileStreamResourceDeserialize(scope *Scope, quantile_stream_resource_handle tf.Output, bucket_boundaries []tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "ConsumeMutexLock", + Type: "BoostedTreesQuantileStreamResourceDeserialize", Input: []tf.Input{ - mutex_lock, + quantile_stream_resource_handle, tf.OutputList(bucket_boundaries), }, } return scope.AddOperation(opspec) } -// Returns x * y element-wise. +// RandomUniformIntAttr is an optional argument to RandomUniformInt. +type RandomUniformIntAttr func(optionalAttr) + +// RandomUniformIntSeed sets the optional seed attribute to value. // -// *NOTE*: `Multiply` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func Mul(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Mul", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Conv2DBackpropInputAttr is an optional argument to Conv2DBackpropInput. -type Conv2DBackpropInputAttr func(optionalAttr) - -// Conv2DBackpropInputUseCudnnOnGpu sets the optional use_cudnn_on_gpu attribute to value. -// If not specified, defaults to true -func Conv2DBackpropInputUseCudnnOnGpu(value bool) Conv2DBackpropInputAttr { +// value: If either `seed` or `seed2` are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func RandomUniformIntSeed(value int64) RandomUniformIntAttr { return func(m optionalAttr) { - m["use_cudnn_on_gpu"] = value + m["seed"] = value } } -// Conv2DBackpropInputExplicitPaddings sets the optional explicit_paddings attribute to value. +// RandomUniformIntSeed2 sets the optional seed2 attribute to value. // -// value: If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith -// dimension, the amount of padding inserted before and after the dimension is -// `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If -// `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. -// If not specified, defaults to <> -func Conv2DBackpropInputExplicitPaddings(value []int64) Conv2DBackpropInputAttr { +// value: A second seed to avoid seed collision. +// If not specified, defaults to 0 +func RandomUniformIntSeed2(value int64) RandomUniformIntAttr { return func(m optionalAttr) { - m["explicit_paddings"] = value + m["seed2"] = value } } -// Conv2DBackpropInputDataFormat sets the optional data_format attribute to value. +// Outputs random integers from a uniform distribution. // -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the data is stored in the order of: -// [batch, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// If not specified, defaults to "NHWC" -func Conv2DBackpropInputDataFormat(value string) Conv2DBackpropInputAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Conv2DBackpropInputDilations sets the optional dilations attribute to value. +// The generated values are uniform integers in the range `[minval, maxval)`. +// The lower bound `minval` is included in the range, while the upper bound +// `maxval` is excluded. // -// value: 1-D tensor of length 4. The dilation factor for each dimension of -// `input`. If set to k > 1, there will be k-1 skipped cells between each filter -// element on that dimension. The dimension order is determined by the value of -// `data_format`, see above for details. Dilations in the batch and depth -// dimensions must be 1. -// If not specified, defaults to -func Conv2DBackpropInputDilations(value []int64) Conv2DBackpropInputAttr { - return func(m optionalAttr) { - m["dilations"] = value - } -} - -// Computes the gradients of convolution with respect to the input. +// The random integers are slightly biased unless `maxval - minval` is an exact +// power of two. The bias is small for values of `maxval - minval` significantly +// smaller than the range of the output (either `2^32` or `2^64`). // // Arguments: -// input_sizes: An integer vector representing the shape of `input`, -// where `input` is a 4-D `[batch, height, width, channels]` tensor. -// filter: 4-D with shape -// `[filter_height, filter_width, in_channels, out_channels]`. -// out_backprop: 4-D with shape `[batch, out_height, out_width, out_channels]`. -// Gradients w.r.t. the output of the convolution. -// strides: The stride of the sliding window for each dimension of the input -// of the convolution. Must be in the same order as the dimension specified with -// format. -// padding: The type of padding algorithm to use. +// shape: The shape of the output tensor. +// minval: 0-D. Inclusive lower bound on the generated integers. +// maxval: 0-D. Exclusive upper bound on the generated integers. // -// Returns 4-D with shape `[batch, in_height, in_width, in_channels]`. Gradient -// w.r.t. the input of the convolution. -func Conv2DBackpropInput(scope *Scope, input_sizes tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv2DBackpropInputAttr) (output tf.Output) { +// Returns A tensor of the specified shape filled with uniform random integers. +func RandomUniformInt(scope *Scope, shape tf.Output, minval tf.Output, maxval tf.Output, optional ...RandomUniformIntAttr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"strides": strides, "padding": padding} + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "Conv2DBackpropInput", + Type: "RandomUniformInt", Input: []tf.Input{ - input_sizes, filter, out_backprop, + shape, minval, maxval, }, Attrs: attrs, } @@ -12858,6 +13198,447 @@ func Conv2DBackpropInput(scope *Scope, input_sizes tf.Output, filter tf.Output, return op.Output(0) } +// StatefulTruncatedNormalAttr is an optional argument to StatefulTruncatedNormal. +type StatefulTruncatedNormalAttr func(optionalAttr) + +// StatefulTruncatedNormalDtype sets the optional dtype attribute to value. +// +// value: The type of the output. +// If not specified, defaults to DT_FLOAT +func StatefulTruncatedNormalDtype(value tf.DataType) StatefulTruncatedNormalAttr { + return func(m optionalAttr) { + m["dtype"] = value + } +} + +// Outputs random values from a truncated normal distribution. +// +// The generated values follow a normal distribution with mean 0 and standard +// deviation 1, except that values whose magnitude is more than 2 standard +// deviations from the mean are dropped and re-picked. +// +// Arguments: +// resource: The handle of the resource variable that stores the state of the RNG. +// algorithm: The RNG algorithm. +// shape: The shape of the output tensor. +// +// Returns Random values with specified shape. +func StatefulTruncatedNormal(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, optional ...StatefulTruncatedNormalAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StatefulTruncatedNormal", + Input: []tf.Input{ + resource, algorithm, shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// StatefulUniformFullIntAttr is an optional argument to StatefulUniformFullInt. +type StatefulUniformFullIntAttr func(optionalAttr) + +// StatefulUniformFullIntDtype sets the optional dtype attribute to value. +// +// value: The type of the output. +// If not specified, defaults to DT_UINT64 +func StatefulUniformFullIntDtype(value tf.DataType) StatefulUniformFullIntAttr { + return func(m optionalAttr) { + m["dtype"] = value + } +} + +// Outputs random integers from a uniform distribution. +// +// The generated values are uniform integers covering the whole range of `dtype`. +// +// Arguments: +// resource: The handle of the resource variable that stores the state of the RNG. +// algorithm: The RNG algorithm. +// shape: The shape of the output tensor. +// +// Returns Random values with specified shape. +func StatefulUniformFullInt(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, optional ...StatefulUniformFullIntAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StatefulUniformFullInt", + Input: []tf.Input{ + resource, algorithm, shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// StatefulUniformAttr is an optional argument to StatefulUniform. +type StatefulUniformAttr func(optionalAttr) + +// StatefulUniformDtype sets the optional dtype attribute to value. +// +// value: The type of the output. +// If not specified, defaults to DT_FLOAT +func StatefulUniformDtype(value tf.DataType) StatefulUniformAttr { + return func(m optionalAttr) { + m["dtype"] = value + } +} + +// Outputs random values from a uniform distribution. +// +// The generated values follow a uniform distribution in the range `[0, 1)`. The +// lower bound 0 is included in the range, while the upper bound 1 is excluded. +// +// Arguments: +// resource: The handle of the resource variable that stores the state of the RNG. +// algorithm: The RNG algorithm. +// shape: The shape of the output tensor. +// +// Returns Random values with specified shape. +func StatefulUniform(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, optional ...StatefulUniformAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StatefulUniform", + Input: []tf.Input{ + resource, algorithm, shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// VariableShapeAttr is an optional argument to VariableShape. +type VariableShapeAttr func(optionalAttr) + +// VariableShapeOutType sets the optional out_type attribute to value. +// If not specified, defaults to DT_INT32 +func VariableShapeOutType(value tf.DataType) VariableShapeAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// Returns the shape of the variable pointed to by `resource`. +// +// This operation returns a 1-D integer tensor representing the shape of `input`. +// +// For example: +// +// ``` +// # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] +// shape(t) ==> [2, 2, 3] +// ``` +func VariableShape(scope *Scope, input tf.Output, optional ...VariableShapeAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "VariableShape", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// DecodeCSVAttr is an optional argument to DecodeCSV. +type DecodeCSVAttr func(optionalAttr) + +// DecodeCSVFieldDelim sets the optional field_delim attribute to value. +// +// value: char delimiter to separate fields in a record. +// If not specified, defaults to "," +func DecodeCSVFieldDelim(value string) DecodeCSVAttr { + return func(m optionalAttr) { + m["field_delim"] = value + } +} + +// DecodeCSVUseQuoteDelim sets the optional use_quote_delim attribute to value. +// +// value: If false, treats double quotation marks as regular +// characters inside of the string fields (ignoring RFC 4180, Section 2, +// Bullet 5). +// If not specified, defaults to true +func DecodeCSVUseQuoteDelim(value bool) DecodeCSVAttr { + return func(m optionalAttr) { + m["use_quote_delim"] = value + } +} + +// DecodeCSVNaValue sets the optional na_value attribute to value. +// +// value: Additional string to recognize as NA/NaN. +// If not specified, defaults to "" +func DecodeCSVNaValue(value string) DecodeCSVAttr { + return func(m optionalAttr) { + m["na_value"] = value + } +} + +// DecodeCSVSelectCols sets the optional select_cols attribute to value. +// If not specified, defaults to <> +func DecodeCSVSelectCols(value []int64) DecodeCSVAttr { + return func(m optionalAttr) { + m["select_cols"] = value + } +} + +// Convert CSV records to tensors. Each column maps to one tensor. +// +// RFC 4180 format is expected for the CSV records. +// (https://tools.ietf.org/html/rfc4180) +// Note that we allow leading and trailing spaces with int or float field. +// +// Arguments: +// records: Each string is a record/row in the csv and all records should have +// the same format. +// record_defaults: One tensor per column of the input record, with either a +// scalar default value for that column or an empty vector if the column is +// required. +// +// Returns Each tensor will have the same shape as records. +func DecodeCSV(scope *Scope, records tf.Output, record_defaults []tf.Output, optional ...DecodeCSVAttr) (output []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DecodeCSV", + Input: []tf.Input{ + records, tf.OutputList(record_defaults), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if output, idx, err = makeOutputList(op, idx, "output"); err != nil { + scope.UpdateErr("DecodeCSV", err) + return + } + return output +} + +// Computes the Cholesky decomposition of one or more square matrices. +// +// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions +// form square matrices. +// +// The input has to be symmetric and positive definite. Only the lower-triangular +// part of the input will be used for this operation. The upper-triangular part +// will not be read. +// +// The output is a tensor of the same shape as the input +// containing the Cholesky decompositions for all input submatrices `[..., :, :]`. +// +// **Note**: The gradient computation on GPU is faster for large matrices but +// not for large batch dimensions when the submatrices are small. In this +// case it might be faster to use the CPU. +// +// Arguments: +// input: Shape is `[..., M, M]`. +// +// Returns Shape is `[..., M, M]`. +func Cholesky(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Cholesky", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset that skips `count` elements from the `input_dataset`. +// +// Arguments: +// +// count: A scalar representing the number of elements from the `input_dataset` +// that should be skipped. If count is -1, skips everything. +// +// +func SkipDataset(scope *Scope, input_dataset tf.Output, count tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "SkipDataset", + Input: []tf.Input{ + input_dataset, count, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes sin of x element-wise. +func Sin(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Sin", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// CudnnRNNBackpropV2Attr is an optional argument to CudnnRNNBackpropV2. +type CudnnRNNBackpropV2Attr func(optionalAttr) + +// CudnnRNNBackpropV2RnnMode sets the optional rnn_mode attribute to value. +// If not specified, defaults to "lstm" +func CudnnRNNBackpropV2RnnMode(value string) CudnnRNNBackpropV2Attr { + return func(m optionalAttr) { + m["rnn_mode"] = value + } +} + +// CudnnRNNBackpropV2InputMode sets the optional input_mode attribute to value. +// If not specified, defaults to "linear_input" +func CudnnRNNBackpropV2InputMode(value string) CudnnRNNBackpropV2Attr { + return func(m optionalAttr) { + m["input_mode"] = value + } +} + +// CudnnRNNBackpropV2Direction sets the optional direction attribute to value. +// If not specified, defaults to "unidirectional" +func CudnnRNNBackpropV2Direction(value string) CudnnRNNBackpropV2Attr { + return func(m optionalAttr) { + m["direction"] = value + } +} + +// CudnnRNNBackpropV2Dropout sets the optional dropout attribute to value. +// If not specified, defaults to 0 +func CudnnRNNBackpropV2Dropout(value float32) CudnnRNNBackpropV2Attr { + return func(m optionalAttr) { + m["dropout"] = value + } +} + +// CudnnRNNBackpropV2Seed sets the optional seed attribute to value. +// If not specified, defaults to 0 +func CudnnRNNBackpropV2Seed(value int64) CudnnRNNBackpropV2Attr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// CudnnRNNBackpropV2Seed2 sets the optional seed2 attribute to value. +// If not specified, defaults to 0 +func CudnnRNNBackpropV2Seed2(value int64) CudnnRNNBackpropV2Attr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Backprop step of CudnnRNN. +// +// Compute the backprop of both data and weights in a RNN. Takes an extra +// "host_reserved" inupt than CudnnRNNBackprop, which is used to determine RNN +// cudnnRNNAlgo_t and cudnnMathType_t. +// +// rnn_mode: Indicates the type of the RNN model. +// input_mode: Indicates whether there is a linear projection between the input and +// the actual computation before the first layer. 'skip_input' is only allowed +// when input_size == num_units; 'auto_select' implies 'skip_input' when +// input_size == num_units; otherwise, it implies 'linear_input'. +// direction: Indicates whether a bidirectional model will be used. Should be +// "unidirectional" or "bidirectional". +// dropout: Dropout probability. When set to 0., dropout is disabled. +// seed: The 1st part of a seed to initialize dropout. +// seed2: The 2nd part of a seed to initialize dropout. +// input: A 3-D tensor with the shape of [seq_length, batch_size, input_size]. +// input_h: A 3-D tensor with the shape of [num_layer * dir, batch_size, +// num_units]. +// input_c: For LSTM, a 3-D tensor with the shape of +// [num_layer * dir, batch, num_units]. For other models, it is ignored. +// params: A 1-D tensor that contains the weights and biases in an opaque layout. +// The size must be created through CudnnRNNParamsSize, and initialized +// separately. Note that they might not be compatible across different +// generations. So it is a good idea to save and restore +// output: A 3-D tensor with the shape of [seq_length, batch_size, +// dir * num_units]. +// output_h: The same shape has input_h. +// output_c: The same shape as input_c for LSTM. An empty tensor for other models. +// output_backprop: A 3-D tensor with the same shape as output in the forward pass. +// output_h_backprop: A 3-D tensor with the same shape as output_h in the forward +// pass. +// output_c_backprop: A 3-D tensor with the same shape as output_c in the forward +// pass. +// reserve_space: The same reserve_space produced in the forward operation. +// host_reserved: The same host_reserved produced in the forward operation. +// input_backprop: The backprop to input in the forward pass. Has the same shape +// as input. +// input_h_backprop: The backprop to input_h in the forward pass. Has the same +// shape as input_h. +// input_c_backprop: The backprop to input_c in the forward pass. Has the same +// shape as input_c. +// params_backprop: The backprop to the params buffer in the forward pass. Has the +// same shape as params. +func CudnnRNNBackpropV2(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, params tf.Output, output tf.Output, output_h tf.Output, output_c tf.Output, output_backprop tf.Output, output_h_backprop tf.Output, output_c_backprop tf.Output, reserve_space tf.Output, host_reserved tf.Output, optional ...CudnnRNNBackpropV2Attr) (input_backprop tf.Output, input_h_backprop tf.Output, input_c_backprop tf.Output, params_backprop tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CudnnRNNBackpropV2", + Input: []tf.Input{ + input, input_h, input_c, params, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space, host_reserved, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3) +} + // MutexV2Attr is an optional argument to MutexV2. type MutexV2Attr func(optionalAttr) @@ -12944,309 +13725,6 @@ func ResourceScatterMax(scope *Scope, resource tf.Output, indices tf.Output, upd return scope.AddOperation(opspec) } -// Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. Returns a boolean indicating whether to continue centering. -// -// Arguments: -// tree_ensemble_handle: Handle to the tree ensemble. -// mean_gradients: A tensor with shape=[logits_dimension] with mean of gradients for a first node. -// mean_hessians: A tensor with shape=[logits_dimension] mean of hessians for a first node. -// l1: l1 regularization factor on leaf weights, per instance based. -// l2: l2 regularization factor on leaf weights, per instance based. -// -// Returns Bool, whether to continue bias centering. -func BoostedTreesCenterBias(scope *Scope, tree_ensemble_handle tf.Output, mean_gradients tf.Output, mean_hessians tf.Output, l1 tf.Output, l2 tf.Output) (continue_centering tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BoostedTreesCenterBias", - Input: []tf.Input{ - tree_ensemble_handle, mean_gradients, mean_hessians, l1, l2, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Delete the tensor specified by its handle in the session. -// -// Arguments: -// handle: The handle for a tensor stored in the session state. -// -// Returns the created operation. -func DeleteSessionTensor(scope *Scope, handle tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "DeleteSessionTensor", - Input: []tf.Input{ - handle, - }, - } - return scope.AddOperation(opspec) -} - -// Returns up to `num_records` (key, value) pairs produced by a Reader. -// -// Will dequeue from the input queue if necessary (e.g. when the -// Reader needs to start reading from a new file since it has finished -// with the previous file). -// It may return less than `num_records` even before the last batch. -// -// Arguments: -// reader_handle: Handle to a `Reader`. -// queue_handle: Handle to a `Queue`, with string work items. -// num_records: number of records to read from `Reader`. -// -// Returns A 1-D tensor.A 1-D tensor. -func ReaderReadUpToV2(scope *Scope, reader_handle tf.Output, queue_handle tf.Output, num_records tf.Output) (keys tf.Output, values tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ReaderReadUpToV2", - Input: []tf.Input{ - reader_handle, queue_handle, num_records, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// Reduces sparse updates into the variable referenced by `resource` using the `min` operation. -// -// This operation computes -// -// # Scalar indices -// ref[indices, ...] = min(ref[indices, ...], updates[...]) -// -// # Vector indices (for each i) -// ref[indices[i], ...] = min(ref[indices[i], ...], updates[i, ...]) -// -// # High rank indices (for each i, ..., j) -// ref[indices[i, ..., j], ...] = min(ref[indices[i, ..., j], ...], updates[i, ..., j, ...]) -// -// Duplicate entries are handled correctly: if multiple `indices` reference -// the same location, their contributions are combined. -// -// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. -// -//
-// -//
-// -// Arguments: -// resource: Should be from a `Variable` node. -// indices: A tensor of indices into the first dimension of `ref`. -// updates: A tensor of updated values to add to `ref`. -// -// Returns the created operation. -func ResourceScatterMin(scope *Scope, resource tf.Output, indices tf.Output, updates tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ResourceScatterMin", - Input: []tf.Input{ - resource, indices, updates, - }, - } - return scope.AddOperation(opspec) -} - -// Divides sparse updates into the variable referenced by `resource`. -// -// This operation computes -// -// # Scalar indices -// ref[indices, ...] /= updates[...] -// -// # Vector indices (for each i) -// ref[indices[i], ...] /= updates[i, ...] -// -// # High rank indices (for each i, ..., j) -// ref[indices[i, ..., j], ...] /= updates[i, ..., j, ...] -// -// Duplicate entries are handled correctly: if multiple `indices` reference -// the same location, their contributions multiply. -// -// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. -// -//
-// -//
-// -// Arguments: -// resource: Should be from a `Variable` node. -// indices: A tensor of indices into the first dimension of `ref`. -// updates: A tensor of updated values to add to `ref`. -// -// Returns the created operation. -func ResourceScatterDiv(scope *Scope, resource tf.Output, indices tf.Output, updates tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ResourceScatterDiv", - Input: []tf.Input{ - resource, indices, updates, - }, - } - return scope.AddOperation(opspec) -} - -// ResourceSparseApplyFtrlAttr is an optional argument to ResourceSparseApplyFtrl. -type ResourceSparseApplyFtrlAttr func(optionalAttr) - -// ResourceSparseApplyFtrlUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var and accum tensors will be protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceSparseApplyFtrlUseLocking(value bool) ResourceSparseApplyFtrlAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update relevant entries in '*var' according to the Ftrl-proximal scheme. -// -// That is for rows we have grad for, we update var, accum and linear as follows: -// accum_new = accum + grad * grad -// linear += grad + (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var -// quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 -// var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 -// accum = accum_new -// -// Arguments: -// var_: Should be from a Variable(). -// accum: Should be from a Variable(). -// linear: Should be from a Variable(). -// grad: The gradient. -// indices: A vector of indices into the first dimension of var and accum. -// lr: Scaling factor. Must be a scalar. -// l1: L1 regularization. Must be a scalar. -// l2: L2 regularization. Must be a scalar. -// lr_power: Scaling factor. Must be a scalar. -// -// Returns the created operation. -func ResourceSparseApplyFtrl(scope *Scope, var_ tf.Output, accum tf.Output, linear tf.Output, grad tf.Output, indices tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, lr_power tf.Output, optional ...ResourceSparseApplyFtrlAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceSparseApplyFtrl", - Input: []tf.Input{ - var_, accum, linear, grad, indices, lr, l1, l2, lr_power, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Concatenates a list of `SparseTensor` along the specified dimension. -// -// Concatenation is with respect to the dense versions of these sparse tensors. -// It is assumed that each input is a `SparseTensor` whose elements are ordered -// along increasing dimension number. -// -// All inputs' shapes must match, except for the concat dimension. The -// `indices`, `values`, and `shapes` lists must have the same length. -// -// The output shape is identical to the inputs', except along the concat -// dimension, where it is the sum of the inputs' sizes along that dimension. -// -// The output elements will be resorted to preserve the sort order along -// increasing dimension number. -// -// This op runs in `O(M log M)` time, where `M` is the total number of non-empty -// values across all inputs. This is due to the need for an internal sort in -// order to concatenate efficiently across an arbitrary dimension. -// -// For example, if `concat_dim = 1` and the inputs are -// -// sp_inputs[0]: shape = [2, 3] -// [0, 2]: "a" -// [1, 0]: "b" -// [1, 1]: "c" -// -// sp_inputs[1]: shape = [2, 4] -// [0, 1]: "d" -// [0, 2]: "e" -// -// then the output will be -// -// shape = [2, 7] -// [0, 2]: "a" -// [0, 4]: "d" -// [0, 5]: "e" -// [1, 0]: "b" -// [1, 1]: "c" -// -// Graphically this is equivalent to doing -// -// [ a] concat [ d e ] = [ a d e ] -// [b c ] [ ] [b c ] -// -// Arguments: -// indices: 2-D. Indices of each input `SparseTensor`. -// values: 1-D. Non-empty values of each `SparseTensor`. -// shapes: 1-D. Shapes of each `SparseTensor`. -// concat_dim: Dimension to concatenate along. Must be in range [-rank, rank), -// where rank is the number of dimensions in each input `SparseTensor`. -// -// Returns 2-D. Indices of the concatenated `SparseTensor`.1-D. Non-empty values of the concatenated `SparseTensor`.1-D. Shape of the concatenated `SparseTensor`. -func SparseConcat(scope *Scope, indices []tf.Output, values []tf.Output, shapes []tf.Output, concat_dim int64) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"concat_dim": concat_dim} - opspec := tf.OpSpec{ - Type: "SparseConcat", - Input: []tf.Input{ - tf.OutputList(indices), tf.OutputList(values), tf.OutputList(shapes), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Computes softmax cross entropy cost and gradients to backpropagate. -// -// Unlike `SoftmaxCrossEntropyWithLogits`, this operation does not accept -// a matrix of label probabilities, but rather a single label per row -// of features. This label is considered to have probability 1.0 for the -// given row. -// -// Inputs are the logits, not probabilities. -// -// Arguments: -// features: batch_size x num_classes matrix -// labels: batch_size vector with values in [0, num_classes). -// This is the label for the given minibatch entry. -// -// Returns Per example loss (batch_size vector).backpropagated gradients (batch_size x num_classes matrix). -func SparseSoftmaxCrossEntropyWithLogits(scope *Scope, features tf.Output, labels tf.Output) (loss tf.Output, backprop tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSoftmaxCrossEntropyWithLogits", - Input: []tf.Input{ - features, labels, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - // Multiplies sparse updates into the variable referenced by `resource`. // // This operation computes @@ -13381,6 +13859,47 @@ func StringSplitV2(scope *Scope, input tf.Output, sep tf.Output, optional ...Str return op.Output(0), op.Output(1), op.Output(2) } +// Reduces sparse updates into the variable referenced by `resource` using the `min` operation. +// +// This operation computes +// +// # Scalar indices +// ref[indices, ...] = min(ref[indices, ...], updates[...]) +// +// # Vector indices (for each i) +// ref[indices[i], ...] = min(ref[indices[i], ...], updates[i, ...]) +// +// # High rank indices (for each i, ..., j) +// ref[indices[i, ..., j], ...] = min(ref[indices[i, ..., j], ...], updates[i, ..., j, ...]) +// +// Duplicate entries are handled correctly: if multiple `indices` reference +// the same location, their contributions are combined. +// +// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. +// +//
+// +//
+// +// Arguments: +// resource: Should be from a `Variable` node. +// indices: A tensor of indices into the first dimension of `ref`. +// updates: A tensor of updated values to add to `ref`. +// +// Returns the created operation. +func ResourceScatterMin(scope *Scope, resource tf.Output, indices tf.Output, updates tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ResourceScatterMin", + Input: []tf.Input{ + resource, indices, updates, + }, + } + return scope.AddOperation(opspec) +} + // Subtracts sparse updates from the variable referenced by `resource`. // // This operation computes @@ -13422,6 +13941,214 @@ func ResourceScatterSub(scope *Scope, resource tf.Output, indices tf.Output, upd return scope.AddOperation(opspec) } +// Computes the gradient for the inverse of `x` wrt its input. +// +// Specifically, `grad = -dy * y*y`, where `y = 1/x`, and `dy` +// is the corresponding input gradient. +func ReciprocalGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ReciprocalGrad", + Input: []tf.Input{ + y, dy, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Conv3DBackpropInputV2Attr is an optional argument to Conv3DBackpropInputV2. +type Conv3DBackpropInputV2Attr func(optionalAttr) + +// Conv3DBackpropInputV2DataFormat sets the optional data_format attribute to value. +// +// value: The data format of the input and output data. With the +// default format "NDHWC", the data is stored in the order of: +// [batch, in_depth, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCDHW", the data storage order is: +// [batch, in_channels, in_depth, in_height, in_width]. +// If not specified, defaults to "NDHWC" +func Conv3DBackpropInputV2DataFormat(value string) Conv3DBackpropInputV2Attr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Conv3DBackpropInputV2Dilations sets the optional dilations attribute to value. +// +// value: 1-D tensor of length 5. The dilation factor for each dimension of +// `input`. If set to k > 1, there will be k-1 skipped cells between each +// filter element on that dimension. The dimension order is determined by the +// value of `data_format`, see above for details. Dilations in the batch and +// depth dimensions must be 1. +// If not specified, defaults to +func Conv3DBackpropInputV2Dilations(value []int64) Conv3DBackpropInputV2Attr { + return func(m optionalAttr) { + m["dilations"] = value + } +} + +// Computes the gradients of 3-D convolution with respect to the input. +// +// Arguments: +// input_sizes: An integer vector representing the tensor shape of `input`, +// where `input` is a 5-D +// `[batch, depth, rows, cols, in_channels]` tensor. +// filter: Shape `[depth, rows, cols, in_channels, out_channels]`. +// `in_channels` must match between `input` and `filter`. +// out_backprop: Backprop signal of shape `[batch, out_depth, out_rows, out_cols, +// out_channels]`. +// strides: 1-D tensor of length 5. The stride of the sliding window for each +// dimension of `input`. Must have `strides[0] = strides[4] = 1`. +// padding: The type of padding algorithm to use. +func Conv3DBackpropInputV2(scope *Scope, input_sizes tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv3DBackpropInputV2Attr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Conv3DBackpropInputV2", + Input: []tf.Input{ + input_sizes, filter, out_backprop, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the reciprocal of x element-wise. +// +// I.e., \\(y = 1 / x\\). +func Inv(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Inv", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// MutableHashTableOfTensorsV2Attr is an optional argument to MutableHashTableOfTensorsV2. +type MutableHashTableOfTensorsV2Attr func(optionalAttr) + +// MutableHashTableOfTensorsV2Container sets the optional container attribute to value. +// +// value: If non-empty, this table is placed in the given container. +// Otherwise, a default container is used. +// If not specified, defaults to "" +func MutableHashTableOfTensorsV2Container(value string) MutableHashTableOfTensorsV2Attr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// MutableHashTableOfTensorsV2SharedName sets the optional shared_name attribute to value. +// +// value: If non-empty, this table is shared under the given name across +// multiple sessions. +// If not specified, defaults to "" +func MutableHashTableOfTensorsV2SharedName(value string) MutableHashTableOfTensorsV2Attr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// MutableHashTableOfTensorsV2UseNodeNameSharing sets the optional use_node_name_sharing attribute to value. +// If not specified, defaults to false +func MutableHashTableOfTensorsV2UseNodeNameSharing(value bool) MutableHashTableOfTensorsV2Attr { + return func(m optionalAttr) { + m["use_node_name_sharing"] = value + } +} + +// MutableHashTableOfTensorsV2ValueShape sets the optional value_shape attribute to value. +// If not specified, defaults to <> +func MutableHashTableOfTensorsV2ValueShape(value tf.Shape) MutableHashTableOfTensorsV2Attr { + return func(m optionalAttr) { + m["value_shape"] = value + } +} + +// Creates an empty hash table. +// +// This op creates a mutable hash table, specifying the type of its keys and +// values. Each value must be a vector. Data can be inserted into the table using +// the insert operations. It does not support the initialization operation. +// +// Arguments: +// key_dtype: Type of the table keys. +// value_dtype: Type of the table values. +// +// Returns Handle to a table. +func MutableHashTableOfTensorsV2(scope *Scope, key_dtype tf.DataType, value_dtype tf.DataType, optional ...MutableHashTableOfTensorsV2Attr) (table_handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"key_dtype": key_dtype, "value_dtype": value_dtype} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "MutableHashTableOfTensorsV2", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Adds sparse updates to the variable referenced by `resource`. +// +// This operation computes +// +// # Scalar indices +// ref[indices, ...] += updates[...] +// +// # Vector indices (for each i) +// ref[indices[i], ...] += updates[i, ...] +// +// # High rank indices (for each i, ..., j) +// ref[indices[i, ..., j], ...] += updates[i, ..., j, ...] +// +// Duplicate entries are handled correctly: if multiple `indices` reference +// the same location, their contributions add. +// +// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. +// +//
+// +//
+// +// Arguments: +// resource: Should be from a `Variable` node. +// indices: A tensor of indices into the first dimension of `ref`. +// updates: A tensor of updated values to add to `ref`. +// +// Returns the created operation. +func ResourceScatterAdd(scope *Scope, resource tf.Output, indices tf.Output, updates tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ResourceScatterAdd", + Input: []tf.Input{ + resource, indices, updates, + }, + } + return scope.AddOperation(opspec) +} + // SdcaOptimizerV2Attr is an optional argument to SdcaOptimizerV2. type SdcaOptimizerV2Attr func(optionalAttr) @@ -13517,22 +14244,250 @@ func SdcaOptimizerV2(scope *Scope, sparse_example_indices []tf.Output, sparse_fe return out_example_state_data, out_delta_sparse_weights, out_delta_dense_weights } -// Subtracts a value from the current value of a variable. +// FractionalAvgPoolGradAttr is an optional argument to FractionalAvgPoolGrad. +type FractionalAvgPoolGradAttr func(optionalAttr) + +// FractionalAvgPoolGradOverlapping sets the optional overlapping attribute to value. +// +// value: When set to True, it means when pooling, the values at the boundary +// of adjacent pooling cells are used by both cells. For example: +// +// `index 0 1 2 3 4` +// +// `value 20 5 16 3 7` +// +// If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. +// The result would be [41/3, 26/3] for fractional avg pooling. +// If not specified, defaults to false +func FractionalAvgPoolGradOverlapping(value bool) FractionalAvgPoolGradAttr { + return func(m optionalAttr) { + m["overlapping"] = value + } +} + +// Computes gradient of the FractionalAvgPool function. +// +// Unlike FractionalMaxPoolGrad, we don't need to find arg_max for +// FractionalAvgPoolGrad, we just need to evenly back-propagate each element of +// out_backprop to those indices that form the same pooling cell. Therefore, we +// just need to know the shape of original input tensor, instead of the whole +// tensor. +// +// Arguments: +// orig_input_tensor_shape: Original input tensor shape for `fractional_avg_pool` +// out_backprop: 4-D with shape `[batch, height, width, channels]`. Gradients +// w.r.t. the output of `fractional_avg_pool`. +// row_pooling_sequence: row pooling sequence, form pooling region with +// col_pooling_sequence. +// col_pooling_sequence: column pooling sequence, form pooling region with +// row_pooling sequence. +// +// Returns 4-D. Gradients w.r.t. the input of `fractional_avg_pool`. +func FractionalAvgPoolGrad(scope *Scope, orig_input_tensor_shape tf.Output, out_backprop tf.Output, row_pooling_sequence tf.Output, col_pooling_sequence tf.Output, optional ...FractionalAvgPoolGradAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "FractionalAvgPoolGrad", + Input: []tf.Input{ + orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Checks whether a resource handle-based variable has been initialized. +// +// Arguments: +// resource: the input resource handle. +// +// Returns a scalar boolean which is true if the variable has been +// initialized. +func VarIsInitializedOp(scope *Scope, resource tf.Output) (is_initialized tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "VarIsInitializedOp", + Input: []tf.Input{ + resource, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ResizeBilinearAttr is an optional argument to ResizeBilinear. +type ResizeBilinearAttr func(optionalAttr) + +// ResizeBilinearAlignCorners sets the optional align_corners attribute to value. +// +// value: If true, the centers of the 4 corner pixels of the input and output tensors are +// aligned, preserving the values at the corner pixels. Defaults to false. +// If not specified, defaults to false +func ResizeBilinearAlignCorners(value bool) ResizeBilinearAttr { + return func(m optionalAttr) { + m["align_corners"] = value + } +} + +// ResizeBilinearHalfPixelCenters sets the optional half_pixel_centers attribute to value. +// If not specified, defaults to false +func ResizeBilinearHalfPixelCenters(value bool) ResizeBilinearAttr { + return func(m optionalAttr) { + m["half_pixel_centers"] = value + } +} + +// Resize `images` to `size` using bilinear interpolation. +// +// Input images can be of different types but output images are always float. +// +// Arguments: +// images: 4-D with shape `[batch, height, width, channels]`. +// size: = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The +// new size for the images. +// +// Returns 4-D with shape +// `[batch, new_height, new_width, channels]`. +func ResizeBilinear(scope *Scope, images tf.Output, size tf.Output, optional ...ResizeBilinearAttr) (resized_images tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResizeBilinear", + Input: []tf.Input{ + images, size, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ExperimentalParseExampleDatasetAttr is an optional argument to ExperimentalParseExampleDataset. +type ExperimentalParseExampleDatasetAttr func(optionalAttr) + +// ExperimentalParseExampleDatasetSloppy sets the optional sloppy attribute to value. +// If not specified, defaults to false +func ExperimentalParseExampleDatasetSloppy(value bool) ExperimentalParseExampleDatasetAttr { + return func(m optionalAttr) { + m["sloppy"] = value + } +} + +// Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. +// +// Arguments: +// +// +// dense_defaults: A dict mapping string keys to `Tensor`s. +// The keys of the dict must match the dense_keys of the feature. +// sparse_keys: A list of string keys in the examples features. +// The results for these keys will be returned as `SparseTensor` objects. +// dense_keys: A list of Ndense string Tensors (scalars). +// The keys expected in the Examples features associated with dense values. +// sparse_types: A list of `DTypes` of the same length as `sparse_keys`. +// Only `tf.float32` (`FloatList`), `tf.int64` (`Int64List`), +// and `tf.string` (`BytesList`) are supported. +// dense_shapes: List of tuples with the same length as `dense_keys`. +// The shape of the data for each dense feature referenced by `dense_keys`. +// Required for any input tensors identified by `dense_keys`. Must be +// either fully defined, or may contain an unknown first dimension. +// An unknown first dimension means the feature is treated as having +// a variable number of blocks, and the output shape along this dimension +// is considered unknown at graph build time. Padding is applied for +// minibatch elements smaller than the maximum number of blocks for the +// given feature along this dimension. +// output_types: The type list for the return values. +// output_shapes: The list of shapes being produced. +func ExperimentalParseExampleDataset(scope *Scope, input_dataset tf.Output, num_parallel_calls tf.Output, dense_defaults []tf.Output, sparse_keys []string, dense_keys []string, sparse_types []tf.DataType, dense_shapes []tf.Shape, output_types []tf.DataType, output_shapes []tf.Shape, optional ...ExperimentalParseExampleDatasetAttr) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"sparse_keys": sparse_keys, "dense_keys": dense_keys, "sparse_types": sparse_types, "dense_shapes": dense_shapes, "output_types": output_types, "output_shapes": output_shapes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ExperimentalParseExampleDataset", + Input: []tf.Input{ + input_dataset, num_parallel_calls, tf.OutputList(dense_defaults), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// QuantizeAndDequantizeV3Attr is an optional argument to QuantizeAndDequantizeV3. +type QuantizeAndDequantizeV3Attr func(optionalAttr) + +// QuantizeAndDequantizeV3SignedInput sets the optional signed_input attribute to value. +// If not specified, defaults to true +func QuantizeAndDequantizeV3SignedInput(value bool) QuantizeAndDequantizeV3Attr { + return func(m optionalAttr) { + m["signed_input"] = value + } +} + +// QuantizeAndDequantizeV3RangeGiven sets the optional range_given attribute to value. +// If not specified, defaults to true +func QuantizeAndDequantizeV3RangeGiven(value bool) QuantizeAndDequantizeV3Attr { + return func(m optionalAttr) { + m["range_given"] = value + } +} + +// Quantizes then dequantizes a tensor. +// +// This is almost identical to QuantizeAndDequantizeV2, except that num_bits is a +// tensor, so its value can change during training. +func QuantizeAndDequantizeV3(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output, num_bits tf.Output, optional ...QuantizeAndDequantizeV3Attr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "QuantizeAndDequantizeV3", + Input: []tf.Input{ + input, input_min, input_max, num_bits, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Adds a value to the current value of a variable. // // Any ReadVariableOp with a control dependency on this op is guaranteed to -// see the decremented value or a subsequent newer one. +// see the incremented value or a subsequent newer one. // // Arguments: // resource: handle to the resource in which to store the variable. // value: the value by which the variable will be incremented. // // Returns the created operation. -func AssignSubVariableOp(scope *Scope, resource tf.Output, value tf.Output) (o *tf.Operation) { +func AssignAddVariableOp(scope *Scope, resource tf.Output, value tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "AssignSubVariableOp", + Type: "AssignAddVariableOp", Input: []tf.Input{ resource, value, }, @@ -13561,30 +14516,99 @@ func SoftsignGrad(scope *Scope, gradients tf.Output, features tf.Output) (backpr return op.Output(0) } -// DestroyResourceOpAttr is an optional argument to DestroyResourceOp. -type DestroyResourceOpAttr func(optionalAttr) - -// DestroyResourceOpIgnoreLookupError sets the optional ignore_lookup_error attribute to value. +// Bucketize each feature based on bucket boundaries. // -// value: whether to ignore the error when the resource -// doesn't exist. -// If not specified, defaults to true -func DestroyResourceOpIgnoreLookupError(value bool) DestroyResourceOpAttr { +// An op that returns a list of float tensors, where each tensor represents the +// bucketized values for a single feature. +// +// Arguments: +// float_values: float; List of Rank 1 Tensor each containing float values for a single feature. +// bucket_boundaries: float; List of Rank 1 Tensors each containing the bucket boundaries for a single +// feature. +// +// Returns int; List of Rank 1 Tensors each containing the bucketized values for a single feature. +func BoostedTreesBucketize(scope *Scope, float_values []tf.Output, bucket_boundaries []tf.Output) (buckets []tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "BoostedTreesBucketize", + Input: []tf.Input{ + tf.OutputList(float_values), tf.OutputList(bucket_boundaries), + }, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if buckets, idx, err = makeOutputList(op, idx, "buckets"); err != nil { + scope.UpdateErr("BoostedTreesBucketize", err) + return + } + return buckets +} + +// Assigns a new value to a variable. +// +// Any ReadVariableOp with a control dependency on this op is guaranteed to return +// this value or a subsequent newer value of the variable. +// +// Arguments: +// resource: handle to the resource in which to store the variable. +// value: the value to set the new tensor to use. +// +// Returns the created operation. +func AssignVariableOp(scope *Scope, resource tf.Output, value tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "AssignVariableOp", + Input: []tf.Input{ + resource, value, + }, + } + return scope.AddOperation(opspec) +} + +// AudioSummaryV2Attr is an optional argument to AudioSummaryV2. +type AudioSummaryV2Attr func(optionalAttr) + +// AudioSummaryV2MaxOutputs sets the optional max_outputs attribute to value. +// +// value: Max number of batch elements to generate audio for. +// If not specified, defaults to 3 +// +// REQUIRES: value >= 1 +func AudioSummaryV2MaxOutputs(value int64) AudioSummaryV2Attr { return func(m optionalAttr) { - m["ignore_lookup_error"] = value + m["max_outputs"] = value } } -// Deletes the resource specified by the handle. +// Outputs a `Summary` protocol buffer with audio. // -// All subsequent operations using the resource will result in a NotFound -// error status. +// The summary has up to `max_outputs` summary values containing audio. The +// audio is built from `tensor` which must be 3-D with shape `[batch_size, +// frames, channels]` or 2-D with shape `[batch_size, frames]`. The values are +// assumed to be in the range of `[-1.0, 1.0]` with a sample rate of `sample_rate`. +// +// The `tag` argument is a scalar `Tensor` of type `string`. It is used to +// build the `tag` of the summary values: +// +// * If `max_outputs` is 1, the summary value tag is '*tag*/audio'. +// * If `max_outputs` is greater than 1, the summary value tags are +// generated sequentially as '*tag*/audio/0', '*tag*/audio/1', etc. // // Arguments: -// resource: handle to the resource to delete. +// tag: Scalar. Used to build the `tag` attribute of the summary values. +// tensor: 2-D of shape `[batch_size, frames]`. +// sample_rate: The sample rate of the signal in hertz. // -// Returns the created operation. -func DestroyResourceOp(scope *Scope, resource tf.Output, optional ...DestroyResourceOpAttr) (o *tf.Operation) { +// Returns Scalar. Serialized `Summary` protocol buffer. +func AudioSummaryV2(scope *Scope, tag tf.Output, tensor tf.Output, sample_rate tf.Output, optional ...AudioSummaryV2Attr) (summary tf.Output) { if scope.Err() != nil { return } @@ -13593,36 +14617,2198 @@ func DestroyResourceOp(scope *Scope, resource tf.Output, optional ...DestroyReso a(attrs) } opspec := tf.OpSpec{ - Type: "DestroyResourceOp", + Type: "AudioSummaryV2", Input: []tf.Input{ - resource, + tag, tensor, sample_rate, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// CudnnRNNParamsToCanonicalAttr is an optional argument to CudnnRNNParamsToCanonical. +type CudnnRNNParamsToCanonicalAttr func(optionalAttr) + +// CudnnRNNParamsToCanonicalRnnMode sets the optional rnn_mode attribute to value. +// If not specified, defaults to "lstm" +func CudnnRNNParamsToCanonicalRnnMode(value string) CudnnRNNParamsToCanonicalAttr { + return func(m optionalAttr) { + m["rnn_mode"] = value + } +} + +// CudnnRNNParamsToCanonicalInputMode sets the optional input_mode attribute to value. +// If not specified, defaults to "linear_input" +func CudnnRNNParamsToCanonicalInputMode(value string) CudnnRNNParamsToCanonicalAttr { + return func(m optionalAttr) { + m["input_mode"] = value + } +} + +// CudnnRNNParamsToCanonicalDirection sets the optional direction attribute to value. +// If not specified, defaults to "unidirectional" +func CudnnRNNParamsToCanonicalDirection(value string) CudnnRNNParamsToCanonicalAttr { + return func(m optionalAttr) { + m["direction"] = value + } +} + +// CudnnRNNParamsToCanonicalDropout sets the optional dropout attribute to value. +// If not specified, defaults to 0 +func CudnnRNNParamsToCanonicalDropout(value float32) CudnnRNNParamsToCanonicalAttr { + return func(m optionalAttr) { + m["dropout"] = value + } +} + +// CudnnRNNParamsToCanonicalSeed sets the optional seed attribute to value. +// If not specified, defaults to 0 +func CudnnRNNParamsToCanonicalSeed(value int64) CudnnRNNParamsToCanonicalAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// CudnnRNNParamsToCanonicalSeed2 sets the optional seed2 attribute to value. +// If not specified, defaults to 0 +func CudnnRNNParamsToCanonicalSeed2(value int64) CudnnRNNParamsToCanonicalAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Retrieves CudnnRNN params in canonical form. +// +// Retrieves a set of weights from the opaque params buffer that can be saved and +// restored in a way compatible with future runs. +// +// Note that the params buffer may not be compatible across different GPUs. So any +// save and restoration should be converted to and from the canonical weights and +// biases. +// +// num_layers: Specifies the number of layers in the RNN model. +// num_units: Specifies the size of the hidden state. +// input_size: Specifies the size of the input state. +// num_params: number of parameter sets for all layers. +// Each layer may contain multiple parameter sets, with each set consisting of +// a weight matrix and a bias vector. +// weights: the canonical form of weights that can be used for saving +// and restoration. They are more likely to be compatible across different +// generations. +// biases: the canonical form of biases that can be used for saving +// and restoration. They are more likely to be compatible across different +// generations. +// rnn_mode: Indicates the type of the RNN model. +// input_mode: Indicate whether there is a linear projection between the input and +// The actual computation before the first layer. 'skip_input' is only allowed +// when input_size == num_units; 'auto_select' implies 'skip_input' when +// input_size == num_units; otherwise, it implies 'linear_input'. +// direction: Indicates whether a bidirectional model will be used. +// dir = (direction == bidirectional) ? 2 : 1 +// dropout: dropout probability. When set to 0., dropout is disabled. +// seed: the 1st part of a seed to initialize dropout. +// seed2: the 2nd part of a seed to initialize dropout. +func CudnnRNNParamsToCanonical(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, params tf.Output, num_params int64, optional ...CudnnRNNParamsToCanonicalAttr) (weights []tf.Output, biases []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_params": num_params} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CudnnRNNParamsToCanonical", + Input: []tf.Input{ + num_layers, num_units, input_size, params, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if weights, idx, err = makeOutputList(op, idx, "weights"); err != nil { + scope.UpdateErr("CudnnRNNParamsToCanonical", err) + return + } + if biases, idx, err = makeOutputList(op, idx, "biases"); err != nil { + scope.UpdateErr("CudnnRNNParamsToCanonical", err) + return + } + return weights, biases +} + +// ModelDatasetAttr is an optional argument to ModelDataset. +type ModelDatasetAttr func(optionalAttr) + +// ModelDatasetCpuBudget sets the optional cpu_budget attribute to value. +// If not specified, defaults to 0 +func ModelDatasetCpuBudget(value int64) ModelDatasetAttr { + return func(m optionalAttr) { + m["cpu_budget"] = value + } +} + +// Identity transformation that models performance. +// +// Identity transformation that models performance. +// +// Arguments: +// input_dataset: A variant tensor representing the input dataset. +// +// +func ModelDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape, optional ...ModelDatasetAttr) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ModelDataset", + Input: []tf.Input{ + input_dataset, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// BiasAddGradAttr is an optional argument to BiasAddGrad. +type BiasAddGradAttr func(optionalAttr) + +// BiasAddGradDataFormat sets the optional data_format attribute to value. +// +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the bias tensor will be added to the last dimension +// of the value tensor. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, in_channels, in_height, in_width]. +// The tensor will be added to "in_channels", the third-to-the-last +// dimension. +// If not specified, defaults to "NHWC" +func BiasAddGradDataFormat(value string) BiasAddGradAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// The backward operation for "BiasAdd" on the "bias" tensor. +// +// It accumulates all the values from out_backprop into the feature dimension. +// For NHWC data format, the feature dimension is the last. For NCHW data format, +// the feature dimension is the third-to-last. +// +// Arguments: +// out_backprop: Any number of dimensions. +// +// Returns 1-D with size the feature dimension of `out_backprop`. +func BiasAddGrad(scope *Scope, out_backprop tf.Output, optional ...BiasAddGradAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "BiasAddGrad", + Input: []tf.Input{ + out_backprop, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Splits a tensor into a list. +// +// list[i] corresponds to lengths[i] tensors from the input tensor. +// The tensor must have rank at least 1 and contain exactly sum(lengths) elements. +// +// tensor: The input tensor. +// element_shape: A shape compatible with that of elements in the tensor. +// lengths: Vector of sizes of the 0th dimension of tensors in the list. +// output_handle: The list. +func TensorListSplit(scope *Scope, tensor tf.Output, element_shape tf.Output, lengths tf.Output) (output_handle tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorListSplit", + Input: []tf.Input{ + tensor, element_shape, lengths, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// SparseToSparseSetOperationAttr is an optional argument to SparseToSparseSetOperation. +type SparseToSparseSetOperationAttr func(optionalAttr) + +// SparseToSparseSetOperationValidateIndices sets the optional validate_indices attribute to value. +// If not specified, defaults to true +func SparseToSparseSetOperationValidateIndices(value bool) SparseToSparseSetOperationAttr { + return func(m optionalAttr) { + m["validate_indices"] = value + } +} + +// Applies set operation along last dimension of 2 `SparseTensor` inputs. +// +// See SetOperationOp::SetOperationFromContext for values of `set_operation`. +// +// If `validate_indices` is `True`, `SparseToSparseSetOperation` validates the +// order and range of `set1` and `set2` indices. +// +// Input `set1` is a `SparseTensor` represented by `set1_indices`, `set1_values`, +// and `set1_shape`. For `set1` ranked `n`, 1st `n-1` dimensions must be the same +// as `set2`. Dimension `n` contains values in a set, duplicates are allowed but +// ignored. +// +// Input `set2` is a `SparseTensor` represented by `set2_indices`, `set2_values`, +// and `set2_shape`. For `set2` ranked `n`, 1st `n-1` dimensions must be the same +// as `set1`. Dimension `n` contains values in a set, duplicates are allowed but +// ignored. +// +// If `validate_indices` is `True`, this op validates the order and range of `set1` +// and `set2` indices. +// +// Output `result` is a `SparseTensor` represented by `result_indices`, +// `result_values`, and `result_shape`. For `set1` and `set2` ranked `n`, this +// has rank `n` and the same 1st `n-1` dimensions as `set1` and `set2`. The `nth` +// dimension contains the result of `set_operation` applied to the corresponding +// `[0...n-1]` dimension of `set`. +// +// Arguments: +// set1_indices: 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major +// order. +// set1_values: 1D `Tensor`, values of a `SparseTensor`. Must be in row-major +// order. +// set1_shape: 1D `Tensor`, shape of a `SparseTensor`. `set1_shape[0...n-1]` must +// be the same as `set2_shape[0...n-1]`, `set1_shape[n]` is the +// max set size across `0...n-1` dimensions. +// set2_indices: 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major +// order. +// set2_values: 1D `Tensor`, values of a `SparseTensor`. Must be in row-major +// order. +// set2_shape: 1D `Tensor`, shape of a `SparseTensor`. `set2_shape[0...n-1]` must +// be the same as `set1_shape[0...n-1]`, `set2_shape[n]` is the +// max set size across `0...n-1` dimensions. +// +// +// Returns 2D indices of a `SparseTensor`.1D values of a `SparseTensor`.1D `Tensor` shape of a `SparseTensor`. `result_shape[0...n-1]` is +// the same as the 1st `n-1` dimensions of `set1` and `set2`, `result_shape[n]` +// is the max result set size across all `0...n-1` dimensions. +func SparseToSparseSetOperation(scope *Scope, set1_indices tf.Output, set1_values tf.Output, set1_shape tf.Output, set2_indices tf.Output, set2_values tf.Output, set2_shape tf.Output, set_operation string, optional ...SparseToSparseSetOperationAttr) (result_indices tf.Output, result_values tf.Output, result_shape tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"set_operation": set_operation} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "SparseToSparseSetOperation", + Input: []tf.Input{ + set1_indices, set1_values, set1_shape, set2_indices, set2_values, set2_shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// The gradient of SparseFillEmptyRows. +// +// Takes vectors reverse_index_map, shaped `[N]`, and grad_values, +// shaped `[N_full]`, where `N_full >= N` and copies data into either +// `d_values` or `d_default_value`. Here `d_values` is shaped `[N]` and +// `d_default_value` is a scalar. +// +// d_values[j] = grad_values[reverse_index_map[j]] +// d_default_value = sum_{k : 0 .. N_full - 1} ( +// grad_values[k] * 1{k not in reverse_index_map}) +// +// Arguments: +// reverse_index_map: 1-D. The reverse index map from SparseFillEmptyRows. +// grad_values: 1-D. The gradients from backprop. +// +// Returns 1-D. The backprop into values.0-D. The backprop into default_value. +func SparseFillEmptyRowsGrad(scope *Scope, reverse_index_map tf.Output, grad_values tf.Output) (d_values tf.Output, d_default_value tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseFillEmptyRowsGrad", + Input: []tf.Input{ + reverse_index_map, grad_values, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// TakeManySparseFromTensorsMapAttr is an optional argument to TakeManySparseFromTensorsMap. +type TakeManySparseFromTensorsMapAttr func(optionalAttr) + +// TakeManySparseFromTensorsMapContainer sets the optional container attribute to value. +// +// value: The container name for the `SparseTensorsMap` read by this op. +// If not specified, defaults to "" +func TakeManySparseFromTensorsMapContainer(value string) TakeManySparseFromTensorsMapAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// TakeManySparseFromTensorsMapSharedName sets the optional shared_name attribute to value. +// +// value: The shared name for the `SparseTensorsMap` read by this op. +// It should not be blank; rather the `shared_name` or unique Operation name +// of the Op that created the original `SparseTensorsMap` should be used. +// If not specified, defaults to "" +func TakeManySparseFromTensorsMapSharedName(value string) TakeManySparseFromTensorsMapAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Read `SparseTensors` from a `SparseTensorsMap` and concatenate them. +// +// The input `sparse_handles` must be an `int64` matrix of shape `[N, 1]` where +// `N` is the minibatch size and the rows correspond to the output handles of +// `AddSparseToTensorsMap` or `AddManySparseToTensorsMap`. The ranks of the +// original `SparseTensor` objects that went into the given input ops must all +// match. When the final `SparseTensor` is created, it has rank one +// higher than the ranks of the incoming `SparseTensor` objects +// (they have been concatenated along a new row dimension on the left). +// +// The output `SparseTensor` object's shape values for all dimensions but the +// first are the max across the input `SparseTensor` objects' shape values +// for the corresponding dimensions. Its first shape value is `N`, the minibatch +// size. +// +// The input `SparseTensor` objects' indices are assumed ordered in +// standard lexicographic order. If this is not the case, after this +// step run `SparseReorder` to restore index ordering. +// +// For example, if the handles represent an input, which is a `[2, 3]` matrix +// representing two original `SparseTensor` objects: +// +// ``` +// index = [ 0] +// [10] +// [20] +// values = [1, 2, 3] +// shape = [50] +// ``` +// +// and +// +// ``` +// index = [ 2] +// [10] +// values = [4, 5] +// shape = [30] +// ``` +// +// then the final `SparseTensor` will be: +// +// ``` +// index = [0 0] +// [0 10] +// [0 20] +// [1 2] +// [1 10] +// values = [1, 2, 3, 4, 5] +// shape = [2 50] +// ``` +// +// Arguments: +// sparse_handles: 1-D, The `N` serialized `SparseTensor` objects. +// Shape: `[N]`. +// dtype: The `dtype` of the `SparseTensor` objects stored in the +// `SparseTensorsMap`. +// +// Returns 2-D. The `indices` of the minibatch `SparseTensor`.1-D. The `values` of the minibatch `SparseTensor`.1-D. The `shape` of the minibatch `SparseTensor`. +func TakeManySparseFromTensorsMap(scope *Scope, sparse_handles tf.Output, dtype tf.DataType, optional ...TakeManySparseFromTensorsMapAttr) (sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TakeManySparseFromTensorsMap", + Input: []tf.Input{ + sparse_handles, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Returns x // y element-wise. +// +// *NOTE*: `FloorDiv` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func FloorDiv(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "FloorDiv", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// AddManySparseToTensorsMapAttr is an optional argument to AddManySparseToTensorsMap. +type AddManySparseToTensorsMapAttr func(optionalAttr) + +// AddManySparseToTensorsMapContainer sets the optional container attribute to value. +// +// value: The container name for the `SparseTensorsMap` created by this op. +// If not specified, defaults to "" +func AddManySparseToTensorsMapContainer(value string) AddManySparseToTensorsMapAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// AddManySparseToTensorsMapSharedName sets the optional shared_name attribute to value. +// +// value: The shared name for the `SparseTensorsMap` created by this op. +// If blank, the new Operation's unique name is used. +// If not specified, defaults to "" +func AddManySparseToTensorsMapSharedName(value string) AddManySparseToTensorsMapAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles. +// +// A `SparseTensor` of rank `R` is represented by three tensors: `sparse_indices`, +// `sparse_values`, and `sparse_shape`, where +// +// ```sparse_indices.shape[1] == sparse_shape.shape[0] == R``` +// +// An `N`-minibatch of `SparseTensor` objects is represented as a `SparseTensor` +// having a first `sparse_indices` column taking values between `[0, N)`, where +// the minibatch size `N == sparse_shape[0]`. +// +// The input `SparseTensor` must have rank `R` greater than 1, and the first +// dimension is treated as the minibatch dimension. Elements of the `SparseTensor` +// must be sorted in increasing order of this first dimension. The stored +// `SparseTensor` objects pointed to by each row of the output `sparse_handles` +// will have rank `R-1`. +// +// The `SparseTensor` values can then be read out as part of a minibatch by passing +// the given keys as vector elements to `TakeManySparseFromTensorsMap`. To ensure +// the correct `SparseTensorsMap` is accessed, ensure that the same +// `container` and `shared_name` are passed to that Op. If no `shared_name` +// is provided here, instead use the *name* of the Operation created by calling +// `AddManySparseToTensorsMap` as the `shared_name` passed to +// `TakeManySparseFromTensorsMap`. Ensure the Operations are colocated. +// +// Arguments: +// sparse_indices: 2-D. The `indices` of the minibatch `SparseTensor`. +// `sparse_indices[:, 0]` must be ordered values in `[0, N)`. +// sparse_values: 1-D. The `values` of the minibatch `SparseTensor`. +// sparse_shape: 1-D. The `shape` of the minibatch `SparseTensor`. +// The minibatch size `N == sparse_shape[0]`. +// +// Returns 1-D. The handles of the `SparseTensor` now stored in the +// `SparseTensorsMap`. Shape: `[N]`. +func AddManySparseToTensorsMap(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output, optional ...AddManySparseToTensorsMapAttr) (sparse_handles tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "AddManySparseToTensorsMap", + Input: []tf.Input{ + sparse_indices, sparse_values, sparse_shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns the element-wise min of two SparseTensors. +// +// Assumes the two SparseTensors have the same shape, i.e., no broadcasting. +// +// Arguments: +// a_indices: 2-D. `N x R` matrix with the indices of non-empty values in a +// SparseTensor, in the canonical lexicographic ordering. +// a_values: 1-D. `N` non-empty values corresponding to `a_indices`. +// a_shape: 1-D. Shape of the input SparseTensor. +// b_indices: counterpart to `a_indices` for the other operand. +// b_values: counterpart to `a_values` for the other operand; must be of the same dtype. +// b_shape: counterpart to `a_shape` for the other operand; the two shapes must be equal. +// +// Returns 2-D. The indices of the output SparseTensor.1-D. The values of the output SparseTensor. +func SparseSparseMinimum(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b_indices tf.Output, b_values tf.Output, b_shape tf.Output) (output_indices tf.Output, output_values tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSparseMinimum", + Input: []tf.Input{ + a_indices, a_values, a_shape, b_indices, b_values, b_shape, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// Creates a TensorList by indexing into a Tensor. +// +// Each member of the TensorList corresponds to one row of the input tensor, +// specified by the given index (see `tf.gather`). +// +// tensor: The input tensor. +// indices: The indices used to index into the list. +// element_shape: The shape of the elements in the list (can be less specified than +// the shape of the tensor). +// output_handle: The TensorList. +func TensorListScatter(scope *Scope, tensor tf.Output, indices tf.Output, element_shape tf.Output) (output_handle tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorListScatter", + Input: []tf.Input{ + tensor, indices, element_shape, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns the number of work units this Reader has finished processing. +// +// Arguments: +// reader_handle: Handle to a Reader. +func ReaderNumWorkUnitsCompletedV2(scope *Scope, reader_handle tf.Output) (units_completed tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ReaderNumWorkUnitsCompletedV2", + Input: []tf.Input{ + reader_handle, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`. +// +// This Op does not require `a_indices` be sorted in standard lexicographic order. +// +// Arguments: +// a_indices: 2-D. The `indices` of the `SparseTensor`, with shape `[nnz, ndims]`. +// a_values: 1-D. The `values` of the `SparseTensor`, with shape `[nnz]`. +// a_shape: 1-D. The `shape` of the `SparseTensor`, with shape `[ndims]`. +// b: `ndims`-D Tensor. With shape `a_shape`. +func SparseTensorDenseAdd(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseTensorDenseAdd", + Input: []tf.Input{ + a_indices, a_values, a_shape, b, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// SdcaOptimizerAttr is an optional argument to SdcaOptimizer. +type SdcaOptimizerAttr func(optionalAttr) + +// SdcaOptimizerAdaptative sets the optional adaptative attribute to value. +// +// value: Whether to use Adaptive SDCA for the inner loop. +// If not specified, defaults to true +func SdcaOptimizerAdaptative(value bool) SdcaOptimizerAttr { + return func(m optionalAttr) { + m["adaptative"] = value + } +} + +// Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for +// +// linear models with L1 + L2 regularization. As global optimization objective is +// strongly-convex, the optimizer optimizes the dual objective at each step. The +// optimizer applies each update one example at a time. Examples are sampled +// uniformly, and the optimizer is learning rate free and enjoys linear convergence +// rate. +// +// [Proximal Stochastic Dual Coordinate Ascent](http://arxiv.org/pdf/1211.2717v1.pdf).
+// Shai Shalev-Shwartz, Tong Zhang. 2012 +// +// $$Loss Objective = \sum f_{i} (wx_{i}) + (l2 / 2) * |w|^2 + l1 * |w|$$ +// +// [Adding vs. Averaging in Distributed Primal-Dual Optimization](http://arxiv.org/abs/1502.03508).
+// Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, +// Peter Richtarik, Martin Takac. 2015 +// +// [Stochastic Dual Coordinate Ascent with Adaptive Probabilities](https://arxiv.org/abs/1502.08053).
+// Dominik Csiba, Zheng Qu, Peter Richtarik. 2015 +// +// Arguments: +// sparse_example_indices: a list of vectors which contain example indices. +// sparse_feature_indices: a list of vectors which contain feature indices. +// sparse_feature_values: a list of vectors which contains feature value +// associated with each feature group. +// dense_features: a list of matrices which contains the dense feature values. +// example_weights: a vector which contains the weight associated with each +// example. +// example_labels: a vector which contains the label/target associated with each +// example. +// sparse_indices: a list of vectors where each value is the indices which has +// corresponding weights in sparse_weights. This field maybe omitted for the +// dense approach. +// sparse_weights: a list of vectors where each value is the weight associated with +// a sparse feature group. +// dense_weights: a list of vectors where the values are the weights associated +// with a dense feature group. +// example_state_data: a list of vectors containing the example state data. +// loss_type: Type of the primal loss. Currently SdcaSolver supports logistic, +// squared and hinge losses. +// l1: Symmetric l1 regularization strength. +// l2: Symmetric l2 regularization strength. +// num_loss_partitions: Number of partitions of the global loss function. +// num_inner_iterations: Number of iterations per mini-batch. +// +// Returns a list of vectors containing the updated example state +// data.a list of vectors where each value is the delta +// weights associated with a sparse feature group.a list of vectors where the values are the delta +// weights associated with a dense feature group. +func SdcaOptimizer(scope *Scope, sparse_example_indices []tf.Output, sparse_feature_indices []tf.Output, sparse_feature_values []tf.Output, dense_features []tf.Output, example_weights tf.Output, example_labels tf.Output, sparse_indices []tf.Output, sparse_weights []tf.Output, dense_weights []tf.Output, example_state_data tf.Output, loss_type string, l1 float32, l2 float32, num_loss_partitions int64, num_inner_iterations int64, optional ...SdcaOptimizerAttr) (out_example_state_data tf.Output, out_delta_sparse_weights []tf.Output, out_delta_dense_weights []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"loss_type": loss_type, "l1": l1, "l2": l2, "num_loss_partitions": num_loss_partitions, "num_inner_iterations": num_inner_iterations} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "SdcaOptimizer", + Input: []tf.Input{ + tf.OutputList(sparse_example_indices), tf.OutputList(sparse_feature_indices), tf.OutputList(sparse_feature_values), tf.OutputList(dense_features), example_weights, example_labels, tf.OutputList(sparse_indices), tf.OutputList(sparse_weights), tf.OutputList(dense_weights), example_state_data, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + out_example_state_data = op.Output(idx) + if out_delta_sparse_weights, idx, err = makeOutputList(op, idx, "out_delta_sparse_weights"); err != nil { + scope.UpdateErr("SdcaOptimizer", err) + return + } + if out_delta_dense_weights, idx, err = makeOutputList(op, idx, "out_delta_dense_weights"); err != nil { + scope.UpdateErr("SdcaOptimizer", err) + return + } + return out_example_state_data, out_delta_sparse_weights, out_delta_dense_weights +} + +// Delete the tensor specified by its handle in the session. +// +// Arguments: +// handle: The handle for a tensor stored in the session state. +// +// Returns the created operation. +func DeleteSessionTensor(scope *Scope, handle tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "DeleteSessionTensor", + Input: []tf.Input{ + handle, + }, + } + return scope.AddOperation(opspec) +} + +// Returns up to `num_records` (key, value) pairs produced by a Reader. +// +// Will dequeue from the input queue if necessary (e.g. when the +// Reader needs to start reading from a new file since it has finished +// with the previous file). +// It may return less than `num_records` even before the last batch. +// +// Arguments: +// reader_handle: Handle to a `Reader`. +// queue_handle: Handle to a `Queue`, with string work items. +// num_records: number of records to read from `Reader`. +// +// Returns A 1-D tensor.A 1-D tensor. +func ReaderReadUpToV2(scope *Scope, reader_handle tf.Output, queue_handle tf.Output, num_records tf.Output) (keys tf.Output, values tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ReaderReadUpToV2", + Input: []tf.Input{ + reader_handle, queue_handle, num_records, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// SetSizeAttr is an optional argument to SetSize. +type SetSizeAttr func(optionalAttr) + +// SetSizeValidateIndices sets the optional validate_indices attribute to value. +// If not specified, defaults to true +func SetSizeValidateIndices(value bool) SetSizeAttr { + return func(m optionalAttr) { + m["validate_indices"] = value + } +} + +// Number of unique elements along last dimension of input `set`. +// +// Input `set` is a `SparseTensor` represented by `set_indices`, `set_values`, +// and `set_shape`. The last dimension contains values in a set, duplicates are +// allowed but ignored. +// +// If `validate_indices` is `True`, this op validates the order and range of `set` +// indices. +// +// Arguments: +// set_indices: 2D `Tensor`, indices of a `SparseTensor`. +// set_values: 1D `Tensor`, values of a `SparseTensor`. +// set_shape: 1D `Tensor`, shape of a `SparseTensor`. +// +// Returns For `set` ranked `n`, this is a `Tensor` with rank `n-1`, and the same 1st +// `n-1` dimensions as `set`. Each value is the number of unique elements in +// the corresponding `[0...n-1]` dimension of `set`. +func SetSize(scope *Scope, set_indices tf.Output, set_values tf.Output, set_shape tf.Output, optional ...SetSizeAttr) (size tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "SetSize", + Input: []tf.Input{ + set_indices, set_values, set_shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Split a `SparseTensor` into `num_split` tensors along one dimension. +// +// If the `shape[split_dim]` is not an integer multiple of `num_split`. Slices +// `[0 : shape[split_dim] % num_split]` gets one extra dimension. +// For example, if `split_dim = 1` and `num_split = 2` and the input is +// +// input_tensor = shape = [2, 7] +// [ a d e ] +// [b c ] +// +// Graphically the output tensors are: +// +// output_tensor[0] = shape = [2, 4] +// [ a ] +// [b c ] +// +// output_tensor[1] = shape = [2, 3] +// [ d e ] +// [ ] +// +// Arguments: +// split_dim: 0-D. The dimension along which to split. Must be in the range +// `[0, rank(shape))`. +// indices: 2-D tensor represents the indices of the sparse tensor. +// values: 1-D tensor represents the values of the sparse tensor. +// shape: 1-D. tensor represents the shape of the sparse tensor. +// output indices: A list of 1-D tensors represents the indices of the output +// sparse tensors. +// num_split: The number of ways to split. +// +// Returns A list of 1-D tensors represents the values of the output sparse +// tensors.A list of 1-D tensors represents the shape of the output sparse +// tensors. +func SparseSplit(scope *Scope, split_dim tf.Output, indices tf.Output, values tf.Output, shape tf.Output, num_split int64) (output_indices []tf.Output, output_values []tf.Output, output_shape []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_split": num_split} + opspec := tf.OpSpec{ + Type: "SparseSplit", + Input: []tf.Input{ + split_dim, indices, values, shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if output_indices, idx, err = makeOutputList(op, idx, "output_indices"); err != nil { + scope.UpdateErr("SparseSplit", err) + return + } + if output_values, idx, err = makeOutputList(op, idx, "output_values"); err != nil { + scope.UpdateErr("SparseSplit", err) + return + } + if output_shape, idx, err = makeOutputList(op, idx, "output_shape"); err != nil { + scope.UpdateErr("SparseSplit", err) + return + } + return output_indices, output_values, output_shape +} + +// CudnnRNNV3Attr is an optional argument to CudnnRNNV3. +type CudnnRNNV3Attr func(optionalAttr) + +// CudnnRNNV3RnnMode sets the optional rnn_mode attribute to value. +// If not specified, defaults to "lstm" +func CudnnRNNV3RnnMode(value string) CudnnRNNV3Attr { + return func(m optionalAttr) { + m["rnn_mode"] = value + } +} + +// CudnnRNNV3InputMode sets the optional input_mode attribute to value. +// If not specified, defaults to "linear_input" +func CudnnRNNV3InputMode(value string) CudnnRNNV3Attr { + return func(m optionalAttr) { + m["input_mode"] = value + } +} + +// CudnnRNNV3Direction sets the optional direction attribute to value. +// If not specified, defaults to "unidirectional" +func CudnnRNNV3Direction(value string) CudnnRNNV3Attr { + return func(m optionalAttr) { + m["direction"] = value + } +} + +// CudnnRNNV3Dropout sets the optional dropout attribute to value. +// If not specified, defaults to 0 +func CudnnRNNV3Dropout(value float32) CudnnRNNV3Attr { + return func(m optionalAttr) { + m["dropout"] = value + } +} + +// CudnnRNNV3Seed sets the optional seed attribute to value. +// If not specified, defaults to 0 +func CudnnRNNV3Seed(value int64) CudnnRNNV3Attr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// CudnnRNNV3Seed2 sets the optional seed2 attribute to value. +// If not specified, defaults to 0 +func CudnnRNNV3Seed2(value int64) CudnnRNNV3Attr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// CudnnRNNV3IsTraining sets the optional is_training attribute to value. +// If not specified, defaults to true +func CudnnRNNV3IsTraining(value bool) CudnnRNNV3Attr { + return func(m optionalAttr) { + m["is_training"] = value + } +} + +// CudnnRNNV3TimeMajor sets the optional time_major attribute to value. +// If not specified, defaults to true +func CudnnRNNV3TimeMajor(value bool) CudnnRNNV3Attr { + return func(m optionalAttr) { + m["time_major"] = value + } +} + +// A RNN backed by cuDNN. +// +// Computes the RNN from the input and initial states, with respect to the params +// buffer. Accepts one extra input "sequence_lengths" than CudnnRNN. +// +// rnn_mode: Indicates the type of the RNN model. +// input_mode: Indicates whether there is a linear projection between the input and +// the actual computation before the first layer. 'skip_input' is only allowed +// when input_size == num_units; 'auto_select' implies 'skip_input' when +// input_size == num_units; otherwise, it implies 'linear_input'. +// direction: Indicates whether a bidirectional model will be used. Should be +// "unidirectional" or "bidirectional". +// dropout: Dropout probability. When set to 0., dropout is disabled. +// seed: The 1st part of a seed to initialize dropout. +// seed2: The 2nd part of a seed to initialize dropout. +// input: If time_major is true, this is a 3-D tensor with the shape of +// [seq_length, batch_size, input_size]. If time_major is false, the shape is +// [batch_size, seq_length, input_size]. +// input_h: If time_major is true, this is a 3-D tensor with the shape of +// [num_layer * dir, batch_size, num_units]. If time_major is false, the shape +// is [batch_size, num_layer * dir, num_units]. +// input_c: For LSTM, a 3-D tensor with the shape of +// [num_layer * dir, batch, num_units]. For other models, it is ignored. +// params: A 1-D tensor that contains the weights and biases in an opaque layout. +// The size must be created through CudnnRNNParamsSize, and initialized +// separately. Note that they might not be compatible across different +// generations. So it is a good idea to save and restore +// sequence_lengths: a vector of lengths of each input sequence. +// output: If time_major is true, this is a 3-D tensor with the shape of +// [seq_length, batch_size, dir * num_units]. If time_major is false, the +// shape is [batch_size, seq_length, dir * num_units]. +// output_h: The same shape has input_h. +// output_c: The same shape as input_c for LSTM. An empty tensor for other models. +// is_training: Indicates whether this operation is used for inferenece or +// training. +// time_major: Indicates whether the input/output format is time major or batch +// major. +// reserve_space: An opaque tensor that can be used in backprop calculation. It +// is only produced if is_training is true. +func CudnnRNNV3(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, params tf.Output, sequence_lengths tf.Output, optional ...CudnnRNNV3Attr) (output tf.Output, output_h tf.Output, output_c tf.Output, reserve_space tf.Output, host_reserved tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CudnnRNNV3", + Input: []tf.Input{ + input, input_h, input_c, params, sequence_lengths, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) +} + +// DecodeAndCropJpegAttr is an optional argument to DecodeAndCropJpeg. +type DecodeAndCropJpegAttr func(optionalAttr) + +// DecodeAndCropJpegChannels sets the optional channels attribute to value. +// +// value: Number of color channels for the decoded image. +// If not specified, defaults to 0 +func DecodeAndCropJpegChannels(value int64) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["channels"] = value + } +} + +// DecodeAndCropJpegRatio sets the optional ratio attribute to value. +// +// value: Downscaling ratio. +// If not specified, defaults to 1 +func DecodeAndCropJpegRatio(value int64) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["ratio"] = value + } +} + +// DecodeAndCropJpegFancyUpscaling sets the optional fancy_upscaling attribute to value. +// +// value: If true use a slower but nicer upscaling of the +// chroma planes (yuv420/422 only). +// If not specified, defaults to true +func DecodeAndCropJpegFancyUpscaling(value bool) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["fancy_upscaling"] = value + } +} + +// DecodeAndCropJpegTryRecoverTruncated sets the optional try_recover_truncated attribute to value. +// +// value: If true try to recover an image from truncated input. +// If not specified, defaults to false +func DecodeAndCropJpegTryRecoverTruncated(value bool) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["try_recover_truncated"] = value + } +} + +// DecodeAndCropJpegAcceptableFraction sets the optional acceptable_fraction attribute to value. +// +// value: The minimum required fraction of lines before a truncated +// input is accepted. +// If not specified, defaults to 1 +func DecodeAndCropJpegAcceptableFraction(value float32) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["acceptable_fraction"] = value + } +} + +// DecodeAndCropJpegDctMethod sets the optional dct_method attribute to value. +// +// value: string specifying a hint about the algorithm used for +// decompression. Defaults to "" which maps to a system-specific +// default. Currently valid values are ["INTEGER_FAST", +// "INTEGER_ACCURATE"]. The hint may be ignored (e.g., the internal +// jpeg library changes to a version that does not have that specific +// option.) +// If not specified, defaults to "" +func DecodeAndCropJpegDctMethod(value string) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["dct_method"] = value + } +} + +// Decode and Crop a JPEG-encoded image to a uint8 tensor. +// +// The attr `channels` indicates the desired number of color channels for the +// decoded image. +// +// Accepted values are: +// +// * 0: Use the number of channels in the JPEG-encoded image. +// * 1: output a grayscale image. +// * 3: output an RGB image. +// +// If needed, the JPEG-encoded image is transformed to match the requested number +// of color channels. +// +// The attr `ratio` allows downscaling the image by an integer factor during +// decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than +// downscaling the image later. +// +// +// It is equivalent to a combination of decode and crop, but much faster by only +// decoding partial jpeg image. +// +// Arguments: +// contents: 0-D. The JPEG-encoded image. +// crop_window: 1-D. The crop window: [crop_y, crop_x, crop_height, crop_width]. +// +// Returns 3-D with shape `[height, width, channels]`.. +func DecodeAndCropJpeg(scope *Scope, contents tf.Output, crop_window tf.Output, optional ...DecodeAndCropJpegAttr) (image tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DecodeAndCropJpeg", + Input: []tf.Input{ + contents, crop_window, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Ensures that the tensor's shape matches the expected shape. +// +// Raises an error if the input tensor's shape does not match the specified shape. +// Returns the input tensor otherwise. +// +// Arguments: +// input: A tensor, whose shape is to be validated. +// shape: The expected (possibly partially specified) shape of the input tensor. +// +// Returns A tensor with the same shape and contents as the input tensor or value. +func EnsureShape(scope *Scope, input tf.Output, shape tf.Shape) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"shape": shape} + opspec := tf.OpSpec{ + Type: "EnsureShape", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// SparseToDenseAttr is an optional argument to SparseToDense. +type SparseToDenseAttr func(optionalAttr) + +// SparseToDenseValidateIndices sets the optional validate_indices attribute to value. +// +// value: If true, indices are checked to make sure they are sorted in +// lexicographic order and that there are no repeats. +// If not specified, defaults to true +func SparseToDenseValidateIndices(value bool) SparseToDenseAttr { + return func(m optionalAttr) { + m["validate_indices"] = value + } +} + +// Converts a sparse representation into a dense tensor. +// +// Builds an array `dense` with shape `output_shape` such that +// +// ``` +// # If sparse_indices is scalar +// dense[i] = (i == sparse_indices ? sparse_values : default_value) +// +// # If sparse_indices is a vector, then for each i +// dense[sparse_indices[i]] = sparse_values[i] +// +// # If sparse_indices is an n by d matrix, then for each i in [0, n) +// dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i] +// ``` +// +// All other values in `dense` are set to `default_value`. If `sparse_values` is a +// scalar, all sparse indices are set to this single value. +// +// Indices should be sorted in lexicographic order, and indices must not +// contain any repeats. If `validate_indices` is true, these properties +// are checked during execution. +// +// Arguments: +// sparse_indices: 0-D, 1-D, or 2-D. `sparse_indices[i]` contains the complete +// index where `sparse_values[i]` will be placed. +// output_shape: 1-D. Shape of the dense output tensor. +// sparse_values: 1-D. Values corresponding to each row of `sparse_indices`, +// or a scalar value to be used for all sparse indices. +// default_value: Scalar value to set for indices not specified in +// `sparse_indices`. +// +// Returns Dense output tensor of shape `output_shape`. +func SparseToDense(scope *Scope, sparse_indices tf.Output, output_shape tf.Output, sparse_values tf.Output, default_value tf.Output, optional ...SparseToDenseAttr) (dense tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "SparseToDense", + Input: []tf.Input{ + sparse_indices, output_shape, sparse_values, default_value, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Adds two `SparseTensor` objects to produce another `SparseTensor`. +// +// The input `SparseTensor` objects' indices are assumed ordered in standard +// lexicographic order. If this is not the case, before this step run +// `SparseReorder` to restore index ordering. +// +// By default, if two values sum to zero at some index, the output `SparseTensor` +// would still include that particular location in its index, storing a zero in the +// corresponding value slot. To override this, callers can specify `thresh`, +// indicating that if the sum has a magnitude strictly smaller than `thresh`, its +// corresponding value and index would then not be included. In particular, +// `thresh == 0` (default) means everything is kept and actual thresholding happens +// only for a positive value. +// +// In the following shapes, `nnz` is the count after taking `thresh` into account. +// +// Arguments: +// a_indices: 2-D. The `indices` of the first `SparseTensor`, size `[nnz, ndims]` Matrix. +// a_values: 1-D. The `values` of the first `SparseTensor`, size `[nnz]` Vector. +// a_shape: 1-D. The `shape` of the first `SparseTensor`, size `[ndims]` Vector. +// b_indices: 2-D. The `indices` of the second `SparseTensor`, size `[nnz, ndims]` Matrix. +// b_values: 1-D. The `values` of the second `SparseTensor`, size `[nnz]` Vector. +// b_shape: 1-D. The `shape` of the second `SparseTensor`, size `[ndims]` Vector. +// thresh: 0-D. The magnitude threshold that determines if an output value/index +// pair takes space. +func SparseAdd(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b_indices tf.Output, b_values tf.Output, b_shape tf.Output, thresh tf.Output) (sum_indices tf.Output, sum_values tf.Output, sum_shape tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseAdd", + Input: []tf.Input{ + a_indices, a_values, a_shape, b_indices, b_values, b_shape, thresh, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Encode audio data using the WAV file format. +// +// This operation will generate a string suitable to be saved out to create a .wav +// audio file. It will be encoded in the 16-bit PCM format. It takes in float +// values in the range -1.0f to 1.0f, and any outside that value will be clamped to +// that range. +// +// `audio` is a 2-D float Tensor of shape `[length, channels]`. +// `sample_rate` is a scalar Tensor holding the rate to use (e.g. 44100). +// +// Arguments: +// audio: 2-D with shape `[length, channels]`. +// sample_rate: Scalar containing the sample frequency. +// +// Returns 0-D. WAV-encoded file contents. +func EncodeWav(scope *Scope, audio tf.Output, sample_rate tf.Output) (contents tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "EncodeWav", + Input: []tf.Input{ + audio, sample_rate, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Makes a copy of `x`. +// +// Arguments: +// x: The source tensor of type `T`. +// +// Returns y: A `Tensor` of type `T`. A copy of `x`. Guaranteed that `y` +// is not an alias of `x`. +func DeepCopy(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "DeepCopy", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// The gradient operator for the SparseAdd op. +// +// The SparseAdd op calculates A + B, where A, B, and the sum are all represented +// as `SparseTensor` objects. This op takes in the upstream gradient w.r.t. +// non-empty values of the sum, and outputs the gradients w.r.t. the non-empty +// values of A and B. +// +// Arguments: +// backprop_val_grad: 1-D with shape `[nnz(sum)]`. The gradient with respect to +// the non-empty values of the sum. +// a_indices: 2-D. The `indices` of the `SparseTensor` A, size `[nnz(A), ndims]`. +// b_indices: 2-D. The `indices` of the `SparseTensor` B, size `[nnz(B), ndims]`. +// sum_indices: 2-D. The `indices` of the sum `SparseTensor`, size +// `[nnz(sum), ndims]`. +// +// Returns 1-D with shape `[nnz(A)]`. The gradient with respect to the +// non-empty values of A.1-D with shape `[nnz(B)]`. The gradient with respect to the +// non-empty values of B. +func SparseAddGrad(scope *Scope, backprop_val_grad tf.Output, a_indices tf.Output, b_indices tf.Output, sum_indices tf.Output) (a_val_grad tf.Output, b_val_grad tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseAddGrad", + Input: []tf.Input{ + backprop_val_grad, a_indices, b_indices, sum_indices, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// Elementwise computes the bitwise right-shift of `x` and `y`. +// +// Performs a logical shift for unsigned integer types, and an arithmetic shift +// for signed integer types. +// +// If `y` is negative, or greater than or equal to than the width of `x` in bits +// the result is implementation defined. +func RightShift(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "RightShift", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Read an element from the TensorArray into output `value`. +// +// Arguments: +// handle: The handle to a TensorArray. +// +// flow_in: A float scalar that enforces proper chaining of operations. +// dtype: The type of the elem that is returned. +// +// Returns The tensor that is read from the TensorArray. +func TensorArrayReadV3(scope *Scope, handle tf.Output, index tf.Output, flow_in tf.Output, dtype tf.DataType) (value tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + opspec := tf.OpSpec{ + Type: "TensorArrayReadV3", + Input: []tf.Input{ + handle, index, flow_in, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// LoadTPUEmbeddingFTRLParametersAttr is an optional argument to LoadTPUEmbeddingFTRLParameters. +type LoadTPUEmbeddingFTRLParametersAttr func(optionalAttr) + +// LoadTPUEmbeddingFTRLParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingFTRLParametersTableId(value int64) LoadTPUEmbeddingFTRLParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingFTRLParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingFTRLParametersTableName(value string) LoadTPUEmbeddingFTRLParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load FTRL embedding parameters. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the FTRL optimization algorithm. +// accumulators: Value of accumulators used in the FTRL optimization algorithm. +// linears: Value of linears used in the FTRL optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingFTRLParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, linears tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingFTRLParametersAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingFTRLParameters", + Input: []tf.Input{ + parameters, accumulators, linears, }, Attrs: attrs, } return scope.AddOperation(opspec) } -// Returns true if queue is closed. -// -// This operation returns true if the queue is closed and false if the queue -// is open. +// Creates a Dataset that returns pseudorandom numbers. // // Arguments: -// handle: The handle to a queue. -func QueueIsClosedV2(scope *Scope, handle tf.Output) (is_closed tf.Output) { +// seed: A scalar seed for the random number generator. If either seed or +// seed2 is set to be non-zero, the random number generator is seeded +// by the given seed. Otherwise, a random seed is used. +// seed2: A second scalar seed to avoid seed collision. +// +// +func ExperimentalRandomDataset(scope *Scope, seed tf.Output, seed2 tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "ExperimentalRandomDataset", + Input: []tf.Input{ + seed, seed2, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset that emits the records from one or more TFRecord files. +// +// Arguments: +// filenames: A scalar or vector containing the name(s) of the file(s) to be +// read. +// compression_type: A scalar containing either (i) the empty string (no +// compression), (ii) "ZLIB", or (iii) "GZIP". +// buffer_size: A scalar representing the number of bytes to buffer. A value of +// 0 means no buffering will be performed. +func TFRecordDataset(scope *Scope, filenames tf.Output, compression_type tf.Output, buffer_size tf.Output) (handle tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "QueueIsClosedV2", + Type: "TFRecordDataset", Input: []tf.Input{ - handle, + filenames, compression_type, buffer_size, }, } op := scope.AddOperation(opspec) return op.Output(0) } +// TensorSummaryAttr is an optional argument to TensorSummary. +type TensorSummaryAttr func(optionalAttr) + +// TensorSummaryDescription sets the optional description attribute to value. +// +// value: A json-encoded SummaryDescription proto. +// If not specified, defaults to "" +func TensorSummaryDescription(value string) TensorSummaryAttr { + return func(m optionalAttr) { + m["description"] = value + } +} + +// TensorSummaryLabels sets the optional labels attribute to value. +// +// value: An unused list of strings. +// If not specified, defaults to <> +func TensorSummaryLabels(value []string) TensorSummaryAttr { + return func(m optionalAttr) { + m["labels"] = value + } +} + +// TensorSummaryDisplayName sets the optional display_name attribute to value. +// +// value: An unused string. +// If not specified, defaults to "" +func TensorSummaryDisplayName(value string) TensorSummaryAttr { + return func(m optionalAttr) { + m["display_name"] = value + } +} + +// Outputs a `Summary` protocol buffer with a tensor. +// +// This op is being phased out in favor of TensorSummaryV2, which lets callers pass +// a tag as well as a serialized SummaryMetadata proto string that contains +// plugin-specific data. We will keep this op to maintain backwards compatibility. +// +// Arguments: +// tensor: A tensor to serialize. +func TensorSummary(scope *Scope, tensor tf.Output, optional ...TensorSummaryAttr) (summary tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TensorSummary", + Input: []tf.Input{ + tensor, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Resizes the list. +// +// +// input_handle: the input list +// size: size of the output list +// +func TensorListResize(scope *Scope, input_handle tf.Output, size tf.Output) (output_handle tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorListResize", + Input: []tf.Input{ + input_handle, size, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes softplus gradients for a softplus operation. +// +// Arguments: +// gradients: The backpropagated gradients to the corresponding softplus operation. +// features: The features passed as input to the corresponding softplus operation. +// +// Returns The gradients: `gradients / (1 + exp(-features))`. +func SoftplusGrad(scope *Scope, gradients tf.Output, features tf.Output) (backprops tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SoftplusGrad", + Input: []tf.Input{ + gradients, features, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// MaxPoolGradGradAttr is an optional argument to MaxPoolGradGrad. +type MaxPoolGradGradAttr func(optionalAttr) + +// MaxPoolGradGradDataFormat sets the optional data_format attribute to value. +// +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the data is stored in the order of: +// [batch, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, in_channels, in_height, in_width]. +// If not specified, defaults to "NHWC" +func MaxPoolGradGradDataFormat(value string) MaxPoolGradGradAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Computes second-order gradients of the maxpooling function. +// +// Arguments: +// orig_input: The original input tensor. +// orig_output: The original output tensor. +// grad: 4-D. Gradients of gradients w.r.t. the input of `max_pool`. +// ksize: The size of the window for each dimension of the input tensor. +// strides: The stride of the sliding window for each dimension of the +// input tensor. +// padding: The type of padding algorithm to use. +// +// Returns Gradients of gradients w.r.t. the input to `max_pool`. +func MaxPoolGradGrad(scope *Scope, orig_input tf.Output, orig_output tf.Output, grad tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolGradGradAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "MaxPoolGradGrad", + Input: []tf.Input{ + orig_input, orig_output, grad, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// StatelessRandomNormalAttr is an optional argument to StatelessRandomNormal. +type StatelessRandomNormalAttr func(optionalAttr) + +// StatelessRandomNormalDtype sets the optional dtype attribute to value. +// +// value: The type of the output. +// If not specified, defaults to DT_FLOAT +func StatelessRandomNormalDtype(value tf.DataType) StatelessRandomNormalAttr { + return func(m optionalAttr) { + m["dtype"] = value + } +} + +// Outputs deterministic pseudorandom values from a normal distribution. +// +// The generated values will have mean 0 and standard deviation 1. +// +// The outputs are a deterministic function of `shape` and `seed`. +// +// Arguments: +// shape: The shape of the output tensor. +// seed: 2 seeds (shape [2]). +// +// Returns Random values with specified shape. +func StatelessRandomNormal(scope *Scope, shape tf.Output, seed tf.Output, optional ...StatelessRandomNormalAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StatelessRandomNormal", + Input: []tf.Input{ + shape, seed, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Reshapes a SparseTensor to represent values in a new dense shape. +// +// This operation has the same semantics as reshape on the represented dense +// tensor. The `input_indices` are recomputed based on the requested `new_shape`. +// +// If one component of `new_shape` is the special value -1, the size of that +// dimension is computed so that the total dense size remains constant. At +// most one component of `new_shape` can be -1. The number of dense elements +// implied by `new_shape` must be the same as the number of dense elements +// originally implied by `input_shape`. +// +// Reshaping does not affect the order of values in the SparseTensor. +// +// If the input tensor has rank `R_in` and `N` non-empty values, and `new_shape` +// has length `R_out`, then `input_indices` has shape `[N, R_in]`, +// `input_shape` has length `R_in`, `output_indices` has shape `[N, R_out]`, and +// `output_shape` has length `R_out`. +// +// Arguments: +// input_indices: 2-D. `N x R_in` matrix with the indices of non-empty values in a +// SparseTensor. +// input_shape: 1-D. `R_in` vector with the input SparseTensor's dense shape. +// new_shape: 1-D. `R_out` vector with the requested new dense shape. +// +// Returns 2-D. `N x R_out` matrix with the updated indices of non-empty +// values in the output SparseTensor.1-D. `R_out` vector with the full dense shape of the output +// SparseTensor. This is the same as `new_shape` but with any -1 dimensions +// filled in. +func SparseReshape(scope *Scope, input_indices tf.Output, input_shape tf.Output, new_shape tf.Output) (output_indices tf.Output, output_shape tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseReshape", + Input: []tf.Input{ + input_indices, input_shape, new_shape, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingAdagradParametersGradAccumDebug. +type RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr func(optionalAttr) + +// RetrieveTPUEmbeddingAdagradParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingAdagradParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// RetrieveTPUEmbeddingAdagradParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingAdagradParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Retrieve Adagrad embedding parameters with debug support. +// +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. +// +// Returns Parameter parameters updated by the Adagrad optimization algorithm.Parameter accumulators updated by the Adagrad optimization algorithm.Parameter gradient_accumulators updated by the Adagrad optimization algorithm. +func RetrieveTPUEmbeddingAdagradParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr) (parameters tf.Output, accumulators tf.Output, gradient_accumulators tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RetrieveTPUEmbeddingAdagradParametersGradAccumDebug", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Returns the truth value of (x < y) element-wise. +// +// *NOTE*: `Less` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func Less(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Less", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// RetrieveTPUEmbeddingADAMParametersAttr is an optional argument to RetrieveTPUEmbeddingADAMParameters. +type RetrieveTPUEmbeddingADAMParametersAttr func(optionalAttr) + +// RetrieveTPUEmbeddingADAMParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingADAMParametersTableId(value int64) RetrieveTPUEmbeddingADAMParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// RetrieveTPUEmbeddingADAMParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingADAMParametersTableName(value string) RetrieveTPUEmbeddingADAMParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Retrieve ADAM embedding parameters. +// +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. +// +// Returns Parameter parameters updated by the ADAM optimization algorithm.Parameter momenta updated by the ADAM optimization algorithm.Parameter velocities updated by the ADAM optimization algorithm. +func RetrieveTPUEmbeddingADAMParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingADAMParametersAttr) (parameters tf.Output, momenta tf.Output, velocities tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RetrieveTPUEmbeddingADAMParameters", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// RetrieveTPUEmbeddingAdagradParametersAttr is an optional argument to RetrieveTPUEmbeddingAdagradParameters. +type RetrieveTPUEmbeddingAdagradParametersAttr func(optionalAttr) + +// RetrieveTPUEmbeddingAdagradParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingAdagradParametersTableId(value int64) RetrieveTPUEmbeddingAdagradParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// RetrieveTPUEmbeddingAdagradParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingAdagradParametersTableName(value string) RetrieveTPUEmbeddingAdagradParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Retrieve Adagrad embedding parameters. +// +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. +// +// Returns Parameter parameters updated by the Adagrad optimization algorithm.Parameter accumulators updated by the Adagrad optimization algorithm. +func RetrieveTPUEmbeddingAdagradParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingAdagradParametersAttr) (parameters tf.Output, accumulators tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RetrieveTPUEmbeddingAdagradParameters", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// LoadTPUEmbeddingProximalAdagradParametersAttr is an optional argument to LoadTPUEmbeddingProximalAdagradParameters. +type LoadTPUEmbeddingProximalAdagradParametersAttr func(optionalAttr) + +// LoadTPUEmbeddingProximalAdagradParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingProximalAdagradParametersTableId(value int64) LoadTPUEmbeddingProximalAdagradParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingProximalAdagradParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingProximalAdagradParametersTableName(value string) LoadTPUEmbeddingProximalAdagradParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load proximal Adagrad embedding parameters. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the proximal Adagrad optimization algorithm. +// accumulators: Value of accumulators used in the proximal Adagrad optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingProximalAdagradParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingProximalAdagradParametersAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingProximalAdagradParameters", + Input: []tf.Input{ + parameters, accumulators, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// CudnnRNNParamsSizeAttr is an optional argument to CudnnRNNParamsSize. +type CudnnRNNParamsSizeAttr func(optionalAttr) + +// CudnnRNNParamsSizeRnnMode sets the optional rnn_mode attribute to value. +// If not specified, defaults to "lstm" +func CudnnRNNParamsSizeRnnMode(value string) CudnnRNNParamsSizeAttr { + return func(m optionalAttr) { + m["rnn_mode"] = value + } +} + +// CudnnRNNParamsSizeInputMode sets the optional input_mode attribute to value. +// If not specified, defaults to "linear_input" +func CudnnRNNParamsSizeInputMode(value string) CudnnRNNParamsSizeAttr { + return func(m optionalAttr) { + m["input_mode"] = value + } +} + +// CudnnRNNParamsSizeDirection sets the optional direction attribute to value. +// If not specified, defaults to "unidirectional" +func CudnnRNNParamsSizeDirection(value string) CudnnRNNParamsSizeAttr { + return func(m optionalAttr) { + m["direction"] = value + } +} + +// CudnnRNNParamsSizeDropout sets the optional dropout attribute to value. +// If not specified, defaults to 0 +func CudnnRNNParamsSizeDropout(value float32) CudnnRNNParamsSizeAttr { + return func(m optionalAttr) { + m["dropout"] = value + } +} + +// CudnnRNNParamsSizeSeed sets the optional seed attribute to value. +// If not specified, defaults to 0 +func CudnnRNNParamsSizeSeed(value int64) CudnnRNNParamsSizeAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// CudnnRNNParamsSizeSeed2 sets the optional seed2 attribute to value. +// If not specified, defaults to 0 +func CudnnRNNParamsSizeSeed2(value int64) CudnnRNNParamsSizeAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Computes size of weights that can be used by a Cudnn RNN model. +// +// Return the params size that can be used by the Cudnn RNN model. Subsequent +// weight allocation and initialization should use this size. +// +// num_layers: Specifies the number of layers in the RNN model. +// num_units: Specifies the size of the hidden state. +// input_size: Specifies the size of the input state. +// rnn_mode: Indicates the type of the RNN model. +// input_mode: Indicate whether there is a linear projection between the input and +// The actual computation before the first layer. 'skip_input' is only allowed +// when input_size == num_units; 'auto_select' implies 'skip_input' when +// input_size == num_units; otherwise, it implies 'linear_input'. +// direction: Indicates whether a bidirectional model will be used. +// dir = (direction == bidirectional) ? 2 : 1 +// dropout: dropout probability. When set to 0., dropout is disabled. +// seed: the 1st part of a seed to initialize dropout. +// seed2: the 2nd part of a seed to initialize dropout. +// params_size: The size of the params buffer that should be allocated and +// initialized for this RNN model. Note that this params buffer may not be +// compatible across GPUs. Please use CudnnRNNParamsWeights and +// CudnnRNNParamsBiases to save and restore them in a way that is compatible +// across different runs. +func CudnnRNNParamsSize(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, T tf.DataType, S tf.DataType, optional ...CudnnRNNParamsSizeAttr) (params_size tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"T": T, "S": S} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CudnnRNNParamsSize", + Input: []tf.Input{ + num_layers, num_units, input_size, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Applies sparse addition to `input` using individual values or slices +// +// from `updates` according to indices `indices`. The updates are non-aliasing: +// `input` is only modified in-place if no other operations will use it. +// Otherwise, a copy of `input` is made. This operation has a gradient with +// respect to both `input` and `updates`. +// +// `input` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. +// +// `indices` must be integer tensor, containing indices into `input`. +// It must be shape \\([d_0, ..., d_{Q-2}, K]\\) where `0 < K <= P`. +// +// The innermost dimension of `indices` (with length `K`) corresponds to +// indices into elements (if `K = P`) or `(P-K)`-dimensional slices +// (if `K < P`) along the `K`th dimension of `input`. +// +// `updates` is `Tensor` of rank `Q-1+P-K` with shape: +// +// $$[d_0, ..., d_{Q-2}, input.shape[K], ..., input.shape[P-1]].$$ +// +// For example, say we want to add 4 scattered elements to a rank-1 tensor to 8 +// elements. In Python, that addition would look like this: +// +// input = tf.constant([1, 2, 3, 4, 5, 6, 7, 8]) +// indices = tf.constant([[4], [3], [1], [7]]) +// updates = tf.constant([9, 10, 11, 12]) +// output = tf.scatter_nd_non_aliasing_add(input, indices, updates) +// with tf.Session() as sess: +// print(sess.run(output)) +// +// The resulting value `output` would look like this: +// +// [1, 13, 3, 14, 14, 6, 7, 20] +// +// See `tf.scatter_nd` for more details about how to make updates to slices. +// +// Arguments: +// input: A Tensor. +// indices: A Tensor. Must be one of the following types: `int32`, `int64`. +// A tensor of indices into `input`. +// updates: A Tensor. Must have the same type as ref. A tensor of updated values +// to add to `input`. +// +// Returns A `Tensor` with the same shape as `input`, containing values of `input` +// updated with `updates`. +func ScatterNdNonAliasingAdd(scope *Scope, input tf.Output, indices tf.Output, updates tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ScatterNdNonAliasingAdd", + Input: []tf.Input{ + input, indices, updates, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Performs gradient updates of embedding tables. +// +// Arguments: +// inputs: A TensorList of gradients with which to update embedding tables. +// This argument has the same length and shapes as the return value of +// RecvTPUEmbeddingActivations, but contains gradients of the model's loss +// with respect to the embedding activations. The embedding tables are updated +// from these gradients via the optimizer specified in the TPU embedding +// configuration given to tpu.initialize_system. +// learning_rates: A TensorList of float32 scalars, one for each dynamic learning +// rate tag: see the comments in +// //third_party/tensorflow/core/protobuf/tpu/optimization_parameters.proto. +// Multiple tables can share the same dynamic learning rate tag as specified +// in the configuration. If the learning rates for all tables are constant, +// this list should be empty. +// config: Serialized TPUEmbeddingConfiguration proto. +// +// Returns the created operation. +func SendTPUEmbeddingGradients(scope *Scope, inputs []tf.Output, learning_rates []tf.Output, config string) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"config": config} + opspec := tf.OpSpec{ + Type: "SendTPUEmbeddingGradients", + Input: []tf.Input{ + tf.OutputList(inputs), tf.OutputList(learning_rates), + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// LRNAttr is an optional argument to LRN. +type LRNAttr func(optionalAttr) + +// LRNDepthRadius sets the optional depth_radius attribute to value. +// +// value: 0-D. Half-width of the 1-D normalization window. +// If not specified, defaults to 5 +func LRNDepthRadius(value int64) LRNAttr { + return func(m optionalAttr) { + m["depth_radius"] = value + } +} + +// LRNBias sets the optional bias attribute to value. +// +// value: An offset (usually positive to avoid dividing by 0). +// If not specified, defaults to 1 +func LRNBias(value float32) LRNAttr { + return func(m optionalAttr) { + m["bias"] = value + } +} + +// LRNAlpha sets the optional alpha attribute to value. +// +// value: A scale factor, usually positive. +// If not specified, defaults to 1 +func LRNAlpha(value float32) LRNAttr { + return func(m optionalAttr) { + m["alpha"] = value + } +} + +// LRNBeta sets the optional beta attribute to value. +// +// value: An exponent. +// If not specified, defaults to 0.5 +func LRNBeta(value float32) LRNAttr { + return func(m optionalAttr) { + m["beta"] = value + } +} + +// Local Response Normalization. +// +// The 4-D `input` tensor is treated as a 3-D array of 1-D vectors (along the last +// dimension), and each vector is normalized independently. Within a given vector, +// each component is divided by the weighted, squared sum of inputs within +// `depth_radius`. In detail, +// +// sqr_sum[a, b, c, d] = +// sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2) +// output = input / (bias + alpha * sqr_sum) ** beta +// +// For details, see [Krizhevsky et al., ImageNet classification with deep +// convolutional neural networks (NIPS 2012)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks). +// +// Arguments: +// input: 4-D. +func LRN(scope *Scope, input tf.Output, optional ...LRNAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LRN", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // AnyAttr is an optional argument to Any. type AnyAttr func(optionalAttr) @@ -13787,1907 +16973,28 @@ func Rpc(scope *Scope, address tf.Output, method tf.Output, request tf.Output, o return op.Output(0) } -// Eagerly executes a python function to compute func(input)->output. The -// -// semantics of the input, output, and attributes are the same as those for -// PyFunc. -func EagerPyFunc(scope *Scope, input []tf.Output, token string, Tout []tf.DataType) (output []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"token": token, "Tout": Tout} - opspec := tf.OpSpec{ - Type: "EagerPyFunc", - Input: []tf.Input{ - tf.OutputList(input), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if output, idx, err = makeOutputList(op, idx, "output"); err != nil { - scope.UpdateErr("EagerPyFunc", err) - return - } - return output -} +// LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingMomentumParametersGradAccumDebug. +type LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr func(optionalAttr) -// Deserialize and concatenate `SparseTensors` from a serialized minibatch. -// -// The input `serialized_sparse` must be a string matrix of shape `[N x 3]` where -// `N` is the minibatch size and the rows correspond to packed outputs of -// `SerializeSparse`. The ranks of the original `SparseTensor` objects -// must all match. When the final `SparseTensor` is created, it has rank one -// higher than the ranks of the incoming `SparseTensor` objects -// (they have been concatenated along a new row dimension). -// -// The output `SparseTensor` object's shape values for all dimensions but the -// first are the max across the input `SparseTensor` objects' shape values -// for the corresponding dimensions. Its first shape value is `N`, the minibatch -// size. -// -// The input `SparseTensor` objects' indices are assumed ordered in -// standard lexicographic order. If this is not the case, after this -// step run `SparseReorder` to restore index ordering. -// -// For example, if the serialized input is a `[2 x 3]` matrix representing two -// original `SparseTensor` objects: -// -// index = [ 0] -// [10] -// [20] -// values = [1, 2, 3] -// shape = [50] -// -// and -// -// index = [ 2] -// [10] -// values = [4, 5] -// shape = [30] -// -// then the final deserialized `SparseTensor` will be: -// -// index = [0 0] -// [0 10] -// [0 20] -// [1 2] -// [1 10] -// values = [1, 2, 3, 4, 5] -// shape = [2 50] -// -// Arguments: -// serialized_sparse: 2-D, The `N` serialized `SparseTensor` objects. -// Must have 3 columns. -// dtype: The `dtype` of the serialized `SparseTensor` objects. -func DeserializeManySparse(scope *Scope, serialized_sparse tf.Output, dtype tf.DataType) (sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - opspec := tf.OpSpec{ - Type: "DeserializeManySparse", - Input: []tf.Input{ - serialized_sparse, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Computes fingerprints of the input strings. -// -// Arguments: -// input: vector of strings to compute fingerprints on. -// -// Returns a (N,2) shaped matrix where N is the number of elements in the input -// vector. Each row contains the low and high parts of the fingerprint. -func SdcaFprint(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SdcaFprint", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// AddSparseToTensorsMapAttr is an optional argument to AddSparseToTensorsMap. -type AddSparseToTensorsMapAttr func(optionalAttr) - -// AddSparseToTensorsMapContainer sets the optional container attribute to value. -// -// value: The container name for the `SparseTensorsMap` created by this op. -// If not specified, defaults to "" -func AddSparseToTensorsMapContainer(value string) AddSparseToTensorsMapAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// AddSparseToTensorsMapSharedName sets the optional shared_name attribute to value. -// -// value: The shared name for the `SparseTensorsMap` created by this op. -// If blank, the new Operation's unique name is used. -// If not specified, defaults to "" -func AddSparseToTensorsMapSharedName(value string) AddSparseToTensorsMapAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Add a `SparseTensor` to a `SparseTensorsMap` return its handle. -// -// A `SparseTensor` is represented by three tensors: `sparse_indices`, -// `sparse_values`, and `sparse_shape`. -// -// This operator takes the given `SparseTensor` and adds it to a container -// object (a `SparseTensorsMap`). A unique key within this container is generated -// in the form of an `int64`, and this is the value that is returned. -// -// The `SparseTensor` can then be read out as part of a minibatch by passing -// the key as a vector element to `TakeManySparseFromTensorsMap`. To ensure -// the correct `SparseTensorsMap` is accessed, ensure that the same -// `container` and `shared_name` are passed to that Op. If no `shared_name` -// is provided here, instead use the *name* of the Operation created by calling -// `AddSparseToTensorsMap` as the `shared_name` passed to -// `TakeManySparseFromTensorsMap`. Ensure the Operations are colocated. -// -// Arguments: -// sparse_indices: 2-D. The `indices` of the `SparseTensor`. -// sparse_values: 1-D. The `values` of the `SparseTensor`. -// sparse_shape: 1-D. The `shape` of the `SparseTensor`. -// -// Returns 0-D. The handle of the `SparseTensor` now stored in the -// `SparseTensorsMap`. -func AddSparseToTensorsMap(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output, optional ...AddSparseToTensorsMapAttr) (sparse_handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AddSparseToTensorsMap", - Input: []tf.Input{ - sparse_indices, sparse_values, sparse_shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// CudnnRNNV2Attr is an optional argument to CudnnRNNV2. -type CudnnRNNV2Attr func(optionalAttr) - -// CudnnRNNV2RnnMode sets the optional rnn_mode attribute to value. -// If not specified, defaults to "lstm" -func CudnnRNNV2RnnMode(value string) CudnnRNNV2Attr { - return func(m optionalAttr) { - m["rnn_mode"] = value - } -} - -// CudnnRNNV2InputMode sets the optional input_mode attribute to value. -// If not specified, defaults to "linear_input" -func CudnnRNNV2InputMode(value string) CudnnRNNV2Attr { - return func(m optionalAttr) { - m["input_mode"] = value - } -} - -// CudnnRNNV2Direction sets the optional direction attribute to value. -// If not specified, defaults to "unidirectional" -func CudnnRNNV2Direction(value string) CudnnRNNV2Attr { - return func(m optionalAttr) { - m["direction"] = value - } -} - -// CudnnRNNV2Dropout sets the optional dropout attribute to value. -// If not specified, defaults to 0 -func CudnnRNNV2Dropout(value float32) CudnnRNNV2Attr { - return func(m optionalAttr) { - m["dropout"] = value - } -} - -// CudnnRNNV2Seed sets the optional seed attribute to value. -// If not specified, defaults to 0 -func CudnnRNNV2Seed(value int64) CudnnRNNV2Attr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// CudnnRNNV2Seed2 sets the optional seed2 attribute to value. -// If not specified, defaults to 0 -func CudnnRNNV2Seed2(value int64) CudnnRNNV2Attr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// CudnnRNNV2IsTraining sets the optional is_training attribute to value. -// If not specified, defaults to true -func CudnnRNNV2IsTraining(value bool) CudnnRNNV2Attr { - return func(m optionalAttr) { - m["is_training"] = value - } -} - -// A RNN backed by cuDNN. -// -// Computes the RNN from the input and initial states, with respect to the params -// buffer. Produces one extra output "host_reserved" than CudnnRNN. -// -// rnn_mode: Indicates the type of the RNN model. -// input_mode: Indicates whether there is a linear projection between the input and -// the actual computation before the first layer. 'skip_input' is only allowed -// when input_size == num_units; 'auto_select' implies 'skip_input' when -// input_size == num_units; otherwise, it implies 'linear_input'. -// direction: Indicates whether a bidirectional model will be used. Should be -// "unidirectional" or "bidirectional". -// dropout: Dropout probability. When set to 0., dropout is disabled. -// seed: The 1st part of a seed to initialize dropout. -// seed2: The 2nd part of a seed to initialize dropout. -// input: A 3-D tensor with the shape of [seq_length, batch_size, input_size]. -// input_h: A 3-D tensor with the shape of [num_layer * dir, batch_size, -// num_units]. -// input_c: For LSTM, a 3-D tensor with the shape of -// [num_layer * dir, batch, num_units]. For other models, it is ignored. -// params: A 1-D tensor that contains the weights and biases in an opaque layout. -// The size must be created through CudnnRNNParamsSize, and initialized -// separately. Note that they might not be compatible across different -// generations. So it is a good idea to save and restore -// output: A 3-D tensor with the shape of [seq_length, batch_size, -// dir * num_units]. -// output_h: The same shape has input_h. -// output_c: The same shape as input_c for LSTM. An empty tensor for other models. -// is_training: Indicates whether this operation is used for inferenece or -// training. -// reserve_space: An opaque tensor that can be used in backprop calculation. It -// is only produced if is_training is true. -// host_reserved: An opaque tensor that can be used in backprop calculation. It is -// only produced if is_training is true. It is output on host memory rather than -// device memory. -func CudnnRNNV2(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, params tf.Output, optional ...CudnnRNNV2Attr) (output tf.Output, output_h tf.Output, output_c tf.Output, reserve_space tf.Output, host_reserved tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "CudnnRNNV2", - Input: []tf.Input{ - input, input_h, input_c, params, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) -} - -// ModelDatasetAttr is an optional argument to ModelDataset. -type ModelDatasetAttr func(optionalAttr) - -// ModelDatasetCpuBudget sets the optional cpu_budget attribute to value. -// If not specified, defaults to 0 -func ModelDatasetCpuBudget(value int64) ModelDatasetAttr { - return func(m optionalAttr) { - m["cpu_budget"] = value - } -} - -// Identity transformation that models performance. -// -// Identity transformation that models performance. -// -// Arguments: -// input_dataset: A variant tensor representing the input dataset. -// -// -func ModelDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape, optional ...ModelDatasetAttr) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ModelDataset", - Input: []tf.Input{ - input_dataset, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// BiasAddGradAttr is an optional argument to BiasAddGrad. -type BiasAddGradAttr func(optionalAttr) - -// BiasAddGradDataFormat sets the optional data_format attribute to value. -// -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the bias tensor will be added to the last dimension -// of the value tensor. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// The tensor will be added to "in_channels", the third-to-the-last -// dimension. -// If not specified, defaults to "NHWC" -func BiasAddGradDataFormat(value string) BiasAddGradAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// The backward operation for "BiasAdd" on the "bias" tensor. -// -// It accumulates all the values from out_backprop into the feature dimension. -// For NHWC data format, the feature dimension is the last. For NCHW data format, -// the feature dimension is the third-to-last. -// -// Arguments: -// out_backprop: Any number of dimensions. -// -// Returns 1-D with size the feature dimension of `out_backprop`. -func BiasAddGrad(scope *Scope, out_backprop tf.Output, optional ...BiasAddGradAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "BiasAddGrad", - Input: []tf.Input{ - out_backprop, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Provides the time since epoch in seconds. -// -// Returns the timestamp as a `float64` for seconds since the Unix epoch. -// -// Note: the timestamp is computed when the op is executed, not when it is added -// to the graph. -func Timestamp(scope *Scope) (ts tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Timestamp", - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Advance the counter of a counter-based RNG. -// -// The state of the RNG after -// `rng_skip(n)` will be the same as that after `stateful_uniform([n])` -// (or any other distribution). The actual increment added to the -// counter is an unspecified implementation detail. -// -// Arguments: -// resource: The handle of the resource variable that stores the state of the RNG. -// algorithm: The RNG algorithm. -// delta: The amount of advancement. -// -// Returns the created operation. -func RngSkip(scope *Scope, resource tf.Output, algorithm tf.Output, delta tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RngSkip", - Input: []tf.Input{ - resource, algorithm, delta, - }, - } - return scope.AddOperation(opspec) -} - -// The gradient of SparseFillEmptyRows. -// -// Takes vectors reverse_index_map, shaped `[N]`, and grad_values, -// shaped `[N_full]`, where `N_full >= N` and copies data into either -// `d_values` or `d_default_value`. Here `d_values` is shaped `[N]` and -// `d_default_value` is a scalar. -// -// d_values[j] = grad_values[reverse_index_map[j]] -// d_default_value = sum_{k : 0 .. N_full - 1} ( -// grad_values[k] * 1{k not in reverse_index_map}) -// -// Arguments: -// reverse_index_map: 1-D. The reverse index map from SparseFillEmptyRows. -// grad_values: 1-D. The gradients from backprop. -// -// Returns 1-D. The backprop into values.0-D. The backprop into default_value. -func SparseFillEmptyRowsGrad(scope *Scope, reverse_index_map tf.Output, grad_values tf.Output) (d_values tf.Output, d_default_value tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseFillEmptyRowsGrad", - Input: []tf.Input{ - reverse_index_map, grad_values, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// TakeManySparseFromTensorsMapAttr is an optional argument to TakeManySparseFromTensorsMap. -type TakeManySparseFromTensorsMapAttr func(optionalAttr) - -// TakeManySparseFromTensorsMapContainer sets the optional container attribute to value. -// -// value: The container name for the `SparseTensorsMap` read by this op. -// If not specified, defaults to "" -func TakeManySparseFromTensorsMapContainer(value string) TakeManySparseFromTensorsMapAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// TakeManySparseFromTensorsMapSharedName sets the optional shared_name attribute to value. -// -// value: The shared name for the `SparseTensorsMap` read by this op. -// It should not be blank; rather the `shared_name` or unique Operation name -// of the Op that created the original `SparseTensorsMap` should be used. -// If not specified, defaults to "" -func TakeManySparseFromTensorsMapSharedName(value string) TakeManySparseFromTensorsMapAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Read `SparseTensors` from a `SparseTensorsMap` and concatenate them. -// -// The input `sparse_handles` must be an `int64` matrix of shape `[N, 1]` where -// `N` is the minibatch size and the rows correspond to the output handles of -// `AddSparseToTensorsMap` or `AddManySparseToTensorsMap`. The ranks of the -// original `SparseTensor` objects that went into the given input ops must all -// match. When the final `SparseTensor` is created, it has rank one -// higher than the ranks of the incoming `SparseTensor` objects -// (they have been concatenated along a new row dimension on the left). -// -// The output `SparseTensor` object's shape values for all dimensions but the -// first are the max across the input `SparseTensor` objects' shape values -// for the corresponding dimensions. Its first shape value is `N`, the minibatch -// size. -// -// The input `SparseTensor` objects' indices are assumed ordered in -// standard lexicographic order. If this is not the case, after this -// step run `SparseReorder` to restore index ordering. -// -// For example, if the handles represent an input, which is a `[2, 3]` matrix -// representing two original `SparseTensor` objects: -// -// ``` -// index = [ 0] -// [10] -// [20] -// values = [1, 2, 3] -// shape = [50] -// ``` -// -// and -// -// ``` -// index = [ 2] -// [10] -// values = [4, 5] -// shape = [30] -// ``` -// -// then the final `SparseTensor` will be: -// -// ``` -// index = [0 0] -// [0 10] -// [0 20] -// [1 2] -// [1 10] -// values = [1, 2, 3, 4, 5] -// shape = [2 50] -// ``` -// -// Arguments: -// sparse_handles: 1-D, The `N` serialized `SparseTensor` objects. -// Shape: `[N]`. -// dtype: The `dtype` of the `SparseTensor` objects stored in the -// `SparseTensorsMap`. -// -// Returns 2-D. The `indices` of the minibatch `SparseTensor`.1-D. The `values` of the minibatch `SparseTensor`.1-D. The `shape` of the minibatch `SparseTensor`. -func TakeManySparseFromTensorsMap(scope *Scope, sparse_handles tf.Output, dtype tf.DataType, optional ...TakeManySparseFromTensorsMapAttr) (sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "TakeManySparseFromTensorsMap", - Input: []tf.Input{ - sparse_handles, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// AddManySparseToTensorsMapAttr is an optional argument to AddManySparseToTensorsMap. -type AddManySparseToTensorsMapAttr func(optionalAttr) - -// AddManySparseToTensorsMapContainer sets the optional container attribute to value. -// -// value: The container name for the `SparseTensorsMap` created by this op. -// If not specified, defaults to "" -func AddManySparseToTensorsMapContainer(value string) AddManySparseToTensorsMapAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// AddManySparseToTensorsMapSharedName sets the optional shared_name attribute to value. -// -// value: The shared name for the `SparseTensorsMap` created by this op. -// If blank, the new Operation's unique name is used. -// If not specified, defaults to "" -func AddManySparseToTensorsMapSharedName(value string) AddManySparseToTensorsMapAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles. -// -// A `SparseTensor` of rank `R` is represented by three tensors: `sparse_indices`, -// `sparse_values`, and `sparse_shape`, where -// -// ```sparse_indices.shape[1] == sparse_shape.shape[0] == R``` -// -// An `N`-minibatch of `SparseTensor` objects is represented as a `SparseTensor` -// having a first `sparse_indices` column taking values between `[0, N)`, where -// the minibatch size `N == sparse_shape[0]`. -// -// The input `SparseTensor` must have rank `R` greater than 1, and the first -// dimension is treated as the minibatch dimension. Elements of the `SparseTensor` -// must be sorted in increasing order of this first dimension. The stored -// `SparseTensor` objects pointed to by each row of the output `sparse_handles` -// will have rank `R-1`. -// -// The `SparseTensor` values can then be read out as part of a minibatch by passing -// the given keys as vector elements to `TakeManySparseFromTensorsMap`. To ensure -// the correct `SparseTensorsMap` is accessed, ensure that the same -// `container` and `shared_name` are passed to that Op. If no `shared_name` -// is provided here, instead use the *name* of the Operation created by calling -// `AddManySparseToTensorsMap` as the `shared_name` passed to -// `TakeManySparseFromTensorsMap`. Ensure the Operations are colocated. -// -// Arguments: -// sparse_indices: 2-D. The `indices` of the minibatch `SparseTensor`. -// `sparse_indices[:, 0]` must be ordered values in `[0, N)`. -// sparse_values: 1-D. The `values` of the minibatch `SparseTensor`. -// sparse_shape: 1-D. The `shape` of the minibatch `SparseTensor`. -// The minibatch size `N == sparse_shape[0]`. -// -// Returns 1-D. The handles of the `SparseTensor` now stored in the -// `SparseTensorsMap`. Shape: `[N]`. -func AddManySparseToTensorsMap(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output, optional ...AddManySparseToTensorsMapAttr) (sparse_handles tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AddManySparseToTensorsMap", - Input: []tf.Input{ - sparse_indices, sparse_values, sparse_shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RandomCropAttr is an optional argument to RandomCrop. -type RandomCropAttr func(optionalAttr) - -// RandomCropSeed sets the optional seed attribute to value. -// -// value: If either seed or seed2 are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func RandomCropSeed(value int64) RandomCropAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// RandomCropSeed2 sets the optional seed2 attribute to value. -// -// value: An second seed to avoid seed collision. -// If not specified, defaults to 0 -func RandomCropSeed2(value int64) RandomCropAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Randomly crop `image`. -// -// DEPRECATED at GraphDef version 8: Random crop is now pure Python -// -// `size` is a 1-D int64 tensor with 2 elements representing the crop height and -// width. The values must be non negative. -// -// This Op picks a random location in `image` and crops a `height` by `width` -// rectangle from that location. The random location is picked so the cropped -// area will fit inside the original image. -// -// Arguments: -// image: 3-D of shape `[height, width, channels]`. -// size: 1-D of length 2 containing: `crop_height`, `crop_width`.. -// -// Returns 3-D of shape `[crop_height, crop_width, channels].` -func RandomCrop(scope *Scope, image tf.Output, size tf.Output, optional ...RandomCropAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RandomCrop", - Input: []tf.Input{ - image, size, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the sum along segments of a tensor. -// -// Read -// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) -// for an explanation of segments. -// -// Computes a tensor such that -// \\(output[i] = \sum_{j...} data[j...]\\) where the sum is over tuples `j...` such -// that `segment_ids[j...] == i`. Unlike `SegmentSum`, `segment_ids` -// need not be sorted and need not cover all values in the full -// range of valid values. -// -// If the sum is empty for a given segment ID `i`, `output[i] = 0`. -// If the given segment ID `i` is negative, the value is dropped and will not be -// added to the sum of the segment. -// -// `num_segments` should equal the number of distinct segment IDs. -// -//
-// -//
-// -// ``` python -// c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]]) -// tf.unsorted_segment_sum(c, tf.constant([0, 1, 0]), num_segments=2) -// # ==> [[ 5, 5, 5, 5], -// # [5, 6, 7, 8]] -// ``` -// -// -// Arguments: -// -// segment_ids: A tensor whose shape is a prefix of `data.shape`. -// -// -// Returns Has same shape as data, except for the first `segment_ids.rank` -// dimensions, which are replaced with a single dimension which has size -// `num_segments`. -func UnsortedSegmentSum(scope *Scope, data tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "UnsortedSegmentSum", - Input: []tf.Input{ - data, segment_ids, num_segments, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// SparseReduceMaxSparseAttr is an optional argument to SparseReduceMaxSparse. -type SparseReduceMaxSparseAttr func(optionalAttr) - -// SparseReduceMaxSparseKeepDims sets the optional keep_dims attribute to value. -// -// value: If true, retain reduced dimensions with length 1. -// If not specified, defaults to false -func SparseReduceMaxSparseKeepDims(value bool) SparseReduceMaxSparseAttr { - return func(m optionalAttr) { - m["keep_dims"] = value - } -} - -// Computes the max of elements across dimensions of a SparseTensor. -// -// This Op takes a SparseTensor and is the sparse counterpart to -// `tf.reduce_max()`. In contrast to SparseReduceMax, this Op returns a -// SparseTensor. -// -// Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless -// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in -// `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained -// with length 1. -// -// If `reduction_axes` has no entries, all dimensions are reduced, and a tensor -// with a single element is returned. Additionally, the axes can be negative, -// which are interpreted according to the indexing rules in Python. -// -// Arguments: -// input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a -// SparseTensor, possibly not in canonical ordering. -// input_values: 1-D. `N` non-empty values corresponding to `input_indices`. -// input_shape: 1-D. Shape of the input SparseTensor. -// reduction_axes: 1-D. Length-`K` vector containing the reduction axes. -func SparseReduceMaxSparse(scope *Scope, input_indices tf.Output, input_values tf.Output, input_shape tf.Output, reduction_axes tf.Output, optional ...SparseReduceMaxSparseAttr) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SparseReduceMaxSparse", - Input: []tf.Input{ - input_indices, input_values, input_shape, reduction_axes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Component-wise divides a SparseTensor by a dense Tensor. -// -// *Limitation*: this Op only broadcasts the dense side to the sparse side, but not -// the other direction. -// -// Arguments: -// sp_indices: 2-D. `N x R` matrix with the indices of non-empty values in a -// SparseTensor, possibly not in canonical ordering. -// sp_values: 1-D. `N` non-empty values corresponding to `sp_indices`. -// sp_shape: 1-D. Shape of the input SparseTensor. -// dense: `R`-D. The dense Tensor operand. -// -// Returns 1-D. The `N` values that are operated on. -func SparseDenseCwiseDiv(scope *Scope, sp_indices tf.Output, sp_values tf.Output, sp_shape tf.Output, dense tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseDenseCwiseDiv", - Input: []tf.Input{ - sp_indices, sp_values, sp_shape, dense, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// SparseReduceSumSparseAttr is an optional argument to SparseReduceSumSparse. -type SparseReduceSumSparseAttr func(optionalAttr) - -// SparseReduceSumSparseKeepDims sets the optional keep_dims attribute to value. -// -// value: If true, retain reduced dimensions with length 1. -// If not specified, defaults to false -func SparseReduceSumSparseKeepDims(value bool) SparseReduceSumSparseAttr { - return func(m optionalAttr) { - m["keep_dims"] = value - } -} - -// Computes the sum of elements across dimensions of a SparseTensor. -// -// This Op takes a SparseTensor and is the sparse counterpart to -// `tf.reduce_sum()`. In contrast to SparseReduceSum, this Op returns a -// SparseTensor. -// -// Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless -// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in -// `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained -// with length 1. -// -// If `reduction_axes` has no entries, all dimensions are reduced, and a tensor -// with a single element is returned. Additionally, the axes can be negative, -// which are interpreted according to the indexing rules in Python. -// -// Arguments: -// input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a -// SparseTensor, possibly not in canonical ordering. -// input_values: 1-D. `N` non-empty values corresponding to `input_indices`. -// input_shape: 1-D. Shape of the input SparseTensor. -// reduction_axes: 1-D. Length-`K` vector containing the reduction axes. -func SparseReduceSumSparse(scope *Scope, input_indices tf.Output, input_values tf.Output, input_shape tf.Output, reduction_axes tf.Output, optional ...SparseReduceSumSparseAttr) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SparseReduceSumSparse", - Input: []tf.Input{ - input_indices, input_values, input_shape, reduction_axes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// ResourceSparseApplyProximalAdagradAttr is an optional argument to ResourceSparseApplyProximalAdagrad. -type ResourceSparseApplyProximalAdagradAttr func(optionalAttr) - -// ResourceSparseApplyProximalAdagradUseLocking sets the optional use_locking attribute to value. -// -// value: If True, updating of the var and accum tensors will be protected by -// a lock; otherwise the behavior is undefined, but may exhibit less contention. -// If not specified, defaults to false -func ResourceSparseApplyProximalAdagradUseLocking(value bool) ResourceSparseApplyProximalAdagradAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. -// -// That is for rows we have grad for, we update var and accum as follows: -// accum += grad * grad -// prox_v = var -// prox_v -= lr * grad * (1 / sqrt(accum)) -// var = sign(prox_v)/(1+lr*l2) * max{|prox_v|-lr*l1,0} -// -// Arguments: -// var_: Should be from a Variable(). -// accum: Should be from a Variable(). -// lr: Learning rate. Must be a scalar. -// l1: L1 regularization. Must be a scalar. -// l2: L2 regularization. Must be a scalar. -// grad: The gradient. -// indices: A vector of indices into the first dimension of var and accum. -// -// Returns the created operation. -func ResourceSparseApplyProximalAdagrad(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyProximalAdagradAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceSparseApplyProximalAdagrad", - Input: []tf.Input{ - var_, accum, lr, l1, l2, grad, indices, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Creates a TensorList by indexing into a Tensor. -// -// Each member of the TensorList corresponds to one row of the input tensor, -// specified by the given index (see `tf.gather`). -// -// tensor: The input tensor. -// indices: The indices used to index into the list. -// element_shape: The shape of the elements in the list (can be less specified than -// the shape of the tensor). -// output_handle: The TensorList. -func TensorListScatter(scope *Scope, tensor tf.Output, indices tf.Output, element_shape tf.Output) (output_handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorListScatter", - Input: []tf.Input{ - tensor, indices, element_shape, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that skips `count` elements from the `input_dataset`. -// -// Arguments: -// -// count: A scalar representing the number of elements from the `input_dataset` -// that should be skipped. If count is -1, skips everything. -// -// -func SkipDataset(scope *Scope, input_dataset tf.Output, count tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "SkipDataset", - Input: []tf.Input{ - input_dataset, count, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// AvgPool3DGradAttr is an optional argument to AvgPool3DGrad. -type AvgPool3DGradAttr func(optionalAttr) - -// AvgPool3DGradDataFormat sets the optional data_format attribute to value. -// -// value: The data format of the input and output data. With the -// default format "NDHWC", the data is stored in the order of: -// [batch, in_depth, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCDHW", the data storage order is: -// [batch, in_channels, in_depth, in_height, in_width]. -// If not specified, defaults to "NDHWC" -func AvgPool3DGradDataFormat(value string) AvgPool3DGradAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Computes gradients of average pooling function. -// -// Arguments: -// orig_input_shape: The original input dimensions. -// grad: Output backprop of shape `[batch, depth, rows, cols, channels]`. -// ksize: 1-D tensor of length 5. The size of the window for each dimension of -// the input tensor. Must have `ksize[0] = ksize[4] = 1`. -// strides: 1-D tensor of length 5. The stride of the sliding window for each -// dimension of `input`. Must have `strides[0] = strides[4] = 1`. -// padding: The type of padding algorithm to use. -// -// Returns The backprop for input. -func AvgPool3DGrad(scope *Scope, orig_input_shape tf.Output, grad tf.Output, ksize []int64, strides []int64, padding string, optional ...AvgPool3DGradAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AvgPool3DGrad", - Input: []tf.Input{ - orig_input_shape, grad, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// OrderedMapSizeAttr is an optional argument to OrderedMapSize. -type OrderedMapSizeAttr func(optionalAttr) - -// OrderedMapSizeCapacity sets the optional capacity attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func OrderedMapSizeCapacity(value int64) OrderedMapSizeAttr { - return func(m optionalAttr) { - m["capacity"] = value - } -} - -// OrderedMapSizeMemoryLimit sets the optional memory_limit attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func OrderedMapSizeMemoryLimit(value int64) OrderedMapSizeAttr { - return func(m optionalAttr) { - m["memory_limit"] = value - } -} - -// OrderedMapSizeContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func OrderedMapSizeContainer(value string) OrderedMapSizeAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// OrderedMapSizeSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func OrderedMapSizeSharedName(value string) OrderedMapSizeAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Op returns the number of elements in the underlying container. -func OrderedMapSize(scope *Scope, dtypes []tf.DataType, optional ...OrderedMapSizeAttr) (size tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtypes": dtypes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "OrderedMapSize", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResizeBicubicAttr is an optional argument to ResizeBicubic. -type ResizeBicubicAttr func(optionalAttr) - -// ResizeBicubicAlignCorners sets the optional align_corners attribute to value. -// -// value: If true, the centers of the 4 corner pixels of the input and output tensors are -// aligned, preserving the values at the corner pixels. Defaults to false. -// If not specified, defaults to false -func ResizeBicubicAlignCorners(value bool) ResizeBicubicAttr { - return func(m optionalAttr) { - m["align_corners"] = value - } -} - -// ResizeBicubicHalfPixelCenters sets the optional half_pixel_centers attribute to value. -// If not specified, defaults to false -func ResizeBicubicHalfPixelCenters(value bool) ResizeBicubicAttr { - return func(m optionalAttr) { - m["half_pixel_centers"] = value - } -} - -// Resize `images` to `size` using bicubic interpolation. -// -// Input images can be of different types but output images are always float. -// -// Arguments: -// images: 4-D with shape `[batch, height, width, channels]`. -// size: = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The -// new size for the images. -// -// Returns 4-D with shape -// `[batch, new_height, new_width, channels]`. -func ResizeBicubic(scope *Scope, images tf.Output, size tf.Output, optional ...ResizeBicubicAttr) (resized_images tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResizeBicubic", - Input: []tf.Input{ - images, size, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`. -// -// This Op does not require `a_indices` be sorted in standard lexicographic order. -// -// Arguments: -// a_indices: 2-D. The `indices` of the `SparseTensor`, with shape `[nnz, ndims]`. -// a_values: 1-D. The `values` of the `SparseTensor`, with shape `[nnz]`. -// a_shape: 1-D. The `shape` of the `SparseTensor`, with shape `[ndims]`. -// b: `ndims`-D Tensor. With shape `a_shape`. -func SparseTensorDenseAdd(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseTensorDenseAdd", - Input: []tf.Input{ - a_indices, a_values, a_shape, b, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Reshapes a SparseTensor to represent values in a new dense shape. -// -// This operation has the same semantics as reshape on the represented dense -// tensor. The `input_indices` are recomputed based on the requested `new_shape`. -// -// If one component of `new_shape` is the special value -1, the size of that -// dimension is computed so that the total dense size remains constant. At -// most one component of `new_shape` can be -1. The number of dense elements -// implied by `new_shape` must be the same as the number of dense elements -// originally implied by `input_shape`. -// -// Reshaping does not affect the order of values in the SparseTensor. -// -// If the input tensor has rank `R_in` and `N` non-empty values, and `new_shape` -// has length `R_out`, then `input_indices` has shape `[N, R_in]`, -// `input_shape` has length `R_in`, `output_indices` has shape `[N, R_out]`, and -// `output_shape` has length `R_out`. -// -// Arguments: -// input_indices: 2-D. `N x R_in` matrix with the indices of non-empty values in a -// SparseTensor. -// input_shape: 1-D. `R_in` vector with the input SparseTensor's dense shape. -// new_shape: 1-D. `R_out` vector with the requested new dense shape. -// -// Returns 2-D. `N x R_out` matrix with the updated indices of non-empty -// values in the output SparseTensor.1-D. `R_out` vector with the full dense shape of the output -// SparseTensor. This is the same as `new_shape` but with any -1 dimensions -// filled in. -func SparseReshape(scope *Scope, input_indices tf.Output, input_shape tf.Output, new_shape tf.Output) (output_indices tf.Output, output_shape tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseReshape", - Input: []tf.Input{ - input_indices, input_shape, new_shape, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// The gradient operator for the SparseSlice op. -// -// This op takes in the upstream gradient w.r.t. non-empty values of -// the sliced `SparseTensor`, and outputs the gradients w.r.t. -// the non-empty values of input `SparseTensor`. -// -// Arguments: -// backprop_val_grad: 1-D. The gradient with respect to -// the non-empty values of the sliced `SparseTensor`. -// input_indices: 2-D. The `indices` of the input `SparseTensor`. -// input_start: 1-D. tensor represents the start of the slice. -// output_indices: 2-D. The `indices` of the sliced `SparseTensor`. -// -// Returns 1-D. The gradient with respect to the non-empty values of input `SparseTensor`. -func SparseSliceGrad(scope *Scope, backprop_val_grad tf.Output, input_indices tf.Output, input_start tf.Output, output_indices tf.Output) (val_grad tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSliceGrad", - Input: []tf.Input{ - backprop_val_grad, input_indices, input_start, output_indices, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// StatelessRandomNormalAttr is an optional argument to StatelessRandomNormal. -type StatelessRandomNormalAttr func(optionalAttr) - -// StatelessRandomNormalDtype sets the optional dtype attribute to value. -// -// value: The type of the output. -// If not specified, defaults to DT_FLOAT -func StatelessRandomNormalDtype(value tf.DataType) StatelessRandomNormalAttr { - return func(m optionalAttr) { - m["dtype"] = value - } -} - -// Outputs deterministic pseudorandom values from a normal distribution. -// -// The generated values will have mean 0 and standard deviation 1. -// -// The outputs are a deterministic function of `shape` and `seed`. -// -// Arguments: -// shape: The shape of the output tensor. -// seed: 2 seeds (shape [2]). -// -// Returns Random values with specified shape. -func StatelessRandomNormal(scope *Scope, shape tf.Output, seed tf.Output, optional ...StatelessRandomNormalAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StatelessRandomNormal", - Input: []tf.Input{ - shape, seed, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Says whether the targets are in the top `K` predictions. -// -// This outputs a `batch_size` bool array, an entry `out[i]` is `true` if the -// prediction for the target class is among the top `k` predictions among -// all predictions for example `i`. Note that the behavior of `InTopK` differs -// from the `TopK` op in its handling of ties; if multiple classes have the -// same prediction value and straddle the top-`k` boundary, all of those -// classes are considered to be in the top `k`. -// -// More formally, let -// -// \\(predictions_i\\) be the predictions for all classes for example `i`, -// \\(targets_i\\) be the target class for example `i`, -// \\(out_i\\) be the output for example `i`, -// -// $$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$ -// -// Arguments: -// predictions: A `batch_size` x `classes` tensor. -// targets: A `batch_size` vector of class ids. -// k: Number of top elements to look at for computing precision. -// -// Returns Computed Precision at `k` as a `bool Tensor`. -func InTopK(scope *Scope, predictions tf.Output, targets tf.Output, k int64) (precision tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"k": k} - opspec := tf.OpSpec{ - Type: "InTopK", - Input: []tf.Input{ - predictions, targets, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// 2D real-valued fast Fourier transform. -// -// Computes the 2-dimensional discrete Fourier transform of a real-valued signal -// over the inner-most 2 dimensions of `input`. -// -// Since the DFT of a real signal is Hermitian-symmetric, `RFFT2D` only returns the -// `fft_length / 2 + 1` unique components of the FFT for the inner-most dimension -// of `output`: the zero-frequency term, followed by the `fft_length / 2` -// positive-frequency terms. -// -// Along each axis `RFFT2D` is computed on, if `fft_length` is smaller than the -// corresponding dimension of `input`, the dimension is cropped. If it is larger, -// the dimension is padded with zeros. -// -// Arguments: -// input: A float32 tensor. -// fft_length: An int32 tensor of shape [2]. The FFT length for each dimension. -// -// Returns A complex64 tensor of the same rank as `input`. The inner-most 2 -// dimensions of `input` are replaced with their 2D Fourier transform. The -// inner-most dimension contains `fft_length / 2 + 1` unique frequency -// components. -// -// @compatibility(numpy) -// Equivalent to np.fft.rfft2 -// @end_compatibility -func RFFT2D(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RFFT2D", - Input: []tf.Input{ - input, fft_length, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Split a `SparseTensor` into `num_split` tensors along one dimension. -// -// If the `shape[split_dim]` is not an integer multiple of `num_split`. Slices -// `[0 : shape[split_dim] % num_split]` gets one extra dimension. -// For example, if `split_dim = 1` and `num_split = 2` and the input is -// -// input_tensor = shape = [2, 7] -// [ a d e ] -// [b c ] -// -// Graphically the output tensors are: -// -// output_tensor[0] = shape = [2, 4] -// [ a ] -// [b c ] -// -// output_tensor[1] = shape = [2, 3] -// [ d e ] -// [ ] -// -// Arguments: -// split_dim: 0-D. The dimension along which to split. Must be in the range -// `[0, rank(shape))`. -// indices: 2-D tensor represents the indices of the sparse tensor. -// values: 1-D tensor represents the values of the sparse tensor. -// shape: 1-D. tensor represents the shape of the sparse tensor. -// output indices: A list of 1-D tensors represents the indices of the output -// sparse tensors. -// num_split: The number of ways to split. -// -// Returns A list of 1-D tensors represents the values of the output sparse -// tensors.A list of 1-D tensors represents the shape of the output sparse -// tensors. -func SparseSplit(scope *Scope, split_dim tf.Output, indices tf.Output, values tf.Output, shape tf.Output, num_split int64) (output_indices []tf.Output, output_values []tf.Output, output_shape []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_split": num_split} - opspec := tf.OpSpec{ - Type: "SparseSplit", - Input: []tf.Input{ - split_dim, indices, values, shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if output_indices, idx, err = makeOutputList(op, idx, "output_indices"); err != nil { - scope.UpdateErr("SparseSplit", err) - return - } - if output_values, idx, err = makeOutputList(op, idx, "output_values"); err != nil { - scope.UpdateErr("SparseSplit", err) - return - } - if output_shape, idx, err = makeOutputList(op, idx, "output_shape"); err != nil { - scope.UpdateErr("SparseSplit", err) - return - } - return output_indices, output_values, output_shape -} - -// DataFormatVecPermuteAttr is an optional argument to DataFormatVecPermute. -type DataFormatVecPermuteAttr func(optionalAttr) - -// DataFormatVecPermuteSrcFormat sets the optional src_format attribute to value. -// -// value: source data format. -// If not specified, defaults to "NHWC" -func DataFormatVecPermuteSrcFormat(value string) DataFormatVecPermuteAttr { - return func(m optionalAttr) { - m["src_format"] = value - } -} - -// DataFormatVecPermuteDstFormat sets the optional dst_format attribute to value. -// -// value: destination data format. -// If not specified, defaults to "NCHW" -func DataFormatVecPermuteDstFormat(value string) DataFormatVecPermuteAttr { - return func(m optionalAttr) { - m["dst_format"] = value - } -} - -// Returns the permuted vector/tensor in the destination data format given the -// -// one in the source data format. -// -// Arguments: -// x: Vector of size 4 or Tensor of shape (4, 2) in source data format. -// -// Returns Vector of size 4 or Tensor of shape (4, 2) in destination data format. -func DataFormatVecPermute(scope *Scope, x tf.Output, optional ...DataFormatVecPermuteAttr) (y tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "DataFormatVecPermute", - Input: []tf.Input{ - x, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RandomPoissonAttr is an optional argument to RandomPoisson. -type RandomPoissonAttr func(optionalAttr) - -// RandomPoissonSeed sets the optional seed attribute to value. -// If not specified, defaults to 0 -func RandomPoissonSeed(value int64) RandomPoissonAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// RandomPoissonSeed2 sets the optional seed2 attribute to value. -// If not specified, defaults to 0 -func RandomPoissonSeed2(value int64) RandomPoissonAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Use RandomPoissonV2 instead. -// -// DEPRECATED at GraphDef version 25: Replaced by RandomPoissonV2 -func RandomPoisson(scope *Scope, shape tf.Output, rate tf.Output, optional ...RandomPoissonAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RandomPoisson", - Input: []tf.Input{ - shape, rate, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Makes a copy of `x`. -// -// Arguments: -// x: The source tensor of type `T`. -// -// Returns y: A `Tensor` of type `T`. A copy of `x`. Guaranteed that `y` -// is not an alias of `x`. -func DeepCopy(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "DeepCopy", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Produces the average pool of the input tensor for quantized types. -// -// Arguments: -// input: 4-D with shape `[batch, height, width, channels]`. -// min_input: The float value that the lowest quantized input value represents. -// max_input: The float value that the highest quantized input value represents. -// ksize: The size of the window for each dimension of the input tensor. -// The length must be 4 to match the number of dimensions of the input. -// strides: The stride of the sliding window for each dimension of the input -// tensor. The length must be 4 to match the number of dimensions of the input. -// padding: The type of padding algorithm to use. -// -// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. -func QuantizedAvgPool(scope *Scope, input tf.Output, min_input tf.Output, max_input tf.Output, ksize []int64, strides []int64, padding string) (output tf.Output, min_output tf.Output, max_output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - opspec := tf.OpSpec{ - Type: "QuantizedAvgPool", - Input: []tf.Input{ - input, min_input, max_input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// The gradient operator for the SparseAdd op. -// -// The SparseAdd op calculates A + B, where A, B, and the sum are all represented -// as `SparseTensor` objects. This op takes in the upstream gradient w.r.t. -// non-empty values of the sum, and outputs the gradients w.r.t. the non-empty -// values of A and B. -// -// Arguments: -// backprop_val_grad: 1-D with shape `[nnz(sum)]`. The gradient with respect to -// the non-empty values of the sum. -// a_indices: 2-D. The `indices` of the `SparseTensor` A, size `[nnz(A), ndims]`. -// b_indices: 2-D. The `indices` of the `SparseTensor` B, size `[nnz(B), ndims]`. -// sum_indices: 2-D. The `indices` of the sum `SparseTensor`, size -// `[nnz(sum), ndims]`. -// -// Returns 1-D with shape `[nnz(A)]`. The gradient with respect to the -// non-empty values of A.1-D with shape `[nnz(B)]`. The gradient with respect to the -// non-empty values of B. -func SparseAddGrad(scope *Scope, backprop_val_grad tf.Output, a_indices tf.Output, b_indices tf.Output, sum_indices tf.Output) (a_val_grad tf.Output, b_val_grad tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseAddGrad", - Input: []tf.Input{ - backprop_val_grad, a_indices, b_indices, sum_indices, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// SparseToDenseAttr is an optional argument to SparseToDense. -type SparseToDenseAttr func(optionalAttr) - -// SparseToDenseValidateIndices sets the optional validate_indices attribute to value. -// -// value: If true, indices are checked to make sure they are sorted in -// lexicographic order and that there are no repeats. -// If not specified, defaults to true -func SparseToDenseValidateIndices(value bool) SparseToDenseAttr { - return func(m optionalAttr) { - m["validate_indices"] = value - } -} - -// Converts a sparse representation into a dense tensor. -// -// Builds an array `dense` with shape `output_shape` such that -// -// ``` -// # If sparse_indices is scalar -// dense[i] = (i == sparse_indices ? sparse_values : default_value) -// -// # If sparse_indices is a vector, then for each i -// dense[sparse_indices[i]] = sparse_values[i] -// -// # If sparse_indices is an n by d matrix, then for each i in [0, n) -// dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i] -// ``` -// -// All other values in `dense` are set to `default_value`. If `sparse_values` is a -// scalar, all sparse indices are set to this single value. -// -// Indices should be sorted in lexicographic order, and indices must not -// contain any repeats. If `validate_indices` is true, these properties -// are checked during execution. -// -// Arguments: -// sparse_indices: 0-D, 1-D, or 2-D. `sparse_indices[i]` contains the complete -// index where `sparse_values[i]` will be placed. -// output_shape: 1-D. Shape of the dense output tensor. -// sparse_values: 1-D. Values corresponding to each row of `sparse_indices`, -// or a scalar value to be used for all sparse indices. -// default_value: Scalar value to set for indices not specified in -// `sparse_indices`. -// -// Returns Dense output tensor of shape `output_shape`. -func SparseToDense(scope *Scope, sparse_indices tf.Output, output_shape tf.Output, sparse_values tf.Output, default_value tf.Output, optional ...SparseToDenseAttr) (dense tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SparseToDense", - Input: []tf.Input{ - sparse_indices, output_shape, sparse_values, default_value, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// SerializeManySparseAttr is an optional argument to SerializeManySparse. -type SerializeManySparseAttr func(optionalAttr) - -// SerializeManySparseOutType sets the optional out_type attribute to value. -// -// value: The `dtype` to use for serialization; the supported types are `string` -// (default) and `variant`. -// If not specified, defaults to DT_STRING -func SerializeManySparseOutType(value tf.DataType) SerializeManySparseAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object. -// -// The `SparseTensor` must have rank `R` greater than 1, and the first dimension -// is treated as the minibatch dimension. Elements of the `SparseTensor` -// must be sorted in increasing order of this first dimension. The serialized -// `SparseTensor` objects going into each row of `serialized_sparse` will have -// rank `R-1`. -// -// The minibatch size `N` is extracted from `sparse_shape[0]`. -// -// Arguments: -// sparse_indices: 2-D. The `indices` of the minibatch `SparseTensor`. -// sparse_values: 1-D. The `values` of the minibatch `SparseTensor`. -// sparse_shape: 1-D. The `shape` of the minibatch `SparseTensor`. -func SerializeManySparse(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output, optional ...SerializeManySparseAttr) (serialized_sparse tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SerializeManySparse", - Input: []tf.Input{ - sparse_indices, sparse_values, sparse_shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes requantization range per channel. -// -// Arguments: -// input: The original input tensor. -// input_min: The minimum value of the input tensor -// input_max: The maximum value of the input tensor. -// clip_value_max: The maximum value of the output that needs to be clipped. -// Example: set this to 6 for Relu6. -// -// Returns The minimum value of the final output tensorThe maximum value of the final output tensor. -func RequantizationRangePerChannel(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output, clip_value_max float32) (output_min tf.Output, output_max tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"clip_value_max": clip_value_max} - opspec := tf.OpSpec{ - Type: "RequantizationRangePerChannel", - Input: []tf.Input{ - input, input_min, input_max, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// Execute a sub graph on a remote processor. -// -// The graph specifications(such as graph itself, input tensors and output names) -// are stored as a serialized protocol buffer of RemoteFusedGraphExecuteInfo -// as serialized_remote_fused_graph_execute_info. -// The specifications will be passed to a dedicated registered -// remote fused graph executor. The executor will send the graph specifications -// to a remote processor and execute that graph. The execution results -// will be passed to consumer nodes as outputs of this node. -// -// Arguments: -// inputs: Arbitrary number of tensors with arbitrary data types -// -// serialized_remote_fused_graph_execute_info: Serialized protocol buffer -// of RemoteFusedGraphExecuteInfo which contains graph specifications. -// -// Returns Arbitrary number of tensors with arbitrary data types -func RemoteFusedGraphExecute(scope *Scope, inputs []tf.Output, Toutputs []tf.DataType, serialized_remote_fused_graph_execute_info string) (outputs []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"Toutputs": Toutputs, "serialized_remote_fused_graph_execute_info": serialized_remote_fused_graph_execute_info} - opspec := tf.OpSpec{ - Type: "RemoteFusedGraphExecute", - Input: []tf.Input{ - tf.OutputList(inputs), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if outputs, idx, err = makeOutputList(op, idx, "outputs"); err != nil { - scope.UpdateErr("RemoteFusedGraphExecute", err) - return - } - return outputs -} - -// Adds two `SparseTensor` objects to produce another `SparseTensor`. -// -// The input `SparseTensor` objects' indices are assumed ordered in standard -// lexicographic order. If this is not the case, before this step run -// `SparseReorder` to restore index ordering. -// -// By default, if two values sum to zero at some index, the output `SparseTensor` -// would still include that particular location in its index, storing a zero in the -// corresponding value slot. To override this, callers can specify `thresh`, -// indicating that if the sum has a magnitude strictly smaller than `thresh`, its -// corresponding value and index would then not be included. In particular, -// `thresh == 0` (default) means everything is kept and actual thresholding happens -// only for a positive value. -// -// In the following shapes, `nnz` is the count after taking `thresh` into account. -// -// Arguments: -// a_indices: 2-D. The `indices` of the first `SparseTensor`, size `[nnz, ndims]` Matrix. -// a_values: 1-D. The `values` of the first `SparseTensor`, size `[nnz]` Vector. -// a_shape: 1-D. The `shape` of the first `SparseTensor`, size `[ndims]` Vector. -// b_indices: 2-D. The `indices` of the second `SparseTensor`, size `[nnz, ndims]` Matrix. -// b_values: 1-D. The `values` of the second `SparseTensor`, size `[nnz]` Vector. -// b_shape: 1-D. The `shape` of the second `SparseTensor`, size `[ndims]` Vector. -// thresh: 0-D. The magnitude threshold that determines if an output value/index -// pair takes space. -func SparseAdd(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b_indices tf.Output, b_values tf.Output, b_shape tf.Output, thresh tf.Output) (sum_indices tf.Output, sum_values tf.Output, sum_shape tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseAdd", - Input: []tf.Input{ - a_indices, a_values, a_shape, b_indices, b_values, b_shape, thresh, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Converts the quantized `input` tensor into a lower-precision `output`. -// -// Converts the quantized `input` tensor into a lower-precision `output`, using the -// output range specified with `requested_output_min` and `requested_output_max`. -// -// `[input_min, input_max]` are scalar floats that specify the range for the float -// interpretation of the `input` data. For example, if `input_min` is -1.0f and -// `input_max` is 1.0f, and we are dealing with `quint16` quantized data, then a 0 -// value in the 16-bit data should be interpreted as -1.0f, and a 65535 means 1.0f. -// -// Arguments: -// -// input_min: The float value that the minimum quantized input value represents. -// input_max: The float value that the maximum quantized input value represents. -// requested_output_min: The float value that the minimum quantized output value represents. -// requested_output_max: The float value that the maximum quantized output value represents. -// out_type: The type of the output. Should be a lower bit depth than Tinput. -// -// Returns The requested_output_min value is copied into this output.The requested_output_max value is copied into this output. -func Requantize(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output, requested_output_min tf.Output, requested_output_max tf.Output, out_type tf.DataType) (output tf.Output, output_min tf.Output, output_max tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"out_type": out_type} - opspec := tf.OpSpec{ - Type: "Requantize", - Input: []tf.Input{ - input, input_min, input_max, requested_output_min, requested_output_max, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Gradients for batch normalization. -// -// DEPRECATED at GraphDef version 9: Use tf.nn.batch_normalization() -// -// This op is deprecated. See `tf.nn.batch_normalization`. -// -// Arguments: -// t: A 4D input Tensor. -// m: A 1D mean Tensor with size matching the last dimension of t. -// This is the first output from tf.nn.moments, -// or a saved moving average thereof. -// v: A 1D variance Tensor with size matching the last dimension of t. -// This is the second output from tf.nn.moments, -// or a saved moving average thereof. -// gamma: A 1D gamma Tensor with size matching the last dimension of t. -// If "scale_after_normalization" is true, this Tensor will be multiplied -// with the normalized Tensor. -// backprop: 4D backprop Tensor. -// variance_epsilon: A small float number to avoid dividing by 0. -// scale_after_normalization: A bool indicating whether the resulted tensor -// needs to be multiplied with gamma. -// -// Returns 4D backprop tensor for input.1D backprop tensor for mean.1D backprop tensor for variance.1D backprop tensor for beta.1D backprop tensor for gamma. -func BatchNormWithGlobalNormalizationGrad(scope *Scope, t tf.Output, m tf.Output, v tf.Output, gamma tf.Output, backprop tf.Output, variance_epsilon float32, scale_after_normalization bool) (dx tf.Output, dm tf.Output, dv tf.Output, db tf.Output, dg tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"variance_epsilon": variance_epsilon, "scale_after_normalization": scale_after_normalization} - opspec := tf.OpSpec{ - Type: "BatchNormWithGlobalNormalizationGrad", - Input: []tf.Input{ - t, m, v, gamma, backprop, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) -} - -// LoadTPUEmbeddingFTRLParametersAttr is an optional argument to LoadTPUEmbeddingFTRLParameters. -type LoadTPUEmbeddingFTRLParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingFTRLParametersTableId sets the optional table_id attribute to value. +// LoadTPUEmbeddingMomentumParametersGradAccumDebugTableId sets the optional table_id attribute to value. // If not specified, defaults to -1 // // REQUIRES: value >= -1 -func LoadTPUEmbeddingFTRLParametersTableId(value int64) LoadTPUEmbeddingFTRLParametersAttr { +func LoadTPUEmbeddingMomentumParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr { return func(m optionalAttr) { m["table_id"] = value } } -// LoadTPUEmbeddingFTRLParametersTableName sets the optional table_name attribute to value. +// LoadTPUEmbeddingMomentumParametersGradAccumDebugTableName sets the optional table_name attribute to value. // If not specified, defaults to "" -func LoadTPUEmbeddingFTRLParametersTableName(value string) LoadTPUEmbeddingFTRLParametersAttr { +func LoadTPUEmbeddingMomentumParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr { return func(m optionalAttr) { m["table_name"] = value } } -// Load FTRL embedding parameters. +// Load Momentum embedding parameters with debug support. // // An op that loads optimization parameters into HBM for embedding. Must be // preceded by a ConfigureTPUEmbeddingHost op that sets up the correct @@ -15696,14 +17003,14 @@ func LoadTPUEmbeddingFTRLParametersTableName(value string) LoadTPUEmbeddingFTRLP // executed. // // Arguments: -// parameters: Value of parameters used in the FTRL optimization algorithm. -// accumulators: Value of accumulators used in the FTRL optimization algorithm. -// linears: Value of linears used in the FTRL optimization algorithm. +// parameters: Value of parameters used in the Momentum optimization algorithm. +// momenta: Value of momenta used in the Momentum optimization algorithm. +// gradient_accumulators: Value of gradient_accumulators used in the Momentum optimization algorithm. // // // // Returns the created operation. -func LoadTPUEmbeddingFTRLParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, linears tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingFTRLParametersAttr) (o *tf.Operation) { +func LoadTPUEmbeddingMomentumParametersGradAccumDebug(scope *Scope, parameters tf.Output, momenta tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr) (o *tf.Operation) { if scope.Err() != nil { return } @@ -15712,2451 +17019,15 @@ func LoadTPUEmbeddingFTRLParameters(scope *Scope, parameters tf.Output, accumula a(attrs) } opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingFTRLParameters", + Type: "LoadTPUEmbeddingMomentumParametersGradAccumDebug", Input: []tf.Input{ - parameters, accumulators, linears, + parameters, momenta, gradient_accumulators, }, Attrs: attrs, } return scope.AddOperation(opspec) } -// Generate a sharded filename. The filename is printf formatted as -// -// %s-%05d-of-%05d, basename, shard, num_shards. -func ShardedFilename(scope *Scope, basename tf.Output, shard tf.Output, num_shards tf.Output) (filename tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ShardedFilename", - Input: []tf.Input{ - basename, shard, num_shards, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Transforms a Tensor into a serialized TensorProto proto. -// -// Arguments: -// tensor: A Tensor of type `T`. -// -// Returns A serialized TensorProto proto of the input tensor. -func SerializeTensor(scope *Scope, tensor tf.Output) (serialized tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SerializeTensor", - Input: []tf.Input{ - tensor, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingAdagradParametersGradAccumDebug. -type LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr func(optionalAttr) - -// LoadTPUEmbeddingAdagradParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingAdagradParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingAdagradParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingAdagradParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load Adagrad embedding parameters with debug support. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the Adagrad optimization algorithm. -// accumulators: Value of accumulators used in the Adagrad optimization algorithm. -// gradient_accumulators: Value of gradient_accumulators used in the Adagrad optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingAdagradParametersGradAccumDebug(scope *Scope, parameters tf.Output, accumulators tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingAdagradParametersGradAccumDebug", - Input: []tf.Input{ - parameters, accumulators, gradient_accumulators, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Conv3DBackpropInputAttr is an optional argument to Conv3DBackpropInput. -type Conv3DBackpropInputAttr func(optionalAttr) - -// Conv3DBackpropInputDilations sets the optional dilations attribute to value. -// If not specified, defaults to -func Conv3DBackpropInputDilations(value []int64) Conv3DBackpropInputAttr { - return func(m optionalAttr) { - m["dilations"] = value - } -} - -// Computes the gradients of 3-D convolution with respect to the input. -// -// DEPRECATED at GraphDef version 10: Use Conv3DBackpropInputV2 -// -// Arguments: -// input: Shape `[batch, depth, rows, cols, in_channels]`. -// filter: Shape `[depth, rows, cols, in_channels, out_channels]`. -// `in_channels` must match between `input` and `filter`. -// out_backprop: Backprop signal of shape `[batch, out_depth, out_rows, out_cols, -// out_channels]`. -// strides: 1-D tensor of length 5. The stride of the sliding window for each -// dimension of `input`. Must have `strides[0] = strides[4] = 1`. -// padding: The type of padding algorithm to use. -func Conv3DBackpropInput(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv3DBackpropInputAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Conv3DBackpropInput", - Input: []tf.Input{ - input, filter, out_backprop, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes softplus gradients for a softplus operation. -// -// Arguments: -// gradients: The backpropagated gradients to the corresponding softplus operation. -// features: The features passed as input to the corresponding softplus operation. -// -// Returns The gradients: `gradients / (1 + exp(-features))`. -func SoftplusGrad(scope *Scope, gradients tf.Output, features tf.Output) (backprops tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SoftplusGrad", - Input: []tf.Input{ - gradients, features, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Selects elements from `x` or `y`, depending on `condition`. -// -// The `x`, and `y` tensors must all have the same shape, and the -// output will also have that shape. -// -// The `condition` tensor must be a scalar if `x` and `y` are scalars. -// If `x` and `y` are vectors or higher rank, then `condition` must be either a -// scalar, a vector with size matching the first dimension of `x`, or must have -// the same shape as `x`. -// -// The `condition` tensor acts as a mask that chooses, based on the value at each -// element, whether the corresponding element / row in the output should be -// taken from `x` (if true) or `y` (if false). -// -// If `condition` is a vector and `x` and `y` are higher rank matrices, then -// it chooses which row (outer dimension) to copy from `x` and `y`. -// If `condition` has the same shape as `x` and `y`, then it chooses which -// element to copy from `x` and `y`. -// -// For example: -// -// ```python -// # 'condition' tensor is [[True, False] -// # [False, True]] -// # 't' is [[1, 2], -// # [3, 4]] -// # 'e' is [[5, 6], -// # [7, 8]] -// select(condition, t, e) # => [[1, 6], [7, 4]] -// -// -// # 'condition' tensor is [True, False] -// # 't' is [[1, 2], -// # [3, 4]] -// # 'e' is [[5, 6], -// # [7, 8]] -// select(condition, t, e) ==> [[1, 2], -// [7, 8]] -// -// ``` -// -// Arguments: -// -// x: = A `Tensor` which may have the same shape as `condition`. -// If `condition` is rank 1, `x` may have higher rank, -// but its first dimension must match the size of `condition`. -// y: = A `Tensor` with the same type and shape as `x`. -// -// Returns = A `Tensor` with the same type and shape as `x` and `y`. -func Select(scope *Scope, condition tf.Output, x tf.Output, y tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Select", - Input: []tf.Input{ - condition, x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingADAMParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingADAMParametersGradAccumDebug. -type LoadTPUEmbeddingADAMParametersGradAccumDebugAttr func(optionalAttr) - -// LoadTPUEmbeddingADAMParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingADAMParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingADAMParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingADAMParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingADAMParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingADAMParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load ADAM embedding parameters with debug support. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the ADAM optimization algorithm. -// momenta: Value of momenta used in the ADAM optimization algorithm. -// velocities: Value of velocities used in the ADAM optimization algorithm. -// gradient_accumulators: Value of gradient_accumulators used in the ADAM optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingADAMParametersGradAccumDebug(scope *Scope, parameters tf.Output, momenta tf.Output, velocities tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingADAMParametersGradAccumDebugAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingADAMParametersGradAccumDebug", - Input: []tf.Input{ - parameters, momenta, velocities, gradient_accumulators, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Computes square root of x element-wise. -// -// I.e., \\(y = \sqrt{x} = x^{1/2}\\). -func Sqrt(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Sqrt", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingAdagradParametersGradAccumDebug. -type RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr func(optionalAttr) - -// RetrieveTPUEmbeddingAdagradParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingAdagradParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// RetrieveTPUEmbeddingAdagradParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingAdagradParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Retrieve Adagrad embedding parameters with debug support. -// -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. -// -// Returns Parameter parameters updated by the Adagrad optimization algorithm.Parameter accumulators updated by the Adagrad optimization algorithm.Parameter gradient_accumulators updated by the Adagrad optimization algorithm. -func RetrieveTPUEmbeddingAdagradParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingAdagradParametersGradAccumDebugAttr) (parameters tf.Output, accumulators tf.Output, gradient_accumulators tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingAdagradParametersGradAccumDebug", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// MultinomialAttr is an optional argument to Multinomial. -type MultinomialAttr func(optionalAttr) - -// MultinomialSeed sets the optional seed attribute to value. -// -// value: If either seed or seed2 is set to be non-zero, the internal random number -// generator is seeded by the given seed. Otherwise, a random seed is used. -// If not specified, defaults to 0 -func MultinomialSeed(value int64) MultinomialAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// MultinomialSeed2 sets the optional seed2 attribute to value. -// -// value: A second seed to avoid seed collision. -// If not specified, defaults to 0 -func MultinomialSeed2(value int64) MultinomialAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// MultinomialOutputDtype sets the optional output_dtype attribute to value. -// If not specified, defaults to DT_INT64 -func MultinomialOutputDtype(value tf.DataType) MultinomialAttr { - return func(m optionalAttr) { - m["output_dtype"] = value - } -} - -// Draws samples from a multinomial distribution. -// -// Arguments: -// logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` -// represents the unnormalized log probabilities for all classes. -// num_samples: 0-D. Number of independent samples to draw for each row slice. -// -// Returns 2-D Tensor with shape `[batch_size, num_samples]`. Each slice `[i, :]` -// contains the drawn class labels with range `[0, num_classes)`. -func Multinomial(scope *Scope, logits tf.Output, num_samples tf.Output, optional ...MultinomialAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Multinomial", - Input: []tf.Input{ - logits, num_samples, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug. -type LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr func(optionalAttr) - -// LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load proximal Adagrad embedding parameters with debug support. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the proximal Adagrad optimization algorithm. -// accumulators: Value of accumulators used in the proximal Adagrad optimization algorithm. -// gradient_accumulators: Value of gradient_accumulators used in the proximal Adagrad optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug(scope *Scope, parameters tf.Output, accumulators tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug", - Input: []tf.Input{ - parameters, accumulators, gradient_accumulators, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// InfeedEnqueuePrelinearizedBufferAttr is an optional argument to InfeedEnqueuePrelinearizedBuffer. -type InfeedEnqueuePrelinearizedBufferAttr func(optionalAttr) - -// InfeedEnqueuePrelinearizedBufferDeviceOrdinal sets the optional device_ordinal attribute to value. -// -// value: The TPU device to use. This should be -1 when the Op is running on a TPU device -// and = 0 when the Op is running on the CPU device. -// If not specified, defaults to -1 -func InfeedEnqueuePrelinearizedBufferDeviceOrdinal(value int64) InfeedEnqueuePrelinearizedBufferAttr { - return func(m optionalAttr) { - m["device_ordinal"] = value - } -} - -// An op which enqueues prelinearized buffer into TPU infeed. -// -// Arguments: -// input: A variant tensor representing linearized output. -// -// Returns the created operation. -func InfeedEnqueuePrelinearizedBuffer(scope *Scope, input tf.Output, optional ...InfeedEnqueuePrelinearizedBufferAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "InfeedEnqueuePrelinearizedBuffer", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Convert JSON-encoded Example records to binary protocol buffer strings. -// -// This op translates a tensor containing Example records, encoded using -// the [standard JSON -// mapping](https://developers.google.com/protocol-buffers/docs/proto3#json), -// into a tensor containing the same records encoded as binary protocol -// buffers. The resulting tensor can then be fed to any of the other -// Example-parsing ops. -// -// Arguments: -// json_examples: Each string is a JSON object serialized according to the JSON -// mapping of the Example proto. -// -// Returns Each string is a binary Example protocol buffer corresponding -// to the respective element of `json_examples`. -func DecodeJSONExample(scope *Scope, json_examples tf.Output) (binary_examples tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "DecodeJSONExample", - Input: []tf.Input{ - json_examples, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingAdadeltaParametersGradAccumDebug. -type LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr func(optionalAttr) - -// LoadTPUEmbeddingAdadeltaParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingAdadeltaParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingAdadeltaParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingAdadeltaParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load Adadelta parameters with debug support. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the Adadelta optimization algorithm. -// accumulators: Value of accumulators used in the Adadelta optimization algorithm. -// updates: Value of updates used in the Adadelta optimization algorithm. -// gradient_accumulators: Value of gradient_accumulators used in the Adadelta optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingAdadeltaParametersGradAccumDebug(scope *Scope, parameters tf.Output, accumulators tf.Output, updates tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingAdadeltaParametersGradAccumDebug", - Input: []tf.Input{ - parameters, accumulators, updates, gradient_accumulators, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// QueueDequeueManyV2Attr is an optional argument to QueueDequeueManyV2. -type QueueDequeueManyV2Attr func(optionalAttr) - -// QueueDequeueManyV2TimeoutMs sets the optional timeout_ms attribute to value. -// -// value: If the queue has fewer than n elements, this operation -// will block for up to timeout_ms milliseconds. -// Note: This option is not supported yet. -// If not specified, defaults to -1 -func QueueDequeueManyV2TimeoutMs(value int64) QueueDequeueManyV2Attr { - return func(m optionalAttr) { - m["timeout_ms"] = value - } -} - -// Dequeues `n` tuples of one or more tensors from the given queue. -// -// If the queue is closed and there are fewer than `n` elements, then an -// OutOfRange error is returned. -// -// This operation concatenates queue-element component tensors along the -// 0th dimension to make a single component tensor. All of the components -// in the dequeued tuple will have size `n` in the 0th dimension. -// -// This operation has `k` outputs, where `k` is the number of components in -// the tuples stored in the given queue, and output `i` is the ith -// component of the dequeued tuple. -// -// N.B. If the queue is empty, this operation will block until `n` elements -// have been dequeued (or 'timeout_ms' elapses, if specified). -// -// Arguments: -// handle: The handle to a queue. -// n: The number of tuples to dequeue. -// component_types: The type of each component in a tuple. -// -// Returns One or more tensors that were dequeued as a tuple. -func QueueDequeueManyV2(scope *Scope, handle tf.Output, n tf.Output, component_types []tf.DataType, optional ...QueueDequeueManyV2Attr) (components []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"component_types": component_types} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "QueueDequeueManyV2", - Input: []tf.Input{ - handle, n, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if components, idx, err = makeOutputList(op, idx, "components"); err != nil { - scope.UpdateErr("QueueDequeueManyV2", err) - return - } - return components -} - -// Computes Psi, the derivative of Lgamma (the log of the absolute value of -// -// `Gamma(x)`), element-wise. -func Digamma(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Digamma", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceApplyGradientDescentAttr is an optional argument to ResourceApplyGradientDescent. -type ResourceApplyGradientDescentAttr func(optionalAttr) - -// ResourceApplyGradientDescentUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, the subtraction will be protected by a lock; -// otherwise the behavior is undefined, but may exhibit less contention. -// If not specified, defaults to false -func ResourceApplyGradientDescentUseLocking(value bool) ResourceApplyGradientDescentAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' by subtracting 'alpha' * 'delta' from it. -// -// Arguments: -// var_: Should be from a Variable(). -// alpha: Scaling factor. Must be a scalar. -// delta: The change. -// -// Returns the created operation. -func ResourceApplyGradientDescent(scope *Scope, var_ tf.Output, alpha tf.Output, delta tf.Output, optional ...ResourceApplyGradientDescentAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyGradientDescent", - Input: []tf.Input{ - var_, alpha, delta, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Conv2DBackpropFilterAttr is an optional argument to Conv2DBackpropFilter. -type Conv2DBackpropFilterAttr func(optionalAttr) - -// Conv2DBackpropFilterUseCudnnOnGpu sets the optional use_cudnn_on_gpu attribute to value. -// If not specified, defaults to true -func Conv2DBackpropFilterUseCudnnOnGpu(value bool) Conv2DBackpropFilterAttr { - return func(m optionalAttr) { - m["use_cudnn_on_gpu"] = value - } -} - -// Conv2DBackpropFilterExplicitPaddings sets the optional explicit_paddings attribute to value. -// -// value: If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith -// dimension, the amount of padding inserted before and after the dimension is -// `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If -// `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. -// If not specified, defaults to <> -func Conv2DBackpropFilterExplicitPaddings(value []int64) Conv2DBackpropFilterAttr { - return func(m optionalAttr) { - m["explicit_paddings"] = value - } -} - -// Conv2DBackpropFilterDataFormat sets the optional data_format attribute to value. -// -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the data is stored in the order of: -// [batch, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// If not specified, defaults to "NHWC" -func Conv2DBackpropFilterDataFormat(value string) Conv2DBackpropFilterAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Conv2DBackpropFilterDilations sets the optional dilations attribute to value. -// -// value: 1-D tensor of length 4. The dilation factor for each dimension of -// `input`. If set to k > 1, there will be k-1 skipped cells between each filter -// element on that dimension. The dimension order is determined by the value of -// `data_format`, see above for details. Dilations in the batch and depth -// dimensions must be 1. -// If not specified, defaults to -func Conv2DBackpropFilterDilations(value []int64) Conv2DBackpropFilterAttr { - return func(m optionalAttr) { - m["dilations"] = value - } -} - -// Computes the gradients of convolution with respect to the filter. -// -// Arguments: -// input: 4-D with shape `[batch, in_height, in_width, in_channels]`. -// filter_sizes: An integer vector representing the tensor shape of `filter`, -// where `filter` is a 4-D -// `[filter_height, filter_width, in_channels, out_channels]` tensor. -// out_backprop: 4-D with shape `[batch, out_height, out_width, out_channels]`. -// Gradients w.r.t. the output of the convolution. -// strides: The stride of the sliding window for each dimension of the input -// of the convolution. Must be in the same order as the dimension specified with -// format. -// padding: The type of padding algorithm to use. -// -// Returns 4-D with shape -// `[filter_height, filter_width, in_channels, out_channels]`. Gradient w.r.t. -// the `filter` input of the convolution. -func Conv2DBackpropFilter(scope *Scope, input tf.Output, filter_sizes tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv2DBackpropFilterAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Conv2DBackpropFilter", - Input: []tf.Input{ - input, filter_sizes, out_backprop, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LuAttr is an optional argument to Lu. -type LuAttr func(optionalAttr) - -// LuOutputIdxType sets the optional output_idx_type attribute to value. -// If not specified, defaults to DT_INT32 -func LuOutputIdxType(value tf.DataType) LuAttr { - return func(m optionalAttr) { - m["output_idx_type"] = value - } -} - -// Computes the LU decomposition of one or more square matrices. -// -// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions -// form square matrices. -// -// The input has to be invertible. -// -// The output consists of two tensors LU and P containing the LU decomposition -// of all input submatrices `[..., :, :]`. LU encodes the lower triangular and -// upper triangular factors. -// -// For each input submatrix of shape `[M, M]`, L is a lower triangular matrix of -// shape `[M, M]` with unit diagonal whose entries correspond to the strictly lower -// triangular part of LU. U is a upper triangular matrix of shape `[M, M]` whose -// entries correspond to the upper triangular part, including the diagonal, of LU. -// -// P represents a permutation matrix encoded as a list of indices each between `0` -// and `M-1`, inclusive. If P_mat denotes the permutation matrix corresponding to -// P, then the L, U and P satisfies P_mat * input = L * U. -// -// Arguments: -// input: A tensor of shape `[..., M, M]` whose inner-most 2 dimensions form matrices of -// size `[M, M]`. -// -// Returns A tensor of shape `[..., M, M]` whose strictly lower triangular part denotes the -// lower triangular factor `L` with unit diagonal, and whose upper triangular part -// denotes the upper triangular factor `U`.Permutation of the rows encoded as a list of indices in `0..M-1`. Shape is -// `[..., M]`. -// @compatibility(scipy) -// Similar to `scipy.linalg.lu`, except the triangular factors `L` and `U` are -// packed into a single tensor, the permutation is applied to `input` instead of -// the right hand side and the permutation `P` is returned as a list of indices -// instead of a permutation matrix. -// @end_compatibility -func Lu(scope *Scope, input tf.Output, optional ...LuAttr) (lu tf.Output, p tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Lu", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// This op is used as a placeholder in If branch functions. It doesn't provide a -// valid output when run, so must either be removed (e.g. replaced with a -// function input) or guaranteed not to be used (e.g. if mirroring an -// intermediate output needed for the gradient computation of the other branch). -// -// Arguments: -// dtype: The type of the output. -// shape: The purported shape of the output. This is only used for shape inference; -// the output will not necessarily have this shape. Can be a partial shape. -// -// Returns \"Fake\" output value. This should not be consumed by another op. -func FakeParam(scope *Scope, dtype tf.DataType, shape tf.Shape) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype, "shape": shape} - opspec := tf.OpSpec{ - Type: "FakeParam", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingMDLAdagradLightParametersAttr is an optional argument to LoadTPUEmbeddingMDLAdagradLightParameters. -type LoadTPUEmbeddingMDLAdagradLightParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingMDLAdagradLightParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingMDLAdagradLightParametersTableId(value int64) LoadTPUEmbeddingMDLAdagradLightParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingMDLAdagradLightParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingMDLAdagradLightParametersTableName(value string) LoadTPUEmbeddingMDLAdagradLightParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load MDL Adagrad Light embedding parameters. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the MDL Adagrad Light optimization algorithm. -// accumulators: Value of accumulators used in the MDL Adagrad Light optimization algorithm. -// weights: Value of weights used in the MDL Adagrad Light optimization algorithm. -// benefits: Value of benefits used in the MDL Adagrad Light optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingMDLAdagradLightParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, weights tf.Output, benefits tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingMDLAdagradLightParametersAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingMDLAdagradLightParameters", - Input: []tf.Input{ - parameters, accumulators, weights, benefits, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// LoadTPUEmbeddingAdagradParametersAttr is an optional argument to LoadTPUEmbeddingAdagradParameters. -type LoadTPUEmbeddingAdagradParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingAdagradParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingAdagradParametersTableId(value int64) LoadTPUEmbeddingAdagradParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingAdagradParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingAdagradParametersTableName(value string) LoadTPUEmbeddingAdagradParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load Adagrad embedding parameters. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the Adagrad optimization algorithm. -// accumulators: Value of accumulators used in the Adagrad optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingAdagradParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingAdagradParametersAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingAdagradParameters", - Input: []tf.Input{ - parameters, accumulators, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// SparseToSparseSetOperationAttr is an optional argument to SparseToSparseSetOperation. -type SparseToSparseSetOperationAttr func(optionalAttr) - -// SparseToSparseSetOperationValidateIndices sets the optional validate_indices attribute to value. -// If not specified, defaults to true -func SparseToSparseSetOperationValidateIndices(value bool) SparseToSparseSetOperationAttr { - return func(m optionalAttr) { - m["validate_indices"] = value - } -} - -// Applies set operation along last dimension of 2 `SparseTensor` inputs. -// -// See SetOperationOp::SetOperationFromContext for values of `set_operation`. -// -// If `validate_indices` is `True`, `SparseToSparseSetOperation` validates the -// order and range of `set1` and `set2` indices. -// -// Input `set1` is a `SparseTensor` represented by `set1_indices`, `set1_values`, -// and `set1_shape`. For `set1` ranked `n`, 1st `n-1` dimensions must be the same -// as `set2`. Dimension `n` contains values in a set, duplicates are allowed but -// ignored. -// -// Input `set2` is a `SparseTensor` represented by `set2_indices`, `set2_values`, -// and `set2_shape`. For `set2` ranked `n`, 1st `n-1` dimensions must be the same -// as `set1`. Dimension `n` contains values in a set, duplicates are allowed but -// ignored. -// -// If `validate_indices` is `True`, this op validates the order and range of `set1` -// and `set2` indices. -// -// Output `result` is a `SparseTensor` represented by `result_indices`, -// `result_values`, and `result_shape`. For `set1` and `set2` ranked `n`, this -// has rank `n` and the same 1st `n-1` dimensions as `set1` and `set2`. The `nth` -// dimension contains the result of `set_operation` applied to the corresponding -// `[0...n-1]` dimension of `set`. -// -// Arguments: -// set1_indices: 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major -// order. -// set1_values: 1D `Tensor`, values of a `SparseTensor`. Must be in row-major -// order. -// set1_shape: 1D `Tensor`, shape of a `SparseTensor`. `set1_shape[0...n-1]` must -// be the same as `set2_shape[0...n-1]`, `set1_shape[n]` is the -// max set size across `0...n-1` dimensions. -// set2_indices: 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major -// order. -// set2_values: 1D `Tensor`, values of a `SparseTensor`. Must be in row-major -// order. -// set2_shape: 1D `Tensor`, shape of a `SparseTensor`. `set2_shape[0...n-1]` must -// be the same as `set1_shape[0...n-1]`, `set2_shape[n]` is the -// max set size across `0...n-1` dimensions. -// -// -// Returns 2D indices of a `SparseTensor`.1D values of a `SparseTensor`.1D `Tensor` shape of a `SparseTensor`. `result_shape[0...n-1]` is -// the same as the 1st `n-1` dimensions of `set1` and `set2`, `result_shape[n]` -// is the max result set size across all `0...n-1` dimensions. -func SparseToSparseSetOperation(scope *Scope, set1_indices tf.Output, set1_values tf.Output, set1_shape tf.Output, set2_indices tf.Output, set2_values tf.Output, set2_shape tf.Output, set_operation string, optional ...SparseToSparseSetOperationAttr) (result_indices tf.Output, result_values tf.Output, result_shape tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"set_operation": set_operation} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SparseToSparseSetOperation", - Input: []tf.Input{ - set1_indices, set1_values, set1_shape, set2_indices, set2_values, set2_shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Elementwise computes the bitwise right-shift of `x` and `y`. -// -// Performs a logical shift for unsigned integer types, and an arithmetic shift -// for signed integer types. -// -// If `y` is negative, or greater than or equal to than the width of `x` in bits -// the result is implementation defined. -func RightShift(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RightShift", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Read an element from the TensorArray into output `value`. -// -// Arguments: -// handle: The handle to a TensorArray. -// -// flow_in: A float scalar that enforces proper chaining of operations. -// dtype: The type of the elem that is returned. -// -// Returns The tensor that is read from the TensorArray. -func TensorArrayReadV3(scope *Scope, handle tf.Output, index tf.Output, flow_in tf.Output, dtype tf.DataType) (value tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - opspec := tf.OpSpec{ - Type: "TensorArrayReadV3", - Input: []tf.Input{ - handle, index, flow_in, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceApplyAdamWithAmsgradAttr is an optional argument to ResourceApplyAdamWithAmsgrad. -type ResourceApplyAdamWithAmsgradAttr func(optionalAttr) - -// ResourceApplyAdamWithAmsgradUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var, m, and v tensors will be protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceApplyAdamWithAmsgradUseLocking(value bool) ResourceApplyAdamWithAmsgradAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the Adam algorithm. -// -// $$lr_t := \text{learning\_rate} * \sqrt{1 - beta_2^t} / (1 - beta_1^t)$$ -// $$m_t := beta_1 * m_{t-1} + (1 - beta_1) * g$$ -// $$v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g$$ -// $$vhat_t := max{vhat_{t-1}, v_t}$$ -// $$variable := variable - lr_t * m_t / (\sqrt{vhat_t} + \epsilon)$$ -// -// Arguments: -// var_: Should be from a Variable(). -// m: Should be from a Variable(). -// v: Should be from a Variable(). -// vhat: Should be from a Variable(). -// beta1_power: Must be a scalar. -// beta2_power: Must be a scalar. -// lr: Scaling factor. Must be a scalar. -// beta1: Momentum factor. Must be a scalar. -// beta2: Momentum factor. Must be a scalar. -// epsilon: Ridge term. Must be a scalar. -// grad: The gradient. -// -// Returns the created operation. -func ResourceApplyAdamWithAmsgrad(scope *Scope, var_ tf.Output, m tf.Output, v tf.Output, vhat tf.Output, beta1_power tf.Output, beta2_power tf.Output, lr tf.Output, beta1 tf.Output, beta2 tf.Output, epsilon tf.Output, grad tf.Output, optional ...ResourceApplyAdamWithAmsgradAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyAdamWithAmsgrad", - Input: []tf.Input{ - var_, m, v, vhat, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// 3D real-valued fast Fourier transform. -// -// Computes the 3-dimensional discrete Fourier transform of a real-valued signal -// over the inner-most 3 dimensions of `input`. -// -// Since the DFT of a real signal is Hermitian-symmetric, `RFFT3D` only returns the -// `fft_length / 2 + 1` unique components of the FFT for the inner-most dimension -// of `output`: the zero-frequency term, followed by the `fft_length / 2` -// positive-frequency terms. -// -// Along each axis `RFFT3D` is computed on, if `fft_length` is smaller than the -// corresponding dimension of `input`, the dimension is cropped. If it is larger, -// the dimension is padded with zeros. -// -// Arguments: -// input: A float32 tensor. -// fft_length: An int32 tensor of shape [3]. The FFT length for each dimension. -// -// Returns A complex64 tensor of the same rank as `input`. The inner-most 3 -// dimensions of `input` are replaced with the their 3D Fourier transform. The -// inner-most dimension contains `fft_length / 2 + 1` unique frequency -// components. -// -// @compatibility(numpy) -// Equivalent to np.fft.rfftn with 3 dimensions. -// @end_compatibility -func RFFT3D(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RFFT3D", - Input: []tf.Input{ - input, fft_length, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceApplyAdagradDAAttr is an optional argument to ResourceApplyAdagradDA. -type ResourceApplyAdagradDAAttr func(optionalAttr) - -// ResourceApplyAdagradDAUseLocking sets the optional use_locking attribute to value. -// -// value: If True, updating of the var and accum tensors will be protected by -// a lock; otherwise the behavior is undefined, but may exhibit less contention. -// If not specified, defaults to false -func ResourceApplyAdagradDAUseLocking(value bool) ResourceApplyAdagradDAAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the proximal adagrad scheme. -// -// Arguments: -// var_: Should be from a Variable(). -// gradient_accumulator: Should be from a Variable(). -// gradient_squared_accumulator: Should be from a Variable(). -// grad: The gradient. -// lr: Scaling factor. Must be a scalar. -// l1: L1 regularization. Must be a scalar. -// l2: L2 regularization. Must be a scalar. -// global_step: Training step number. Must be a scalar. -// -// Returns the created operation. -func ResourceApplyAdagradDA(scope *Scope, var_ tf.Output, gradient_accumulator tf.Output, gradient_squared_accumulator tf.Output, grad tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, global_step tf.Output, optional ...ResourceApplyAdagradDAAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyAdagradDA", - Input: []tf.Input{ - var_, gradient_accumulator, gradient_squared_accumulator, grad, lr, l1, l2, global_step, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Inverse 3D real-valued fast Fourier transform. -// -// Computes the inverse 3-dimensional discrete Fourier transform of a real-valued -// signal over the inner-most 3 dimensions of `input`. -// -// The inner-most 3 dimensions of `input` are assumed to be the result of `RFFT3D`: -// The inner-most dimension contains the `fft_length / 2 + 1` unique components of -// the DFT of a real-valued signal. If `fft_length` is not provided, it is computed -// from the size of the inner-most 3 dimensions of `input`. If the FFT length used -// to compute `input` is odd, it should be provided since it cannot be inferred -// properly. -// -// Along each axis `IRFFT3D` is computed on, if `fft_length` (or -// `fft_length / 2 + 1` for the inner-most dimension) is smaller than the -// corresponding dimension of `input`, the dimension is cropped. If it is larger, -// the dimension is padded with zeros. -// -// Arguments: -// input: A complex64 tensor. -// fft_length: An int32 tensor of shape [3]. The FFT length for each dimension. -// -// Returns A float32 tensor of the same rank as `input`. The inner-most 3 -// dimensions of `input` are replaced with the `fft_length` samples of their -// inverse 3D real Fourier transform. -// -// @compatibility(numpy) -// Equivalent to np.irfftn with 3 dimensions. -// @end_compatibility -func IRFFT3D(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "IRFFT3D", - Input: []tf.Input{ - input, fft_length, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset with a range of values. Corresponds to python's xrange. -// -// Arguments: -// start: corresponds to start in python's xrange(). -// stop: corresponds to stop in python's xrange(). -// step: corresponds to step in python's xrange(). -// -// -func RangeDataset(scope *Scope, start tf.Output, stop tf.Output, step tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "RangeDataset", - Input: []tf.Input{ - start, stop, step, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// TopKAttr is an optional argument to TopK. -type TopKAttr func(optionalAttr) - -// TopKSorted sets the optional sorted attribute to value. -// -// value: If true the resulting `k` elements will be sorted by the values in -// descending order. -// If not specified, defaults to true -func TopKSorted(value bool) TopKAttr { - return func(m optionalAttr) { - m["sorted"] = value - } -} - -// Finds values and indices of the `k` largest elements for the last dimension. -// -// DEPRECATED at GraphDef version 7: Use TopKV2 instead -// -// If the input is a vector (rank-1), finds the `k` largest entries in the vector -// and outputs their values and indices as vectors. Thus `values[j]` is the -// `j`-th largest entry in `input`, and its index is `indices[j]`. -// -// For matrices (resp. higher rank input), computes the top `k` entries in each -// row (resp. vector along the last dimension). Thus, -// -// values.shape = indices.shape = input.shape[:-1] + [k] -// -// If two elements are equal, the lower-index element appears first. -// -// If `k` varies dynamically, use `TopKV2` below. -// -// Arguments: -// input: 1-D or higher with last dimension at least `k`. -// k: Number of top elements to look for along the last dimension (along each -// row for matrices). -// -// Returns The `k` largest elements along each last dimensional slice.The indices of `values` within the last dimension of `input`. -func TopK(scope *Scope, input tf.Output, k int64, optional ...TopKAttr) (values tf.Output, indices tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"k": k} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "TopK", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// TensorArrayGatherV3Attr is an optional argument to TensorArrayGatherV3. -type TensorArrayGatherV3Attr func(optionalAttr) - -// TensorArrayGatherV3ElementShape sets the optional element_shape attribute to value. -// -// value: The expected shape of an element, if known. Used to -// validate the shapes of TensorArray elements. If this shape is not -// fully specified, gathering zero-size TensorArrays is an error. -// If not specified, defaults to -func TensorArrayGatherV3ElementShape(value tf.Shape) TensorArrayGatherV3Attr { - return func(m optionalAttr) { - m["element_shape"] = value - } -} - -// Gather specific elements from the TensorArray into output `value`. -// -// All elements selected by `indices` must have the same shape. -// -// Arguments: -// handle: The handle to a TensorArray. -// indices: The locations in the TensorArray from which to read tensor elements. -// flow_in: A float scalar that enforces proper chaining of operations. -// dtype: The type of the elem that is returned. -// -// Returns All of the elements in the TensorArray, concatenated along a new -// axis (the new dimension 0). -func TensorArrayGatherV3(scope *Scope, handle tf.Output, indices tf.Output, flow_in tf.Output, dtype tf.DataType, optional ...TensorArrayGatherV3Attr) (value tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "TensorArrayGatherV3", - Input: []tf.Input{ - handle, indices, flow_in, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Transforms a vector of brain.Example protos (as strings) into typed tensors. -// -// Arguments: -// serialized: A vector containing a batch of binary serialized Example protos. -// names: A vector containing the names of the serialized protos. -// May contain, for example, table key (descriptive) names for the -// corresponding serialized protos. These are purely useful for debugging -// purposes, and the presence of values here has no effect on the output. -// May also be an empty vector if no names are available. -// If non-empty, this vector must be the same length as "serialized". -// sparse_keys: A list of Nsparse string Tensors (scalars). -// The keys expected in the Examples' features associated with sparse values. -// dense_keys: A list of Ndense string Tensors (scalars). -// The keys expected in the Examples' features associated with dense values. -// dense_defaults: A list of Ndense Tensors (some may be empty). -// dense_defaults[j] provides default values -// when the example's feature_map lacks dense_key[j]. If an empty Tensor is -// provided for dense_defaults[j], then the Feature dense_keys[j] is required. -// The input type is inferred from dense_defaults[j], even when it's empty. -// If dense_defaults[j] is not empty, and dense_shapes[j] is fully defined, -// then the shape of dense_defaults[j] must match that of dense_shapes[j]. -// If dense_shapes[j] has an undefined major dimension (variable strides dense -// feature), dense_defaults[j] must contain a single element: -// the padding element. -// sparse_types: A list of Nsparse types; the data types of data in each Feature -// given in sparse_keys. -// Currently the ParseExample supports DT_FLOAT (FloatList), -// DT_INT64 (Int64List), and DT_STRING (BytesList). -// dense_shapes: A list of Ndense shapes; the shapes of data in each Feature -// given in dense_keys. -// The number of elements in the Feature corresponding to dense_key[j] -// must always equal dense_shapes[j].NumEntries(). -// If dense_shapes[j] == (D0, D1, ..., DN) then the shape of output -// Tensor dense_values[j] will be (|serialized|, D0, D1, ..., DN): -// The dense outputs are just the inputs row-stacked by batch. -// This works for dense_shapes[j] = (-1, D1, ..., DN). In this case -// the shape of the output Tensor dense_values[j] will be -// (|serialized|, M, D1, .., DN), where M is the maximum number of blocks -// of elements of length D1 * .... * DN, across all minibatch entries -// in the input. Any minibatch entry with less than M blocks of elements of -// length D1 * ... * DN will be padded with the corresponding default_value -// scalar element along the second dimension. -func ParseExample(scope *Scope, serialized tf.Output, names tf.Output, sparse_keys []tf.Output, dense_keys []tf.Output, dense_defaults []tf.Output, sparse_types []tf.DataType, dense_shapes []tf.Shape) (sparse_indices []tf.Output, sparse_values []tf.Output, sparse_shapes []tf.Output, dense_values []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"sparse_types": sparse_types, "dense_shapes": dense_shapes} - opspec := tf.OpSpec{ - Type: "ParseExample", - Input: []tf.Input{ - serialized, names, tf.OutputList(sparse_keys), tf.OutputList(dense_keys), tf.OutputList(dense_defaults), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if sparse_indices, idx, err = makeOutputList(op, idx, "sparse_indices"); err != nil { - scope.UpdateErr("ParseExample", err) - return - } - if sparse_values, idx, err = makeOutputList(op, idx, "sparse_values"); err != nil { - scope.UpdateErr("ParseExample", err) - return - } - if sparse_shapes, idx, err = makeOutputList(op, idx, "sparse_shapes"); err != nil { - scope.UpdateErr("ParseExample", err) - return - } - if dense_values, idx, err = makeOutputList(op, idx, "dense_values"); err != nil { - scope.UpdateErr("ParseExample", err) - return - } - return sparse_indices, sparse_values, sparse_shapes, dense_values -} - -// PrelinearizeTupleAttr is an optional argument to PrelinearizeTuple. -type PrelinearizeTupleAttr func(optionalAttr) - -// PrelinearizeTupleLayouts sets the optional layouts attribute to value. -// -// value: A vector holding the requested layout in minor-to-major sequence for all the -// tuple shapes in the order the shapes appear in the "shapes" input. The layout -// elements for a sub-shape can be set to -1 in which case the corresponding layout -// will be computed by the infeed operation. -// If not specified, defaults to <> -func PrelinearizeTupleLayouts(value []int64) PrelinearizeTupleAttr { - return func(m optionalAttr) { - m["layouts"] = value - } -} - -// An op which linearizes multiple Tensor values to an opaque variant tensor. -// -// Arguments: -// inputs: A list of tensors that will be provided using the infeed mechanism. -// shapes: The shapes of each tensor in `inputs`. -func PrelinearizeTuple(scope *Scope, inputs []tf.Output, shapes []tf.Shape, optional ...PrelinearizeTupleAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"shapes": shapes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "PrelinearizeTuple", - Input: []tf.Input{ - tf.OutputList(inputs), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceScatterNdUpdateAttr is an optional argument to ResourceScatterNdUpdate. -type ResourceScatterNdUpdateAttr func(optionalAttr) - -// ResourceScatterNdUpdateUseLocking sets the optional use_locking attribute to value. -// -// value: An optional bool. Defaults to True. If True, the assignment will -// be protected by a lock; otherwise the behavior is undefined, -// but may exhibit less contention. -// If not specified, defaults to true -func ResourceScatterNdUpdateUseLocking(value bool) ResourceScatterNdUpdateAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Applies sparse `updates` to individual values or slices within a given -// -// variable according to `indices`. -// -// `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. -// -// `indices` must be integer tensor, containing indices into `ref`. -// It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. -// -// The innermost dimension of `indices` (with length `K`) corresponds to -// indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th -// dimension of `ref`. -// -// `updates` is `Tensor` of rank `Q-1+P-K` with shape: -// -// ``` -// [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]. -// ``` -// -// For example, say we want to update 4 scattered elements to a rank-1 tensor to -// 8 elements. In Python, that update would look like this: -// -// ```python -// ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) -// indices = tf.constant([[4], [3], [1] ,[7]]) -// updates = tf.constant([9, 10, 11, 12]) -// update = tf.scatter_nd_update(ref, indices, updates) -// with tf.Session() as sess: -// print sess.run(update) -// ``` -// -// The resulting update to ref would look like this: -// -// [1, 11, 3, 10, 9, 6, 7, 12] -// -// See `tf.scatter_nd` for more details about how to make updates to -// slices. -// -// Arguments: -// ref: A resource handle. Must be from a VarHandleOp. -// indices: A Tensor. Must be one of the following types: int32, int64. -// A tensor of indices into ref. -// updates: A Tensor. Must have the same type as ref. A tensor of updated -// values to add to ref. -// -// Returns the created operation. -func ResourceScatterNdUpdate(scope *Scope, ref tf.Output, indices tf.Output, updates tf.Output, optional ...ResourceScatterNdUpdateAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceScatterNdUpdate", - Input: []tf.Input{ - ref, indices, updates, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Deprecated. Use TensorArraySizeV3 -// -// DEPRECATED at GraphDef version 26: Use TensorArraySizeV3 -func TensorArraySizeV2(scope *Scope, handle tf.Output, flow_in tf.Output) (size tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorArraySizeV2", - Input: []tf.Input{ - handle, flow_in, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that contains `rate` elements from the `input_dataset`. -// -// Arguments: -// -// rate: A scalar representing the sample rate of elements from the `input_dataset` -// that should be taken. -// seed: A scalar representing seed of random number generator. -// seed2: A scalar representing seed2 of random number generator. -// -// -func SamplingDataset(scope *Scope, input_dataset tf.Output, rate tf.Output, seed tf.Output, seed2 tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "SamplingDataset", - Input: []tf.Input{ - input_dataset, rate, seed, seed2, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceScatterNdAddAttr is an optional argument to ResourceScatterNdAdd. -type ResourceScatterNdAddAttr func(optionalAttr) - -// ResourceScatterNdAddUseLocking sets the optional use_locking attribute to value. -// -// value: An optional bool. Defaults to True. If True, the assignment will -// be protected by a lock; otherwise the behavior is undefined, -// but may exhibit less contention. -// If not specified, defaults to true -func ResourceScatterNdAddUseLocking(value bool) ResourceScatterNdAddAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Applies sparse addition to individual values or slices in a Variable. -// -// `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. -// -// `indices` must be integer tensor, containing indices into `ref`. -// It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. -// -// The innermost dimension of `indices` (with length `K`) corresponds to -// indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th -// dimension of `ref`. -// -// `updates` is `Tensor` of rank `Q-1+P-K` with shape: -// -// ``` -// [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]] -// ``` -// -// For example, say we want to add 4 scattered elements to a rank-1 tensor to -// 8 elements. In Python, that addition would look like this: -// -// ```python -// ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8], use_resource=True) -// indices = tf.constant([[4], [3], [1], [7]]) -// updates = tf.constant([9, 10, 11, 12]) -// add = tf.scatter_nd_add(ref, indices, updates) -// with tf.Session() as sess: -// print sess.run(add) -// ``` -// -// The resulting update to ref would look like this: -// -// [1, 13, 3, 14, 14, 6, 7, 20] -// -// See `tf.scatter_nd` for more details about how to make updates to -// slices. -// -// Arguments: -// ref: A resource handle. Must be from a VarHandleOp. -// indices: A Tensor. Must be one of the following types: int32, int64. -// A tensor of indices into ref. -// updates: A Tensor. Must have the same type as ref. A tensor of -// values to add to ref. -// -// Returns the created operation. -func ResourceScatterNdAdd(scope *Scope, ref tf.Output, indices tf.Output, updates tf.Output, optional ...ResourceScatterNdAddAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceScatterNdAdd", - Input: []tf.Input{ - ref, indices, updates, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Computes the gradient for the inverse of `x` wrt its input. -// -// Specifically, `grad = -dy * y*y`, where `y = 1/x`, and `dy` -// is the corresponding input gradient. -func InvGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "InvGrad", - Input: []tf.Input{ - y, dy, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// PrelinearizeAttr is an optional argument to Prelinearize. -type PrelinearizeAttr func(optionalAttr) - -// PrelinearizeShape sets the optional shape attribute to value. -// -// value: The shape of the tensor. -// If not specified, defaults to <> -func PrelinearizeShape(value tf.Shape) PrelinearizeAttr { - return func(m optionalAttr) { - m["shape"] = value - } -} - -// PrelinearizeLayout sets the optional layout attribute to value. -// -// value: A vector holding the requested layout in minor-to-major sequence. If a layout -// attribute is passed but its values are all -1 the layout will be computed by -// the infeed operation. -// If not specified, defaults to <> -func PrelinearizeLayout(value []int64) PrelinearizeAttr { - return func(m optionalAttr) { - m["layout"] = value - } -} - -// An op which linearizes one Tensor value to an opaque variant tensor. -// -// Arguments: -// input: A tensor that will be linearized. -func Prelinearize(scope *Scope, input tf.Output, optional ...PrelinearizeAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Prelinearize", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Return the reduction indices for computing gradients of s0 op s1 with broadcast. -// -// This is typically used by gradient computations for a broadcasting operation. -func BroadcastGradientArgs(scope *Scope, s0 tf.Output, s1 tf.Output) (r0 tf.Output, r1 tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BroadcastGradientArgs", - Input: []tf.Input{ - s0, s1, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// Fetches multiple values from infeed as an XLA tuple. -// -// Arguments: -// dtypes: The element types of each element in `outputs`. -// shapes: The shapes of each tensor in `outputs`. -// -// Returns A list of tensors that will be provided using the infeed mechanism. -func InfeedDequeueTuple(scope *Scope, dtypes []tf.DataType, shapes []tf.Shape) (outputs []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtypes": dtypes, "shapes": shapes} - opspec := tf.OpSpec{ - Type: "InfeedDequeueTuple", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if outputs, idx, err = makeOutputList(op, idx, "outputs"); err != nil { - scope.UpdateErr("InfeedDequeueTuple", err) - return - } - return outputs -} - -// LoadTPUEmbeddingAdadeltaParametersAttr is an optional argument to LoadTPUEmbeddingAdadeltaParameters. -type LoadTPUEmbeddingAdadeltaParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingAdadeltaParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingAdadeltaParametersTableId(value int64) LoadTPUEmbeddingAdadeltaParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingAdadeltaParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingAdadeltaParametersTableName(value string) LoadTPUEmbeddingAdadeltaParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load Adadelta embedding parameters. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the Adadelta optimization algorithm. -// accumulators: Value of accumulators used in the Adadelta optimization algorithm. -// updates: Value of updates used in the Adadelta optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingAdadeltaParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, updates tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingAdadeltaParametersAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingAdadeltaParameters", - Input: []tf.Input{ - parameters, accumulators, updates, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// InfeedEnqueueTupleAttr is an optional argument to InfeedEnqueueTuple. -type InfeedEnqueueTupleAttr func(optionalAttr) - -// InfeedEnqueueTupleLayouts sets the optional layouts attribute to value. -// -// value: A vector holding the requested layout in minor-to-major sequence for -// all the tuple shapes, in the order the shapes appear in the "shapes" input. -// The layout elements for a sub-shape can be set to -1, in which case the -// corresponding layout will be computed by the infeed operation. -// If not specified, defaults to <> -func InfeedEnqueueTupleLayouts(value []int64) InfeedEnqueueTupleAttr { - return func(m optionalAttr) { - m["layouts"] = value - } -} - -// InfeedEnqueueTupleDeviceOrdinal sets the optional device_ordinal attribute to value. -// -// value: The TPU device to use. This should be -1 when the Op -// is running on a TPU device, and >= 0 when the Op is running on the CPU -// device. -// If not specified, defaults to -1 -func InfeedEnqueueTupleDeviceOrdinal(value int64) InfeedEnqueueTupleAttr { - return func(m optionalAttr) { - m["device_ordinal"] = value - } -} - -// Feeds multiple Tensor values into the computation as an XLA tuple. -// -// Arguments: -// inputs: A list of tensors that will be provided using the infeed mechanism. -// shapes: The shapes of each tensor in `inputs`. -// -// Returns the created operation. -func InfeedEnqueueTuple(scope *Scope, inputs []tf.Output, shapes []tf.Shape, optional ...InfeedEnqueueTupleAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"shapes": shapes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "InfeedEnqueueTuple", - Input: []tf.Input{ - tf.OutputList(inputs), - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Enqueue a Tensor on the computation outfeed. -// -// Arguments: -// input: A tensor that will be inserted into the outfeed queue. -// -// Returns the created operation. -func OutfeedEnqueue(scope *Scope, input tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "OutfeedEnqueue", - Input: []tf.Input{ - input, - }, - } - return scope.AddOperation(opspec) -} - -// QuantizedRelu6Attr is an optional argument to QuantizedRelu6. -type QuantizedRelu6Attr func(optionalAttr) - -// QuantizedRelu6OutType sets the optional out_type attribute to value. -// If not specified, defaults to DT_QUINT8 -func QuantizedRelu6OutType(value tf.DataType) QuantizedRelu6Attr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` -// -// Arguments: -// -// min_features: The float value that the lowest quantized value represents. -// max_features: The float value that the highest quantized value represents. -// -// Returns Has the same output shape as "features".The float value that the lowest quantized value represents.The float value that the highest quantized value represents. -func QuantizedRelu6(scope *Scope, features tf.Output, min_features tf.Output, max_features tf.Output, optional ...QuantizedRelu6Attr) (activations tf.Output, min_activations tf.Output, max_activations tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "QuantizedRelu6", - Input: []tf.Input{ - features, min_features, max_features, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// RetrieveTPUEmbeddingADAMParametersAttr is an optional argument to RetrieveTPUEmbeddingADAMParameters. -type RetrieveTPUEmbeddingADAMParametersAttr func(optionalAttr) - -// RetrieveTPUEmbeddingADAMParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingADAMParametersTableId(value int64) RetrieveTPUEmbeddingADAMParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// RetrieveTPUEmbeddingADAMParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingADAMParametersTableName(value string) RetrieveTPUEmbeddingADAMParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Retrieve ADAM embedding parameters. -// -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. -// -// Returns Parameter parameters updated by the ADAM optimization algorithm.Parameter momenta updated by the ADAM optimization algorithm.Parameter velocities updated by the ADAM optimization algorithm. -func RetrieveTPUEmbeddingADAMParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingADAMParametersAttr) (parameters tf.Output, momenta tf.Output, velocities tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingADAMParameters", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// SparseReduceSumAttr is an optional argument to SparseReduceSum. -type SparseReduceSumAttr func(optionalAttr) - -// SparseReduceSumKeepDims sets the optional keep_dims attribute to value. -// -// value: If true, retain reduced dimensions with length 1. -// If not specified, defaults to false -func SparseReduceSumKeepDims(value bool) SparseReduceSumAttr { - return func(m optionalAttr) { - m["keep_dims"] = value - } -} - -// Computes the sum of elements across dimensions of a SparseTensor. -// -// This Op takes a SparseTensor and is the sparse counterpart to -// `tf.reduce_sum()`. In particular, this Op also returns a dense `Tensor` -// instead of a sparse one. -// -// Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless -// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in -// `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained -// with length 1. -// -// If `reduction_axes` has no entries, all dimensions are reduced, and a tensor -// with a single element is returned. Additionally, the axes can be negative, -// which are interpreted according to the indexing rules in Python. -// -// Arguments: -// input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a -// SparseTensor, possibly not in canonical ordering. -// input_values: 1-D. `N` non-empty values corresponding to `input_indices`. -// input_shape: 1-D. Shape of the input SparseTensor. -// reduction_axes: 1-D. Length-`K` vector containing the reduction axes. -// -// Returns `R-K`-D. The reduced Tensor. -func SparseReduceSum(scope *Scope, input_indices tf.Output, input_values tf.Output, input_shape tf.Output, reduction_axes tf.Output, optional ...SparseReduceSumAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SparseReduceSum", - Input: []tf.Input{ - input_indices, input_values, input_shape, reduction_axes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Encodes a `RaggedTensor` into a `variant` Tensor. -// -// -// Encodes the given `RaggedTensor` and returns a `variant` Tensor. If -// `batched_input` is True, then input `RaggedTensor` is unbatched along the -// zero-th dimension, each component `RaggedTensor` is encoded into a scalar -// `variant` Tensor, and these are stacked to return a 1-D `variant` Tensor. -// If `batched_input` is False, then the input `RaggedTensor` is encoded as is and -// a scalar `variant` Tensor is returned. A `RaggedTensor` is encoded by first -// creating a 1-D `variant` Tensor with `ragged_rank + 1` elements, containing the -// splits and values Tensors of the `RaggedTensor`. Then the 1-D `variant` Tensor -// is wrapped in a scalar `variant` Tensor. See `RaggedTensorFromVariant` for the -// corresponding decoding logic. -// -// -// Arguments: -// rt_nested_splits: A list of one or more Tensors representing the splits of the input -// `RaggedTensor`. -// rt_dense_values: A Tensor representing the values of the input `RaggedTensor`. -// batched_input: A `bool` denoting whether the input is a batched `RaggedTensor`. -// -// Returns A `variant` Tensor that containing encoded `RaggedTensor`. -func RaggedTensorToVariant(scope *Scope, rt_nested_splits []tf.Output, rt_dense_values tf.Output, batched_input bool) (encoded_ragged tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"batched_input": batched_input} - opspec := tf.OpSpec{ - Type: "RaggedTensorToVariant", - Input: []tf.Input{ - tf.OutputList(rt_nested_splits), rt_dense_values, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// CumsumAttr is an optional argument to Cumsum. -type CumsumAttr func(optionalAttr) - -// CumsumExclusive sets the optional exclusive attribute to value. -// -// value: If `True`, perform exclusive cumsum. -// If not specified, defaults to false -func CumsumExclusive(value bool) CumsumAttr { - return func(m optionalAttr) { - m["exclusive"] = value - } -} - -// CumsumReverse sets the optional reverse attribute to value. -// -// value: A `bool` (default: False). -// If not specified, defaults to false -func CumsumReverse(value bool) CumsumAttr { - return func(m optionalAttr) { - m["reverse"] = value - } -} - -// Compute the cumulative sum of the tensor `x` along `axis`. -// -// By default, this op performs an inclusive cumsum, which means that the first -// element of the input is identical to the first element of the output: -// -// ```python -// tf.cumsum([a, b, c]) # => [a, a + b, a + b + c] -// ``` -// -// By setting the `exclusive` kwarg to `True`, an exclusive cumsum is -// performed instead: -// -// ```python -// tf.cumsum([a, b, c], exclusive=True) # => [0, a, a + b] -// ``` -// -// By setting the `reverse` kwarg to `True`, the cumsum is performed in the -// opposite direction: -// -// ```python -// tf.cumsum([a, b, c], reverse=True) # => [a + b + c, b + c, c] -// ``` -// -// This is more efficient than using separate `tf.reverse` ops. -// -// The `reverse` and `exclusive` kwargs can also be combined: -// -// ```python -// tf.cumsum([a, b, c], exclusive=True, reverse=True) # => [b + c, c, 0] -// ``` -// -// Arguments: -// x: A `Tensor`. Must be one of the following types: `float32`, `float64`, -// `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, -// `complex128`, `qint8`, `quint8`, `qint32`, `half`. -// axis: A `Tensor` of type `int32` (default: 0). Must be in the range -// `[-rank(x), rank(x))`. -func Cumsum(scope *Scope, x tf.Output, axis tf.Output, optional ...CumsumAttr) (out tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Cumsum", - Input: []tf.Input{ - x, axis, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// InfeedEnqueueAttr is an optional argument to InfeedEnqueue. -type InfeedEnqueueAttr func(optionalAttr) - -// InfeedEnqueueShape sets the optional shape attribute to value. -// -// value: The shape of the tensor. -// If not specified, defaults to <> -func InfeedEnqueueShape(value tf.Shape) InfeedEnqueueAttr { - return func(m optionalAttr) { - m["shape"] = value - } -} - -// InfeedEnqueueLayout sets the optional layout attribute to value. -// -// value: A vector holding the requested layout in minor-to-major sequence. -// If a layout attribute is passed, but its values are all -1, the layout will -// be computed by the infeed operation. -// If not specified, defaults to <> -func InfeedEnqueueLayout(value []int64) InfeedEnqueueAttr { - return func(m optionalAttr) { - m["layout"] = value - } -} - -// InfeedEnqueueDeviceOrdinal sets the optional device_ordinal attribute to value. -// -// value: The TPU device to use. This should be -1 when the Op -// is running on a TPU device, and >= 0 when the Op is running on the CPU -// device. -// If not specified, defaults to -1 -func InfeedEnqueueDeviceOrdinal(value int64) InfeedEnqueueAttr { - return func(m optionalAttr) { - m["device_ordinal"] = value - } -} - -// An op which feeds a single Tensor value into the computation. -// -// Arguments: -// input: A tensor that will be provided using the infeed mechanism. -// -// Returns the created operation. -func InfeedEnqueue(scope *Scope, input tf.Output, optional ...InfeedEnqueueAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "InfeedEnqueue", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// MaxPoolV2Attr is an optional argument to MaxPoolV2. -type MaxPoolV2Attr func(optionalAttr) - -// MaxPoolV2DataFormat sets the optional data_format attribute to value. -// -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the data is stored in the order of: -// [batch, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// If not specified, defaults to "NHWC" -func MaxPoolV2DataFormat(value string) MaxPoolV2Attr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Performs max pooling on the input. -// -// Arguments: -// input: 4-D input to pool over. -// ksize: The size of the window for each dimension of the input tensor. -// strides: The stride of the sliding window for each dimension of the -// input tensor. -// padding: The type of padding algorithm to use. -// -// Returns The max pooled output tensor. -func MaxPoolV2(scope *Scope, input tf.Output, ksize tf.Output, strides tf.Output, padding string, optional ...MaxPoolV2Attr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MaxPoolV2", - Input: []tf.Input{ - input, ksize, strides, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that executes a SQL query and emits rows of the result set. -// -// Arguments: -// driver_name: The database type. Currently, the only supported type is 'sqlite'. -// data_source_name: A connection string to connect to the database. -// query: A SQL query to execute. -// -// -func ExperimentalSqlDataset(scope *Scope, driver_name tf.Output, data_source_name tf.Output, query tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ExperimentalSqlDataset", - Input: []tf.Input{ - driver_name, data_source_name, query, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// MaxPool3DAttr is an optional argument to MaxPool3D. -type MaxPool3DAttr func(optionalAttr) - -// MaxPool3DDataFormat sets the optional data_format attribute to value. -// -// value: The data format of the input and output data. With the -// default format "NDHWC", the data is stored in the order of: -// [batch, in_depth, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCDHW", the data storage order is: -// [batch, in_channels, in_depth, in_height, in_width]. -// If not specified, defaults to "NDHWC" -func MaxPool3DDataFormat(value string) MaxPool3DAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Performs 3D max pooling on the input. -// -// Arguments: -// input: Shape `[batch, depth, rows, cols, channels]` tensor to pool over. -// ksize: 1-D tensor of length 5. The size of the window for each dimension of -// the input tensor. Must have `ksize[0] = ksize[4] = 1`. -// strides: 1-D tensor of length 5. The stride of the sliding window for each -// dimension of `input`. Must have `strides[0] = strides[4] = 1`. -// padding: The type of padding algorithm to use. -// -// Returns The max pooled output tensor. -func MaxPool3D(scope *Scope, input tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPool3DAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MaxPool3D", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Selects the k nearest centers for each point. -// -// Rows of points are assumed to be input points. Rows of centers are assumed to be -// the list of candidate centers. For each point, the k centers that have least L2 -// distance to it are computed. -// -// Arguments: -// points: Matrix of shape (n, d). Rows are assumed to be input points. -// centers: Matrix of shape (m, d). Rows are assumed to be centers. -// k: Number of nearest centers to return for each point. If k is larger than m, then -// only m centers are returned. -// -// Returns Matrix of shape (n, min(m, k)). Each row contains the indices of the centers -// closest to the corresponding point, ordered by increasing distance.Matrix of shape (n, min(m, k)). Each row contains the squared L2 distance to the -// corresponding center in nearest_center_indices. -func NearestNeighbors(scope *Scope, points tf.Output, centers tf.Output, k tf.Output) (nearest_center_indices tf.Output, nearest_center_distances tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "NearestNeighbors", - Input: []tf.Input{ - points, centers, k, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - // FusedBatchNormV2Attr is an optional argument to FusedBatchNormV2. type FusedBatchNormV2Attr func(optionalAttr) @@ -18289,6 +17160,1070 @@ func ResourceApplyMomentum(scope *Scope, var_ tf.Output, accum tf.Output, lr tf. return scope.AddOperation(opspec) } +// Outputs random integers from a uniform distribution. +// +// The generated values are uniform integers in the range `[minval, maxval)`. +// The lower bound `minval` is included in the range, while the upper bound +// `maxval` is excluded. +// +// The random integers are slightly biased unless `maxval - minval` is an exact +// power of two. The bias is small for values of `maxval - minval` significantly +// smaller than the range of the output (either `2^32` or `2^64`). +// +// Arguments: +// resource: The handle of the resource variable that stores the state of the RNG. +// algorithm: The RNG algorithm. +// shape: The shape of the output tensor. +// minval: Minimum value (inclusive, scalar). +// maxval: Maximum value (exclusive, scalar). +// +// Returns Random values with specified shape. +func StatefulUniformInt(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, minval tf.Output, maxval tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "StatefulUniformInt", + Input: []tf.Input{ + resource, algorithm, shape, minval, maxval, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes hyperbolic tangent of `x` element-wise. +func Tanh(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Tanh", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// EnqueueTPUEmbeddingSparseTensorBatchAttr is an optional argument to EnqueueTPUEmbeddingSparseTensorBatch. +type EnqueueTPUEmbeddingSparseTensorBatchAttr func(optionalAttr) + +// EnqueueTPUEmbeddingSparseTensorBatchDeviceOrdinal sets the optional device_ordinal attribute to value. +// +// value: The TPU device to use. Should be >= 0 and less than the number +// of TPU cores in the task on which the node is placed. +// If not specified, defaults to -1 +func EnqueueTPUEmbeddingSparseTensorBatchDeviceOrdinal(value int64) EnqueueTPUEmbeddingSparseTensorBatchAttr { + return func(m optionalAttr) { + m["device_ordinal"] = value + } +} + +// EnqueueTPUEmbeddingSparseTensorBatchCombiners sets the optional combiners attribute to value. +// +// value: A list of string scalars, one for each embedding table that specify +// how to normalize the embedding activations after weighted summation. +// Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have +// the sum of the weights be 0 for 'mean' or the sum of the squared weights be +// 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for +// all tables. +// If not specified, defaults to <> +func EnqueueTPUEmbeddingSparseTensorBatchCombiners(value []string) EnqueueTPUEmbeddingSparseTensorBatchAttr { + return func(m optionalAttr) { + m["combiners"] = value + } +} + +// EnqueueTPUEmbeddingSparseTensorBatchMaxSequenceLengths sets the optional max_sequence_lengths attribute to value. +// If not specified, defaults to <> +func EnqueueTPUEmbeddingSparseTensorBatchMaxSequenceLengths(value []int64) EnqueueTPUEmbeddingSparseTensorBatchAttr { + return func(m optionalAttr) { + m["max_sequence_lengths"] = value + } +} + +// Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). +// +// sample_indices[i], embedding_indices[i] and aggregation_weights[i] correspond +// to the ith feature. table_ids[i] indicates which embedding table to look up ith +// feature. +// +// The tensors at corresponding positions in the three input lists (sample_indices, +// embedding_indices and aggregation_weights) must have the same shape, i.e. rank 1 +// with dim_size() equal to the total number of lookups into the table described by +// the corresponding feature. +// +// Arguments: +// sample_indices: A list of rank 1 Tensors specifying the training example to +// which the corresponding embedding_indices and aggregation_weights values +// belong. It corresponds to sp_ids.indices[:,0] in embedding_lookup_sparse(). +// embedding_indices: A list of rank 1 Tensors, indices into the embedding tables. +// It corresponds to sp_ids.values in embedding_lookup_sparse(). +// aggregation_weights: A list of rank 1 Tensors containing per training example +// aggregation weights. It corresponds to sp_weights.values in +// embedding_lookup_sparse(). +// mode_override: A string input that overrides the mode specified in the +// TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', +// 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set +// in TPUEmbeddingConfiguration is used, otherwise mode_override is used. +// table_ids: A list of integers specifying the identifier of the embedding table +// (offset of TableDescriptor in the TPUEmbeddingConfiguration) to lookup the +// corresponding input. The ith input is looked up using table_ids[i]. The size +// of the table_ids list must be equal to that of sample_indices, +// embedding_indices and aggregation_weights. +// +// Returns the created operation. +func EnqueueTPUEmbeddingSparseTensorBatch(scope *Scope, sample_indices []tf.Output, embedding_indices []tf.Output, aggregation_weights []tf.Output, mode_override tf.Output, table_ids []int64, optional ...EnqueueTPUEmbeddingSparseTensorBatchAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"table_ids": table_ids} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "EnqueueTPUEmbeddingSparseTensorBatch", + Input: []tf.Input{ + tf.OutputList(sample_indices), tf.OutputList(embedding_indices), tf.OutputList(aggregation_weights), mode_override, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Computes rectified linear 6: `min(max(features, 0), 6)`. +func Relu6(scope *Scope, features tf.Output) (activations tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Relu6", + Input: []tf.Input{ + features, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset that batches and pads `batch_size` elements from the input. +// +// Arguments: +// +// batch_size: A scalar representing the number of elements to accumulate in a +// batch. +// padded_shapes: A list of int64 tensors representing the desired padded shapes +// of the corresponding output components. These shapes may be partially +// specified, using `-1` to indicate that a particular dimension should be +// padded to the maximum size of all batch elements. +// padding_values: A list of scalars containing the padding value to use for +// each of the outputs. +// +func PaddedBatchDataset(scope *Scope, input_dataset tf.Output, batch_size tf.Output, padded_shapes []tf.Output, padding_values []tf.Output, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "PaddedBatchDataset", + Input: []tf.Input{ + input_dataset, batch_size, tf.OutputList(padded_shapes), tf.OutputList(padding_values), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// This op consumes a lock created by `MutexLock`. +// +// This op exists to consume a tensor created by `MutexLock` (other than +// direct control dependencies). It should be the only that consumes the tensor, +// and will raise an error if it is not. Its only purpose is to keep the +// mutex lock tensor alive until it is consumed by this op. +// +// **NOTE**: This operation must run on the same device as its input. This may +// be enforced via the `colocate_with` mechanism. +// +// Arguments: +// mutex_lock: A tensor returned by `MutexLock`. +// +// Returns the created operation. +func ConsumeMutexLock(scope *Scope, mutex_lock tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ConsumeMutexLock", + Input: []tf.Input{ + mutex_lock, + }, + } + return scope.AddOperation(opspec) +} + +// QuantizedReluXAttr is an optional argument to QuantizedReluX. +type QuantizedReluXAttr func(optionalAttr) + +// QuantizedReluXOutType sets the optional out_type attribute to value. +// If not specified, defaults to DT_QUINT8 +func QuantizedReluXOutType(value tf.DataType) QuantizedReluXAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` +// +// Arguments: +// +// +// min_features: The float value that the lowest quantized value represents. +// max_features: The float value that the highest quantized value represents. +// +// Returns Has the same output shape as "features".The float value that the lowest quantized value represents.The float value that the highest quantized value represents. +func QuantizedReluX(scope *Scope, features tf.Output, max_value tf.Output, min_features tf.Output, max_features tf.Output, optional ...QuantizedReluXAttr) (activations tf.Output, min_activations tf.Output, max_activations tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "QuantizedReluX", + Input: []tf.Input{ + features, max_value, min_features, max_features, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Returns a tensor of zeros with the same shape and type as x. +// +// Arguments: +// x: a tensor of type T. +// +// Returns a tensor of the same shape and type as x but filled with zeros. +func ZerosLike(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ZerosLike", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Outputs a `Summary` protocol buffer with scalar values. +// +// The input `tags` and `values` must have the same shape. The generated summary +// has a summary value for each tag-value pair in `tags` and `values`. +// +// Arguments: +// tags: Tags for the summary. +// values: Same shape as `tags. Values for the summary. +// +// Returns Scalar. Serialized `Summary` protocol buffer. +func ScalarSummary(scope *Scope, tags tf.Output, values tf.Output) (summary tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ScalarSummary", + Input: []tf.Input{ + tags, values, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset containing elements of first component of `input_dataset` having true in the last component. +func FilterByLastComponentDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "FilterByLastComponentDataset", + Input: []tf.Input{ + input_dataset, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// TPUReplicateMetadataAttr is an optional argument to TPUReplicateMetadata. +type TPUReplicateMetadataAttr func(optionalAttr) + +// TPUReplicateMetadataNumCoresPerReplica sets the optional num_cores_per_replica attribute to value. +// +// value: Number of cores per replica. Used for model parallelism. +// If not specified, defaults to 1 +func TPUReplicateMetadataNumCoresPerReplica(value int64) TPUReplicateMetadataAttr { + return func(m optionalAttr) { + m["num_cores_per_replica"] = value + } +} + +// TPUReplicateMetadataTopology sets the optional topology attribute to value. +// +// value: TopologyProto indicating the topology of the TPU pod slice. +// If not specified, defaults to "" +func TPUReplicateMetadataTopology(value string) TPUReplicateMetadataAttr { + return func(m optionalAttr) { + m["topology"] = value + } +} + +// TPUReplicateMetadataUseTpu sets the optional use_tpu attribute to value. +// +// value: Whether to place the computation on the TPU. +// If not specified, defaults to true +func TPUReplicateMetadataUseTpu(value bool) TPUReplicateMetadataAttr { + return func(m optionalAttr) { + m["use_tpu"] = value + } +} + +// TPUReplicateMetadataDeviceAssignment sets the optional device_assignment attribute to value. +// +// value: The assignment of devices for the computation. +// If not specified, defaults to <> +func TPUReplicateMetadataDeviceAssignment(value []int64) TPUReplicateMetadataAttr { + return func(m optionalAttr) { + m["device_assignment"] = value + } +} + +// TPUReplicateMetadataComputationShape sets the optional computation_shape attribute to value. +// +// value: DEPRECATED. Use num_cores_per_replica instead. +// If not specified, defaults to <> +func TPUReplicateMetadataComputationShape(value []int64) TPUReplicateMetadataAttr { + return func(m optionalAttr) { + m["computation_shape"] = value + } +} + +// TPUReplicateMetadataHostComputeCore sets the optional host_compute_core attribute to value. +// If not specified, defaults to <> +func TPUReplicateMetadataHostComputeCore(value []string) TPUReplicateMetadataAttr { + return func(m optionalAttr) { + m["host_compute_core"] = value + } +} + +// TPUReplicateMetadataPaddingMap sets the optional padding_map attribute to value. +// If not specified, defaults to <> +func TPUReplicateMetadataPaddingMap(value []string) TPUReplicateMetadataAttr { + return func(m optionalAttr) { + m["padding_map"] = value + } +} + +// TPUReplicateMetadataStepMarkerLocation sets the optional step_marker_location attribute to value. +// If not specified, defaults to "STEP_MARK_AT_ENTRY" +func TPUReplicateMetadataStepMarkerLocation(value string) TPUReplicateMetadataAttr { + return func(m optionalAttr) { + m["step_marker_location"] = value + } +} + +// Metadata indicaitng how the TPU computation should be replicated. +// +// Arguments: +// num_replicas: Number of replicas of the computation +// +// Returns the created operation. +func TPUReplicateMetadata(scope *Scope, num_replicas int64, optional ...TPUReplicateMetadataAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_replicas": num_replicas} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TPUReplicateMetadata", + + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug. +type RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr func(optionalAttr) + +// RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Retrieve Adadelta embedding parameters with debug support. +// +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. +// +// Returns Parameter parameters updated by the Adadelta optimization algorithm.Parameter accumulators updated by the Adadelta optimization algorithm.Parameter updates updated by the Adadelta optimization algorithm.Parameter gradient_accumulators updated by the Adadelta optimization algorithm. +func RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr) (parameters tf.Output, accumulators tf.Output, updates tf.Output, gradient_accumulators tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3) +} + +// Transforms a vector of brain.Example protos (as strings) into typed tensors. +// +// Arguments: +// serialized: A vector containing a batch of binary serialized Example protos. +// names: A vector containing the names of the serialized protos. +// May contain, for example, table key (descriptive) names for the +// corresponding serialized protos. These are purely useful for debugging +// purposes, and the presence of values here has no effect on the output. +// May also be an empty vector if no names are available. +// If non-empty, this vector must be the same length as "serialized". +// sparse_keys: A list of Nsparse string Tensors (scalars). +// The keys expected in the Examples' features associated with sparse values. +// dense_keys: A list of Ndense string Tensors (scalars). +// The keys expected in the Examples' features associated with dense values. +// dense_defaults: A list of Ndense Tensors (some may be empty). +// dense_defaults[j] provides default values +// when the example's feature_map lacks dense_key[j]. If an empty Tensor is +// provided for dense_defaults[j], then the Feature dense_keys[j] is required. +// The input type is inferred from dense_defaults[j], even when it's empty. +// If dense_defaults[j] is not empty, and dense_shapes[j] is fully defined, +// then the shape of dense_defaults[j] must match that of dense_shapes[j]. +// If dense_shapes[j] has an undefined major dimension (variable strides dense +// feature), dense_defaults[j] must contain a single element: +// the padding element. +// sparse_types: A list of Nsparse types; the data types of data in each Feature +// given in sparse_keys. +// Currently the ParseExample supports DT_FLOAT (FloatList), +// DT_INT64 (Int64List), and DT_STRING (BytesList). +// dense_shapes: A list of Ndense shapes; the shapes of data in each Feature +// given in dense_keys. +// The number of elements in the Feature corresponding to dense_key[j] +// must always equal dense_shapes[j].NumEntries(). +// If dense_shapes[j] == (D0, D1, ..., DN) then the shape of output +// Tensor dense_values[j] will be (|serialized|, D0, D1, ..., DN): +// The dense outputs are just the inputs row-stacked by batch. +// This works for dense_shapes[j] = (-1, D1, ..., DN). In this case +// the shape of the output Tensor dense_values[j] will be +// (|serialized|, M, D1, .., DN), where M is the maximum number of blocks +// of elements of length D1 * .... * DN, across all minibatch entries +// in the input. Any minibatch entry with less than M blocks of elements of +// length D1 * ... * DN will be padded with the corresponding default_value +// scalar element along the second dimension. +func ParseExample(scope *Scope, serialized tf.Output, names tf.Output, sparse_keys []tf.Output, dense_keys []tf.Output, dense_defaults []tf.Output, sparse_types []tf.DataType, dense_shapes []tf.Shape) (sparse_indices []tf.Output, sparse_values []tf.Output, sparse_shapes []tf.Output, dense_values []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"sparse_types": sparse_types, "dense_shapes": dense_shapes} + opspec := tf.OpSpec{ + Type: "ParseExample", + Input: []tf.Input{ + serialized, names, tf.OutputList(sparse_keys), tf.OutputList(dense_keys), tf.OutputList(dense_defaults), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if sparse_indices, idx, err = makeOutputList(op, idx, "sparse_indices"); err != nil { + scope.UpdateErr("ParseExample", err) + return + } + if sparse_values, idx, err = makeOutputList(op, idx, "sparse_values"); err != nil { + scope.UpdateErr("ParseExample", err) + return + } + if sparse_shapes, idx, err = makeOutputList(op, idx, "sparse_shapes"); err != nil { + scope.UpdateErr("ParseExample", err) + return + } + if dense_values, idx, err = makeOutputList(op, idx, "dense_values"); err != nil { + scope.UpdateErr("ParseExample", err) + return + } + return sparse_indices, sparse_values, sparse_shapes, dense_values +} + +// LoadTPUEmbeddingADAMParametersAttr is an optional argument to LoadTPUEmbeddingADAMParameters. +type LoadTPUEmbeddingADAMParametersAttr func(optionalAttr) + +// LoadTPUEmbeddingADAMParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingADAMParametersTableId(value int64) LoadTPUEmbeddingADAMParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingADAMParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingADAMParametersTableName(value string) LoadTPUEmbeddingADAMParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load ADAM embedding parameters. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the ADAM optimization algorithm. +// momenta: Value of momenta used in the ADAM optimization algorithm. +// velocities: Value of velocities used in the ADAM optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingADAMParameters(scope *Scope, parameters tf.Output, momenta tf.Output, velocities tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingADAMParametersAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingADAMParameters", + Input: []tf.Input{ + parameters, momenta, velocities, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Gather ragged slices from `params` axis `0` according to `indices`. +// +// Outputs a `RaggedTensor` output composed from `output_dense_values` and +// `output_nested_splits`, such that: +// +// ```python +// output.shape = indices.shape + params.shape[1:] +// output.ragged_rank = indices.shape.ndims + params.ragged_rank +// output[i...j, d0...dn] = params[indices[i...j], d0...dn] +// ``` +// +// where +// +// * `params = +// ragged.from_nested_row_splits(params_dense_values, params_nested_splits)` +// provides the values that should be gathered. +// * `indices` ia a dense tensor with dtype `int32` or `int64`, indicating which +// values should be gathered. +// * `output = +// ragged.from_nested_row_splits(output_dense_values, output_nested_splits)` +// is the output tensor. +// +// (Note: This c++ op is used to implement the higher-level python +// `tf.ragged.gather` op, which also supports ragged indices.) +// +// +// Arguments: +// params_nested_splits: The `nested_row_splits` tensors that define the row-partitioning for the +// `params` RaggedTensor input. +// params_dense_values: The `flat_values` for the `params` RaggedTensor. There was a terminology change +// at the python level from dense_values to flat_values, so dense_values is the +// deprecated name. +// indices: Indices in the outermost dimension of `params` of the values that should be +// gathered. +// OUTPUT_RAGGED_RANK: The ragged rank of the output RaggedTensor. `output_nested_splits` will contain +// this number of `row_splits` tensors. This value should equal +// `indices.shape.ndims + params.ragged_rank - 1`. +// +// Returns The `nested_row_splits` tensors that define the row-partitioning for the +// returned RaggedTensor.The `flat_values` for the returned RaggedTensor. +func RaggedGather(scope *Scope, params_nested_splits []tf.Output, params_dense_values tf.Output, indices tf.Output, OUTPUT_RAGGED_RANK int64) (output_nested_splits []tf.Output, output_dense_values tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"OUTPUT_RAGGED_RANK": OUTPUT_RAGGED_RANK} + opspec := tf.OpSpec{ + Type: "RaggedGather", + Input: []tf.Input{ + tf.OutputList(params_nested_splits), params_dense_values, indices, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if output_nested_splits, idx, err = makeOutputList(op, idx, "output_nested_splits"); err != nil { + scope.UpdateErr("RaggedGather", err) + return + } + output_dense_values = op.Output(idx) + return output_nested_splits, output_dense_values +} + +// PrelinearizeTupleAttr is an optional argument to PrelinearizeTuple. +type PrelinearizeTupleAttr func(optionalAttr) + +// PrelinearizeTupleLayouts sets the optional layouts attribute to value. +// +// value: A vector holding the requested layout in minor-to-major sequence for all the +// tuple shapes in the order the shapes appear in the "shapes" input. The layout +// elements for a sub-shape can be set to -1 in which case the corresponding layout +// will be computed by the infeed operation. +// If not specified, defaults to <> +func PrelinearizeTupleLayouts(value []int64) PrelinearizeTupleAttr { + return func(m optionalAttr) { + m["layouts"] = value + } +} + +// An op which linearizes multiple Tensor values to an opaque variant tensor. +// +// Arguments: +// inputs: A list of tensors that will be provided using the infeed mechanism. +// shapes: The shapes of each tensor in `inputs`. +func PrelinearizeTuple(scope *Scope, inputs []tf.Output, shapes []tf.Shape, optional ...PrelinearizeTupleAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"shapes": shapes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "PrelinearizeTuple", + Input: []tf.Input{ + tf.OutputList(inputs), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Fetches multiple values from infeed as an XLA tuple. +// +// Arguments: +// dtypes: The element types of each element in `outputs`. +// shapes: The shapes of each tensor in `outputs`. +// +// Returns A list of tensors that will be provided using the infeed mechanism. +func InfeedDequeueTuple(scope *Scope, dtypes []tf.DataType, shapes []tf.Shape) (outputs []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtypes": dtypes, "shapes": shapes} + opspec := tf.OpSpec{ + Type: "InfeedDequeueTuple", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if outputs, idx, err = makeOutputList(op, idx, "outputs"); err != nil { + scope.UpdateErr("InfeedDequeueTuple", err) + return + } + return outputs +} + +// InfeedEnqueueTupleAttr is an optional argument to InfeedEnqueueTuple. +type InfeedEnqueueTupleAttr func(optionalAttr) + +// InfeedEnqueueTupleLayouts sets the optional layouts attribute to value. +// +// value: A vector holding the requested layout in minor-to-major sequence for +// all the tuple shapes, in the order the shapes appear in the "shapes" input. +// The layout elements for a sub-shape can be set to -1, in which case the +// corresponding layout will be computed by the infeed operation. +// If not specified, defaults to <> +func InfeedEnqueueTupleLayouts(value []int64) InfeedEnqueueTupleAttr { + return func(m optionalAttr) { + m["layouts"] = value + } +} + +// InfeedEnqueueTupleDeviceOrdinal sets the optional device_ordinal attribute to value. +// +// value: The TPU device to use. This should be -1 when the Op +// is running on a TPU device, and >= 0 when the Op is running on the CPU +// device. +// If not specified, defaults to -1 +func InfeedEnqueueTupleDeviceOrdinal(value int64) InfeedEnqueueTupleAttr { + return func(m optionalAttr) { + m["device_ordinal"] = value + } +} + +// Feeds multiple Tensor values into the computation as an XLA tuple. +// +// Arguments: +// inputs: A list of tensors that will be provided using the infeed mechanism. +// shapes: The shapes of each tensor in `inputs`. +// +// Returns the created operation. +func InfeedEnqueueTuple(scope *Scope, inputs []tf.Output, shapes []tf.Shape, optional ...InfeedEnqueueTupleAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"shapes": shapes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "InfeedEnqueueTuple", + Input: []tf.Input{ + tf.OutputList(inputs), + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// ResourceScatterNdUpdateAttr is an optional argument to ResourceScatterNdUpdate. +type ResourceScatterNdUpdateAttr func(optionalAttr) + +// ResourceScatterNdUpdateUseLocking sets the optional use_locking attribute to value. +// +// value: An optional bool. Defaults to True. If True, the assignment will +// be protected by a lock; otherwise the behavior is undefined, +// but may exhibit less contention. +// If not specified, defaults to true +func ResourceScatterNdUpdateUseLocking(value bool) ResourceScatterNdUpdateAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Applies sparse `updates` to individual values or slices within a given +// +// variable according to `indices`. +// +// `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. +// +// `indices` must be integer tensor, containing indices into `ref`. +// It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. +// +// The innermost dimension of `indices` (with length `K`) corresponds to +// indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th +// dimension of `ref`. +// +// `updates` is `Tensor` of rank `Q-1+P-K` with shape: +// +// ``` +// [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]. +// ``` +// +// For example, say we want to update 4 scattered elements to a rank-1 tensor to +// 8 elements. In Python, that update would look like this: +// +// ```python +// ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) +// indices = tf.constant([[4], [3], [1] ,[7]]) +// updates = tf.constant([9, 10, 11, 12]) +// update = tf.scatter_nd_update(ref, indices, updates) +// with tf.Session() as sess: +// print sess.run(update) +// ``` +// +// The resulting update to ref would look like this: +// +// [1, 11, 3, 10, 9, 6, 7, 12] +// +// See `tf.scatter_nd` for more details about how to make updates to +// slices. +// +// Arguments: +// ref: A resource handle. Must be from a VarHandleOp. +// indices: A Tensor. Must be one of the following types: int32, int64. +// A tensor of indices into ref. +// updates: A Tensor. Must have the same type as ref. A tensor of updated +// values to add to ref. +// +// Returns the created operation. +func ResourceScatterNdUpdate(scope *Scope, ref tf.Output, indices tf.Output, updates tf.Output, optional ...ResourceScatterNdUpdateAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceScatterNdUpdate", + Input: []tf.Input{ + ref, indices, updates, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Creates a dataset that contains `rate` elements from the `input_dataset`. +// +// Arguments: +// +// rate: A scalar representing the sample rate of elements from the `input_dataset` +// that should be taken. +// seed: A scalar representing seed of random number generator. +// seed2: A scalar representing seed2 of random number generator. +// +// +func SamplingDataset(scope *Scope, input_dataset tf.Output, rate tf.Output, seed tf.Output, seed2 tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "SamplingDataset", + Input: []tf.Input{ + input_dataset, rate, seed, seed2, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// SparseReduceSumAttr is an optional argument to SparseReduceSum. +type SparseReduceSumAttr func(optionalAttr) + +// SparseReduceSumKeepDims sets the optional keep_dims attribute to value. +// +// value: If true, retain reduced dimensions with length 1. +// If not specified, defaults to false +func SparseReduceSumKeepDims(value bool) SparseReduceSumAttr { + return func(m optionalAttr) { + m["keep_dims"] = value + } +} + +// Computes the sum of elements across dimensions of a SparseTensor. +// +// This Op takes a SparseTensor and is the sparse counterpart to +// `tf.reduce_sum()`. In particular, this Op also returns a dense `Tensor` +// instead of a sparse one. +// +// Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless +// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in +// `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained +// with length 1. +// +// If `reduction_axes` has no entries, all dimensions are reduced, and a tensor +// with a single element is returned. Additionally, the axes can be negative, +// which are interpreted according to the indexing rules in Python. +// +// Arguments: +// input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a +// SparseTensor, possibly not in canonical ordering. +// input_values: 1-D. `N` non-empty values corresponding to `input_indices`. +// input_shape: 1-D. Shape of the input SparseTensor. +// reduction_axes: 1-D. Length-`K` vector containing the reduction axes. +// +// Returns `R-K`-D. The reduced Tensor. +func SparseReduceSum(scope *Scope, input_indices tf.Output, input_values tf.Output, input_shape tf.Output, reduction_axes tf.Output, optional ...SparseReduceSumAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "SparseReduceSum", + Input: []tf.Input{ + input_indices, input_values, input_shape, reduction_axes, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Generates sparse cross from a list of sparse and dense tensors. +// +// The op takes two lists, one of 2D `SparseTensor` and one of 2D `Tensor`, each +// representing features of one feature column. It outputs a 2D `SparseTensor` with +// the batchwise crosses of these features. +// +// For example, if the inputs are +// +// inputs[0]: SparseTensor with shape = [2, 2] +// [0, 0]: "a" +// [1, 0]: "b" +// [1, 1]: "c" +// +// inputs[1]: SparseTensor with shape = [2, 1] +// [0, 0]: "d" +// [1, 0]: "e" +// +// inputs[2]: Tensor [["f"], ["g"]] +// +// then the output will be +// +// shape = [2, 2] +// [0, 0]: "a_X_d_X_f" +// [1, 0]: "b_X_e_X_g" +// [1, 1]: "c_X_e_X_g" +// +// if hashed_output=true then the output will be +// +// shape = [2, 2] +// [0, 0]: FingerprintCat64( +// Fingerprint64("f"), FingerprintCat64( +// Fingerprint64("d"), Fingerprint64("a"))) +// [1, 0]: FingerprintCat64( +// Fingerprint64("g"), FingerprintCat64( +// Fingerprint64("e"), Fingerprint64("b"))) +// [1, 1]: FingerprintCat64( +// Fingerprint64("g"), FingerprintCat64( +// Fingerprint64("e"), Fingerprint64("c"))) +// +// Arguments: +// indices: 2-D. Indices of each input `SparseTensor`. +// values: 1-D. values of each `SparseTensor`. +// shapes: 1-D. Shapes of each `SparseTensor`. +// dense_inputs: 2-D. Columns represented by dense `Tensor`. +// hashed_output: If true, returns the hash of the cross instead of the string. +// This will allow us avoiding string manipulations. +// num_buckets: It is used if hashed_output is true. +// output = hashed_value%num_buckets if num_buckets > 0 else hashed_value. +// hash_key: Specify the hash_key that will be used by the `FingerprintCat64` +// function to combine the crosses fingerprints. +// +// +// +// Returns 2-D. Indices of the concatenated `SparseTensor`.1-D. Non-empty values of the concatenated or hashed +// `SparseTensor`.1-D. Shape of the concatenated `SparseTensor`. +func SparseCross(scope *Scope, indices []tf.Output, values []tf.Output, shapes []tf.Output, dense_inputs []tf.Output, hashed_output bool, num_buckets int64, hash_key int64, out_type tf.DataType, internal_type tf.DataType) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"hashed_output": hashed_output, "num_buckets": num_buckets, "hash_key": hash_key, "out_type": out_type, "internal_type": internal_type} + opspec := tf.OpSpec{ + Type: "SparseCross", + Input: []tf.Input{ + tf.OutputList(indices), tf.OutputList(values), tf.OutputList(shapes), tf.OutputList(dense_inputs), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// InfeedEnqueueAttr is an optional argument to InfeedEnqueue. +type InfeedEnqueueAttr func(optionalAttr) + +// InfeedEnqueueShape sets the optional shape attribute to value. +// +// value: The shape of the tensor. +// If not specified, defaults to <> +func InfeedEnqueueShape(value tf.Shape) InfeedEnqueueAttr { + return func(m optionalAttr) { + m["shape"] = value + } +} + +// InfeedEnqueueLayout sets the optional layout attribute to value. +// +// value: A vector holding the requested layout in minor-to-major sequence. +// If a layout attribute is passed, but its values are all -1, the layout will +// be computed by the infeed operation. +// If not specified, defaults to <> +func InfeedEnqueueLayout(value []int64) InfeedEnqueueAttr { + return func(m optionalAttr) { + m["layout"] = value + } +} + +// InfeedEnqueueDeviceOrdinal sets the optional device_ordinal attribute to value. +// +// value: The TPU device to use. This should be -1 when the Op +// is running on a TPU device, and >= 0 when the Op is running on the CPU +// device. +// If not specified, defaults to -1 +func InfeedEnqueueDeviceOrdinal(value int64) InfeedEnqueueAttr { + return func(m optionalAttr) { + m["device_ordinal"] = value + } +} + +// An op which feeds a single Tensor value into the computation. +// +// Arguments: +// input: A tensor that will be provided using the infeed mechanism. +// +// Returns the created operation. +func InfeedEnqueue(scope *Scope, input tf.Output, optional ...InfeedEnqueueAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "InfeedEnqueue", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + // A placeholder op for a value that will be fed into the computation. // // Arguments: @@ -18310,309 +18245,6 @@ func InfeedDequeue(scope *Scope, dtype tf.DataType, shape tf.Shape) (output tf.O return op.Output(0) } -// DecodeCompressedAttr is an optional argument to DecodeCompressed. -type DecodeCompressedAttr func(optionalAttr) - -// DecodeCompressedCompressionType sets the optional compression_type attribute to value. -// -// value: A scalar containing either (i) the empty string (no -// compression), (ii) "ZLIB", or (iii) "GZIP". -// If not specified, defaults to "" -func DecodeCompressedCompressionType(value string) DecodeCompressedAttr { - return func(m optionalAttr) { - m["compression_type"] = value - } -} - -// Decompress strings. -// -// This op decompresses each element of the `bytes` input `Tensor`, which -// is assumed to be compressed using the given `compression_type`. -// -// The `output` is a string `Tensor` of the same shape as `bytes`, -// each element containing the decompressed data from the corresponding -// element in `bytes`. -// -// Arguments: -// bytes: A Tensor of string which is compressed. -// -// Returns A Tensor with the same shape as input `bytes`, uncompressed -// from bytes. -func DecodeCompressed(scope *Scope, bytes tf.Output, optional ...DecodeCompressedAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "DecodeCompressed", - Input: []tf.Input{ - bytes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// OutfeedDequeueTupleAttr is an optional argument to OutfeedDequeueTuple. -type OutfeedDequeueTupleAttr func(optionalAttr) - -// OutfeedDequeueTupleDeviceOrdinal sets the optional device_ordinal attribute to value. -// -// value: The TPU device to use. This should be -1 when the Op -// is running on a TPU device, and >= 0 when the Op is running on the CPU -// device. -// If not specified, defaults to -1 -func OutfeedDequeueTupleDeviceOrdinal(value int64) OutfeedDequeueTupleAttr { - return func(m optionalAttr) { - m["device_ordinal"] = value - } -} - -// Retrieve multiple values from the computation outfeed. -// -// This operation will block indefinitely until data is available. Output `i` -// corresponds to XLA tuple element `i`. -// -// Arguments: -// dtypes: The element types of each element in `outputs`. -// shapes: The shapes of each tensor in `outputs`. -// -// Returns A list of tensors that will be read from the outfeed. -func OutfeedDequeueTuple(scope *Scope, dtypes []tf.DataType, shapes []tf.Shape, optional ...OutfeedDequeueTupleAttr) (outputs []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtypes": dtypes, "shapes": shapes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "OutfeedDequeueTuple", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if outputs, idx, err = makeOutputList(op, idx, "outputs"); err != nil { - scope.UpdateErr("OutfeedDequeueTuple", err) - return - } - return outputs -} - -// UnicodeDecodeWithOffsetsAttr is an optional argument to UnicodeDecodeWithOffsets. -type UnicodeDecodeWithOffsetsAttr func(optionalAttr) - -// UnicodeDecodeWithOffsetsErrors sets the optional errors attribute to value. -// -// value: Error handling policy when there is invalid formatting found in the input. -// The value of 'strict' will cause the operation to produce a InvalidArgument -// error on any invalid input formatting. A value of 'replace' (the default) will -// cause the operation to replace any invalid formatting in the input with the -// `replacement_char` codepoint. A value of 'ignore' will cause the operation to -// skip any invalid formatting in the input and produce no corresponding output -// character. -// If not specified, defaults to "replace" -func UnicodeDecodeWithOffsetsErrors(value string) UnicodeDecodeWithOffsetsAttr { - return func(m optionalAttr) { - m["errors"] = value - } -} - -// UnicodeDecodeWithOffsetsReplacementChar sets the optional replacement_char attribute to value. -// -// value: The replacement character codepoint to be used in place of any invalid -// formatting in the input when `errors='replace'`. Any valid unicode codepoint may -// be used. The default value is the default unicode replacement character is -// 0xFFFD or U+65533.) -// If not specified, defaults to 65533 -func UnicodeDecodeWithOffsetsReplacementChar(value int64) UnicodeDecodeWithOffsetsAttr { - return func(m optionalAttr) { - m["replacement_char"] = value - } -} - -// UnicodeDecodeWithOffsetsReplaceControlCharacters sets the optional replace_control_characters attribute to value. -// -// value: Whether to replace the C0 control characters (00-1F) with the -// `replacement_char`. Default is false. -// If not specified, defaults to false -func UnicodeDecodeWithOffsetsReplaceControlCharacters(value bool) UnicodeDecodeWithOffsetsAttr { - return func(m optionalAttr) { - m["replace_control_characters"] = value - } -} - -// UnicodeDecodeWithOffsetsTsplits sets the optional Tsplits attribute to value. -// If not specified, defaults to DT_INT64 -func UnicodeDecodeWithOffsetsTsplits(value tf.DataType) UnicodeDecodeWithOffsetsAttr { - return func(m optionalAttr) { - m["Tsplits"] = value - } -} - -// Decodes each string in `input` into a sequence of Unicode code points. -// -// The character codepoints for all strings are returned using a single vector -// `char_values`, with strings expanded to characters in row-major order. -// Similarly, the character start byte offsets are returned using a single vector -// `char_to_byte_starts`, with strings expanded in row-major order. -// -// The `row_splits` tensor indicates where the codepoints and start offsets for -// each input string begin and end within the `char_values` and -// `char_to_byte_starts` tensors. In particular, the values for the `i`th -// string (in row-major order) are stored in the slice -// `[row_splits[i]:row_splits[i+1]]`. Thus: -// -// * `char_values[row_splits[i]+j]` is the Unicode codepoint for the `j`th -// character in the `i`th string (in row-major order). -// * `char_to_bytes_starts[row_splits[i]+j]` is the start byte offset for the `j`th -// character in the `i`th string (in row-major order). -// * `row_splits[i+1] - row_splits[i]` is the number of characters in the `i`th -// string (in row-major order). -// -// Arguments: -// input: The text to be decoded. Can have any shape. Note that the output is flattened -// to a vector of char values. -// input_encoding: Text encoding of the input strings. This is any of the encodings supported -// by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. -// -// Returns A 1D int32 tensor containing the row splits.A 1D int32 Tensor containing the decoded codepoints.A 1D int32 Tensor containing the byte index in the input string where each -// character in `char_values` starts. -func UnicodeDecodeWithOffsets(scope *Scope, input tf.Output, input_encoding string, optional ...UnicodeDecodeWithOffsetsAttr) (row_splits tf.Output, char_values tf.Output, char_to_byte_starts tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"input_encoding": input_encoding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "UnicodeDecodeWithOffsets", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Conv2DAttr is an optional argument to Conv2D. -type Conv2DAttr func(optionalAttr) - -// Conv2DUseCudnnOnGpu sets the optional use_cudnn_on_gpu attribute to value. -// If not specified, defaults to true -func Conv2DUseCudnnOnGpu(value bool) Conv2DAttr { - return func(m optionalAttr) { - m["use_cudnn_on_gpu"] = value - } -} - -// Conv2DExplicitPaddings sets the optional explicit_paddings attribute to value. -// -// value: If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith -// dimension, the amount of padding inserted before and after the dimension is -// `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If -// `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. -// If not specified, defaults to <> -func Conv2DExplicitPaddings(value []int64) Conv2DAttr { - return func(m optionalAttr) { - m["explicit_paddings"] = value - } -} - -// Conv2DDataFormat sets the optional data_format attribute to value. -// -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the data is stored in the order of: -// [batch, height, width, channels]. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, channels, height, width]. -// If not specified, defaults to "NHWC" -func Conv2DDataFormat(value string) Conv2DAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Conv2DDilations sets the optional dilations attribute to value. -// -// value: 1-D tensor of length 4. The dilation factor for each dimension of -// `input`. If set to k > 1, there will be k-1 skipped cells between each -// filter element on that dimension. The dimension order is determined by the -// value of `data_format`, see above for details. Dilations in the batch and -// depth dimensions must be 1. -// If not specified, defaults to -func Conv2DDilations(value []int64) Conv2DAttr { - return func(m optionalAttr) { - m["dilations"] = value - } -} - -// Computes a 2-D convolution given 4-D `input` and `filter` tensors. -// -// Given an input tensor of shape `[batch, in_height, in_width, in_channels]` -// and a filter / kernel tensor of shape -// `[filter_height, filter_width, in_channels, out_channels]`, this op -// performs the following: -// -// 1. Flattens the filter to a 2-D matrix with shape -// `[filter_height * filter_width * in_channels, output_channels]`. -// 2. Extracts image patches from the input tensor to form a *virtual* -// tensor of shape `[batch, out_height, out_width, -// filter_height * filter_width * in_channels]`. -// 3. For each patch, right-multiplies the filter matrix and the image patch -// vector. -// -// In detail, with the default NHWC format, -// -// output[b, i, j, k] = -// sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] * -// filter[di, dj, q, k] -// -// Must have `strides[0] = strides[3] = 1`. For the most common case of the same -// horizontal and vertices strides, `strides = [1, stride, stride, 1]`. -// -// Arguments: -// input: A 4-D tensor. The dimension order is interpreted according to the value -// of `data_format`, see below for details. -// filter: A 4-D tensor of shape -// `[filter_height, filter_width, in_channels, out_channels]` -// strides: 1-D tensor of length 4. The stride of the sliding window for each -// dimension of `input`. The dimension order is determined by the value of -// `data_format`, see below for details. -// padding: The type of padding algorithm to use. -// -// Returns A 4-D tensor. The dimension order is determined by the value of -// `data_format`, see below for details. -func Conv2D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, padding string, optional ...Conv2DAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Conv2D", - Input: []tf.Input{ - input, filter, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Enqueue multiple Tensor values on the computation outfeed. // // Arguments: @@ -18661,188 +18293,84 @@ func SparseSegmentMean(scope *Scope, data tf.Output, indices tf.Output, segment_ return op.Output(0) } -// Computes the product along segments of a tensor. +// Divides sparse updates into the variable referenced by `resource`. // -// Read -// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) -// for an explanation of segments. +// This operation computes // -// Computes a tensor such that -// \\(output_i = \prod_j data_j\\) where the product is over `j` such -// that `segment_ids[j] == i`. +// # Scalar indices +// ref[indices, ...] /= updates[...] // -// If the product is empty for a given segment ID `i`, `output[i] = 1`. +// # Vector indices (for each i) +// ref[indices[i], ...] /= updates[i, ...] +// +// # High rank indices (for each i, ..., j) +// ref[indices[i, ..., j], ...] /= updates[i, ..., j, ...] +// +// Duplicate entries are handled correctly: if multiple `indices` reference +// the same location, their contributions multiply. +// +// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. // //
-// +// //
// -// For example: -// -// ``` -// c = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]]) -// tf.segment_prod(c, tf.constant([0, 0, 1])) -// # ==> [[4, 6, 6, 4], -// # [5, 6, 7, 8]] -// ``` -// -// // Arguments: +// resource: Should be from a `Variable` node. +// indices: A tensor of indices into the first dimension of `ref`. +// updates: A tensor of updated values to add to `ref`. // -// segment_ids: A 1-D tensor whose size is equal to the size of `data`'s -// first dimension. Values should be sorted and can be repeated. -// -// Returns Has same shape as data, except for dimension 0 which -// has size `k`, the number of segments. -func SegmentProd(scope *Scope, data tf.Output, segment_ids tf.Output) (output tf.Output) { +// Returns the created operation. +func ResourceScatterDiv(scope *Scope, resource tf.Output, indices tf.Output, updates tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "SegmentProd", + Type: "ResourceScatterDiv", Input: []tf.Input{ - data, segment_ids, + resource, indices, updates, }, } - op := scope.AddOperation(opspec) - return op.Output(0) + return scope.AddOperation(opspec) } -// Converts a `RaggedTensor` into a `SparseTensor` with the same values. -// -// input=ragged.from_nested_row_splits(rt_dense_values, rt_nested_splits) -// output=SparseTensor(indices=sparse_indices, values=sparse_values, -// dense_shape=sparse_dense_shape) -// -// Arguments: -// rt_nested_splits: The `row_splits` for the `RaggedTensor`. -// rt_dense_values: The `flat_values` for the `RaggedTensor`. -// -// Returns The indices for the `SparseTensor`.The values of the `SparseTensor`.`sparse_dense_shape` is a tight bounding box of the input `RaggedTensor`. -func RaggedTensorToSparse(scope *Scope, rt_nested_splits []tf.Output, rt_dense_values tf.Output) (sparse_indices tf.Output, sparse_values tf.Output, sparse_dense_shape tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RaggedTensorToSparse", - Input: []tf.Input{ - tf.OutputList(rt_nested_splits), rt_dense_values, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} +// ResourceSparseApplyFtrlAttr is an optional argument to ResourceSparseApplyFtrl. +type ResourceSparseApplyFtrlAttr func(optionalAttr) -// Computes softsign: `features / (abs(features) + 1)`. -func Softsign(scope *Scope, features tf.Output) (activations tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Softsign", - Input: []tf.Input{ - features, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Reads the value of a variable. +// ResourceSparseApplyFtrlUseLocking sets the optional use_locking attribute to value. // -// The tensor returned by this operation is immutable. -// -// The value returned by this operation is guaranteed to be influenced by all the -// writes on which this operation depends directly or indirectly, and to not be -// influenced by any of the writes which depend directly or indirectly on this -// operation. -// -// Arguments: -// resource: handle to the resource in which to store the variable. -// dtype: the dtype of the value. -func ReadVariableOp(scope *Scope, resource tf.Output, dtype tf.DataType) (value tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - opspec := tf.OpSpec{ - Type: "ReadVariableOp", - Input: []tf.Input{ - resource, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// CombinedNonMaxSuppressionAttr is an optional argument to CombinedNonMaxSuppression. -type CombinedNonMaxSuppressionAttr func(optionalAttr) - -// CombinedNonMaxSuppressionPadPerClass sets the optional pad_per_class attribute to value. -// -// value: If false, the output nmsed boxes, scores and classes -// are padded/clipped to `max_total_size`. If true, the -// output nmsed boxes, scores and classes are padded to be of length -// `max_size_per_class`*`num_classes`, unless it exceeds `max_total_size` in -// which case it is clipped to `max_total_size`. Defaults to false. +// value: If `True`, updating of the var and accum tensors will be protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. // If not specified, defaults to false -func CombinedNonMaxSuppressionPadPerClass(value bool) CombinedNonMaxSuppressionAttr { +func ResourceSparseApplyFtrlUseLocking(value bool) ResourceSparseApplyFtrlAttr { return func(m optionalAttr) { - m["pad_per_class"] = value + m["use_locking"] = value } } -// CombinedNonMaxSuppressionClipBoxes sets the optional clip_boxes attribute to value. +// Update relevant entries in '*var' according to the Ftrl-proximal scheme. // -// value: If true, assume the box coordinates are between [0, 1] and clip the output boxes -// if they fall beyond [0, 1]. If false, do not do clipping and output the box -// coordinates as it is. -// If not specified, defaults to true -func CombinedNonMaxSuppressionClipBoxes(value bool) CombinedNonMaxSuppressionAttr { - return func(m optionalAttr) { - m["clip_boxes"] = value - } -} - -// Greedily selects a subset of bounding boxes in descending order of score, -// -// This operation performs non_max_suppression on the inputs per batch, across -// all classes. -// Prunes away boxes that have high intersection-over-union (IOU) overlap -// with previously selected boxes. Bounding boxes are supplied as -// [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any -// diagonal pair of box corners and the coordinates can be provided as normalized -// (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm -// is agnostic to where the origin is in the coordinate system. Also note that -// this algorithm is invariant to orthogonal transformations and translations -// of the coordinate system; thus translating or reflections of the coordinate -// system result in the same boxes being selected by the algorithm. -// The output of this operation is the final boxes, scores and classes tensor -// returned after performing non_max_suppression. +// That is for rows we have grad for, we update var, accum and linear as follows: +// accum_new = accum + grad * grad +// linear += grad + (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var +// quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 +// var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 +// accum = accum_new // // Arguments: -// boxes: A 4-D float tensor of shape `[batch_size, num_boxes, q, 4]`. If `q` is 1 then -// same boxes are used for all classes otherwise, if `q` is equal to number of -// classes, class-specific boxes are used. -// scores: A 3-D float tensor of shape `[batch_size, num_boxes, num_classes]` -// representing a single score corresponding to each box (each row of boxes). -// max_output_size_per_class: A scalar integer tensor representing the maximum number of -// boxes to be selected by non max suppression per class -// max_total_size: A scalar representing maximum number of boxes retained over all classes. -// iou_threshold: A 0-D float tensor representing the threshold for deciding whether -// boxes overlap too much with respect to IOU. -// score_threshold: A 0-D float tensor representing the threshold for deciding when to remove -// boxes based on score. +// var_: Should be from a Variable(). +// accum: Should be from a Variable(). +// linear: Should be from a Variable(). +// grad: The gradient. +// indices: A vector of indices into the first dimension of var and accum. +// lr: Scaling factor. Must be a scalar. +// l1: L1 regularization. Must be a scalar. +// l2: L2 regularization. Must be a scalar. +// lr_power: Scaling factor. Must be a scalar. // -// Returns A [batch_size, max_detections, 4] float32 tensor -// containing the non-max suppressed boxes.A [batch_size, max_detections] float32 tensor -// containing the scores for the boxes.A [batch_size, max_detections] float32 tensor -// containing the classes for the boxes.A [batch_size] int32 tensor indicating the number of -// valid detections per batch item. Only the top num_detections[i] entries in -// nms_boxes[i], nms_scores[i] and nms_class[i] are valid. The rest of the -// entries are zero paddings. -func CombinedNonMaxSuppression(scope *Scope, boxes tf.Output, scores tf.Output, max_output_size_per_class tf.Output, max_total_size tf.Output, iou_threshold tf.Output, score_threshold tf.Output, optional ...CombinedNonMaxSuppressionAttr) (nmsed_boxes tf.Output, nmsed_scores tf.Output, nmsed_classes tf.Output, valid_detections tf.Output) { +// Returns the created operation. +func ResourceSparseApplyFtrl(scope *Scope, var_ tf.Output, accum tf.Output, linear tf.Output, grad tf.Output, indices tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, lr_power tf.Output, optional ...ResourceSparseApplyFtrlAttr) (o *tf.Operation) { if scope.Err() != nil { return } @@ -18851,190 +18379,473 @@ func CombinedNonMaxSuppression(scope *Scope, boxes tf.Output, scores tf.Output, a(attrs) } opspec := tf.OpSpec{ - Type: "CombinedNonMaxSuppression", + Type: "ResourceSparseApplyFtrl", Input: []tf.Input{ - boxes, scores, max_output_size_per_class, max_total_size, iou_threshold, score_threshold, + var_, accum, linear, grad, indices, lr, l1, l2, lr_power, }, Attrs: attrs, } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3) + return scope.AddOperation(opspec) } -// Return a slice from 'input'. +// Computes softmax activations. // -// The output tensor is a tensor with dimensions described by 'size' -// whose values are extracted from 'input' starting at the offsets in -// 'begin'. +// For each batch `i` and class `j` we have // -// *Requirements*: -// 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n) +// $$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$ // // Arguments: +// logits: 2-D with shape `[batch_size, num_classes]`. // -// begin: begin[i] specifies the offset into the 'i'th dimension of -// 'input' to slice from. -// size: size[i] specifies the number of elements of the 'i'th dimension -// of 'input' to slice. If size[i] is -1, all remaining elements in dimension -// i are included in the slice (i.e. this is equivalent to setting -// size[i] = input.dim_size(i) - begin[i]). -func Slice(scope *Scope, input tf.Output, begin tf.Output, size tf.Output) (output tf.Output) { +// Returns Same shape as `logits`. +func Softmax(scope *Scope, logits tf.Output) (softmax tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Slice", + Type: "Softmax", Input: []tf.Input{ - input, begin, size, + logits, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// Connects outputs of an N-way replicated computation to N outputs. -func TPUReplicatedOutput(scope *Scope, input tf.Output, num_replicas int64) (outputs []tf.Output) { +// Deserialize and concatenate `SparseTensors` from a serialized minibatch. +// +// The input `serialized_sparse` must be a string matrix of shape `[N x 3]` where +// `N` is the minibatch size and the rows correspond to packed outputs of +// `SerializeSparse`. The ranks of the original `SparseTensor` objects +// must all match. When the final `SparseTensor` is created, it has rank one +// higher than the ranks of the incoming `SparseTensor` objects +// (they have been concatenated along a new row dimension). +// +// The output `SparseTensor` object's shape values for all dimensions but the +// first are the max across the input `SparseTensor` objects' shape values +// for the corresponding dimensions. Its first shape value is `N`, the minibatch +// size. +// +// The input `SparseTensor` objects' indices are assumed ordered in +// standard lexicographic order. If this is not the case, after this +// step run `SparseReorder` to restore index ordering. +// +// For example, if the serialized input is a `[2 x 3]` matrix representing two +// original `SparseTensor` objects: +// +// index = [ 0] +// [10] +// [20] +// values = [1, 2, 3] +// shape = [50] +// +// and +// +// index = [ 2] +// [10] +// values = [4, 5] +// shape = [30] +// +// then the final deserialized `SparseTensor` will be: +// +// index = [0 0] +// [0 10] +// [0 20] +// [1 2] +// [1 10] +// values = [1, 2, 3, 4, 5] +// shape = [2 50] +// +// Arguments: +// serialized_sparse: 2-D, The `N` serialized `SparseTensor` objects. +// Must have 3 columns. +// dtype: The `dtype` of the serialized `SparseTensor` objects. +func DeserializeManySparse(scope *Scope, serialized_sparse tf.Output, dtype tf.DataType) (sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"num_replicas": num_replicas} + attrs := map[string]interface{}{"dtype": dtype} opspec := tf.OpSpec{ - Type: "TPUReplicatedOutput", + Type: "DeserializeManySparse", Input: []tf.Input{ - input, + serialized_sparse, }, Attrs: attrs, } op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// OutfeedDequeueTupleAttr is an optional argument to OutfeedDequeueTuple. +type OutfeedDequeueTupleAttr func(optionalAttr) + +// OutfeedDequeueTupleDeviceOrdinal sets the optional device_ordinal attribute to value. +// +// value: The TPU device to use. This should be -1 when the Op +// is running on a TPU device, and >= 0 when the Op is running on the CPU +// device. +// If not specified, defaults to -1 +func OutfeedDequeueTupleDeviceOrdinal(value int64) OutfeedDequeueTupleAttr { + return func(m optionalAttr) { + m["device_ordinal"] = value + } +} + +// Retrieve multiple values from the computation outfeed. +// +// This operation will block indefinitely until data is available. Output `i` +// corresponds to XLA tuple element `i`. +// +// Arguments: +// dtypes: The element types of each element in `outputs`. +// shapes: The shapes of each tensor in `outputs`. +// +// Returns A list of tensors that will be read from the outfeed. +func OutfeedDequeueTuple(scope *Scope, dtypes []tf.DataType, shapes []tf.Shape, optional ...OutfeedDequeueTupleAttr) (outputs []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtypes": dtypes, "shapes": shapes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "OutfeedDequeueTuple", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) if scope.Err() != nil { return } var idx int var err error if outputs, idx, err = makeOutputList(op, idx, "outputs"); err != nil { - scope.UpdateErr("TPUReplicatedOutput", err) + scope.UpdateErr("OutfeedDequeueTuple", err) return } return outputs } -// UnicodeTranscodeAttr is an optional argument to UnicodeTranscode. -type UnicodeTranscodeAttr func(optionalAttr) - -// UnicodeTranscodeErrors sets the optional errors attribute to value. +// Eagerly executes a python function to compute func(input)->output. The // -// value: Error handling policy when there is invalid formatting found in the input. -// The value of 'strict' will cause the operation to produce a InvalidArgument -// error on any invalid input formatting. A value of 'replace' (the default) will -// cause the operation to replace any invalid formatting in the input with the -// `replacement_char` codepoint. A value of 'ignore' will cause the operation to -// skip any invalid formatting in the input and produce no corresponding output -// character. -// If not specified, defaults to "replace" -func UnicodeTranscodeErrors(value string) UnicodeTranscodeAttr { - return func(m optionalAttr) { - m["errors"] = value - } -} - -// UnicodeTranscodeReplacementChar sets the optional replacement_char attribute to value. -// -// value: The replacement character codepoint to be used in place of any invalid -// formatting in the input when `errors='replace'`. Any valid unicode codepoint may -// be used. The default value is the default unicode replacement character is -// 0xFFFD or U+65533.) -// -// Note that for UTF-8, passing a replacement character expressible in 1 byte, such -// as ' ', will preserve string alignment to the source since invalid bytes will be -// replaced with a 1-byte replacement. For UTF-16-BE and UTF-16-LE, any 1 or 2 byte -// replacement character will preserve byte alignment to the source. -// If not specified, defaults to 65533 -func UnicodeTranscodeReplacementChar(value int64) UnicodeTranscodeAttr { - return func(m optionalAttr) { - m["replacement_char"] = value - } -} - -// UnicodeTranscodeReplaceControlCharacters sets the optional replace_control_characters attribute to value. -// -// value: Whether to replace the C0 control characters (00-1F) with the -// `replacement_char`. Default is false. -// If not specified, defaults to false -func UnicodeTranscodeReplaceControlCharacters(value bool) UnicodeTranscodeAttr { - return func(m optionalAttr) { - m["replace_control_characters"] = value - } -} - -// Transcode the input text from a source encoding to a destination encoding. -// -// The input is a string tensor of any shape. The output is a string tensor of -// the same shape containing the transcoded strings. Output strings are always -// valid unicode. If the input contains invalid encoding positions, the -// `errors` attribute sets the policy for how to deal with them. If the default -// error-handling policy is used, invalid formatting will be substituted in the -// output by the `replacement_char`. If the errors policy is to `ignore`, any -// invalid encoding positions in the input are skipped and not included in the -// output. If it set to `strict` then any invalid formatting will result in an -// InvalidArgument error. -// -// This operation can be used with `output_encoding = input_encoding` to enforce -// correct formatting for inputs even if they are already in the desired encoding. -// -// If the input is prefixed by a Byte Order Mark needed to determine encoding -// (e.g. if the encoding is UTF-16 and the BOM indicates big-endian), then that -// BOM will be consumed and not emitted into the output. If the input encoding -// is marked with an explicit endianness (e.g. UTF-16-BE), then the BOM is -// interpreted as a non-breaking-space and is preserved in the output (including -// always for UTF-8). -// -// The end result is that if the input is marked as an explicit endianness the -// transcoding is faithful to all codepoints in the source. If it is not marked -// with an explicit endianness, the BOM is not considered part of the string itself -// but as metadata, and so is not preserved in the output. -// -// Arguments: -// input: The text to be processed. Can have any shape. -// input_encoding: Text encoding of the input strings. This is any of the encodings supported -// by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. -// output_encoding: The unicode encoding to use in the output. Must be one of -// `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. Multi-byte encodings will be big-endian. -// -// Returns A string tensor containing unicode text encoded using `output_encoding`. -func UnicodeTranscode(scope *Scope, input tf.Output, input_encoding string, output_encoding string, optional ...UnicodeTranscodeAttr) (output tf.Output) { +// semantics of the input, output, and attributes are the same as those for +// PyFunc. +func EagerPyFunc(scope *Scope, input []tf.Output, token string, Tout []tf.DataType) (output []tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"input_encoding": input_encoding, "output_encoding": output_encoding} + attrs := map[string]interface{}{"token": token, "Tout": Tout} + opspec := tf.OpSpec{ + Type: "EagerPyFunc", + Input: []tf.Input{ + tf.OutputList(input), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if output, idx, err = makeOutputList(op, idx, "output"); err != nil { + scope.UpdateErr("EagerPyFunc", err) + return + } + return output +} + +// ResourceScatterNdSubAttr is an optional argument to ResourceScatterNdSub. +type ResourceScatterNdSubAttr func(optionalAttr) + +// ResourceScatterNdSubUseLocking sets the optional use_locking attribute to value. +// +// value: An optional bool. Defaults to True. If True, the assignment will +// be protected by a lock; otherwise the behavior is undefined, +// but may exhibit less contention. +// If not specified, defaults to true +func ResourceScatterNdSubUseLocking(value bool) ResourceScatterNdSubAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Applies sparse subtraction to individual values or slices in a Variable. +// +// `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. +// +// `indices` must be integer tensor, containing indices into `ref`. +// It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. +// +// The innermost dimension of `indices` (with length `K`) corresponds to +// indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th +// dimension of `ref`. +// +// `updates` is `Tensor` of rank `Q-1+P-K` with shape: +// +// ``` +// [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]] +// ``` +// +// For example, say we want to subtract 4 scattered elements from a rank-1 tensor +// with 8 elements. In Python, that subtraction would look like this: +// +// ```python +// ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8], use_resource=True) +// indices = tf.constant([[4], [3], [1], [7]]) +// updates = tf.constant([9, 10, 11, 12]) +// sub = tf.scatter_nd_sub(ref, indices, updates) +// with tf.Session() as sess: +// print sess.run(sub) +// ``` +// +// The resulting update to ref would look like this: +// +// [1, -9, 3, -6, -4, 6, 7, -4] +// +// See `tf.scatter_nd` for more details about how to make updates to +// slices. +// +// Arguments: +// ref: A resource handle. Must be from a VarHandleOp. +// indices: A Tensor. Must be one of the following types: int32, int64. +// A tensor of indices into ref. +// updates: A Tensor. Must have the same type as ref. A tensor of +// values to add to ref. +// +// Returns the created operation. +func ResourceScatterNdSub(scope *Scope, ref tf.Output, indices tf.Output, updates tf.Output, optional ...ResourceScatterNdSubAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "UnicodeTranscode", + Type: "ResourceScatterNdSub", Input: []tf.Input{ - input, + ref, indices, updates, }, Attrs: attrs, } + return scope.AddOperation(opspec) +} + +// QuantizedConv2DPerChannelAttr is an optional argument to QuantizedConv2DPerChannel. +type QuantizedConv2DPerChannelAttr func(optionalAttr) + +// QuantizedConv2DPerChannelOutType sets the optional out_type attribute to value. +// +// value: The quantized type of output tensor that needs to be converted. +// If not specified, defaults to DT_QINT32 +func QuantizedConv2DPerChannelOutType(value tf.DataType) QuantizedConv2DPerChannelAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// QuantizedConv2DPerChannelDilations sets the optional dilations attribute to value. +// +// value: list of dilation values. +// If not specified, defaults to +func QuantizedConv2DPerChannelDilations(value []int64) QuantizedConv2DPerChannelAttr { + return func(m optionalAttr) { + m["dilations"] = value + } +} + +// Computes QuantizedConv2D per channel. +// +// Arguments: +// input: The original input tensor. +// filter: The original filter tensor. +// min_input: The minimum value of the input tensor +// max_input: The maximum value of the input tensor. +// min_filter: The minimum value of the filter tensor. +// max_filter: The maximum value of the filter tensor. +// strides: list of stride values. +// +// +// Returns The output tensor.The minimum value of the final output tensor.The maximum value of the final output tensor. +func QuantizedConv2DPerChannel(scope *Scope, input tf.Output, filter tf.Output, min_input tf.Output, max_input tf.Output, min_filter tf.Output, max_filter tf.Output, strides []int64, padding string, optional ...QuantizedConv2DPerChannelAttr) (output tf.Output, min_output tf.Output, max_output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "QuantizedConv2DPerChannel", + Input: []tf.Input{ + input, filter, min_input, max_input, min_filter, max_filter, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Inverse 2D real-valued fast Fourier transform. +// +// Computes the inverse 2-dimensional discrete Fourier transform of a real-valued +// signal over the inner-most 2 dimensions of `input`. +// +// The inner-most 2 dimensions of `input` are assumed to be the result of `RFFT2D`: +// The inner-most dimension contains the `fft_length / 2 + 1` unique components of +// the DFT of a real-valued signal. If `fft_length` is not provided, it is computed +// from the size of the inner-most 2 dimensions of `input`. If the FFT length used +// to compute `input` is odd, it should be provided since it cannot be inferred +// properly. +// +// Along each axis `IRFFT2D` is computed on, if `fft_length` (or +// `fft_length / 2 + 1` for the inner-most dimension) is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// +// Arguments: +// input: A complex64 tensor. +// fft_length: An int32 tensor of shape [2]. The FFT length for each dimension. +// +// Returns A float32 tensor of the same rank as `input`. The inner-most 2 +// dimensions of `input` are replaced with the `fft_length` samples of their +// inverse 2D Fourier transform. +// +// @compatibility(numpy) +// Equivalent to np.fft.irfft2 +// @end_compatibility +func IRFFT2D(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "IRFFT2D", + Input: []tf.Input{ + input, fft_length, + }, + } op := scope.AddOperation(opspec) return op.Output(0) } -// Outputs a `Summary` protocol buffer with a tensor and per-plugin data. +// RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingADAMParametersGradAccumDebug. +type RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr func(optionalAttr) + +// RetrieveTPUEmbeddingADAMParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingADAMParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// RetrieveTPUEmbeddingADAMParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingADAMParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Retrieve ADAM embedding parameters with debug support. +// +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. +// +// Returns Parameter parameters updated by the ADAM optimization algorithm.Parameter momenta updated by the ADAM optimization algorithm.Parameter velocities updated by the ADAM optimization algorithm.Parameter gradient_accumulators updated by the ADAM optimization algorithm. +func RetrieveTPUEmbeddingADAMParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr) (parameters tf.Output, momenta tf.Output, velocities tf.Output, gradient_accumulators tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RetrieveTPUEmbeddingADAMParametersGradAccumDebug", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3) +} + +// LoadTPUEmbeddingAdadeltaParametersAttr is an optional argument to LoadTPUEmbeddingAdadeltaParameters. +type LoadTPUEmbeddingAdadeltaParametersAttr func(optionalAttr) + +// LoadTPUEmbeddingAdadeltaParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingAdadeltaParametersTableId(value int64) LoadTPUEmbeddingAdadeltaParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingAdadeltaParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingAdadeltaParametersTableName(value string) LoadTPUEmbeddingAdadeltaParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load Adadelta embedding parameters. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. // // Arguments: -// tag: A string attached to this summary. Used for organization in TensorBoard. -// tensor: A tensor to serialize. -// serialized_summary_metadata: A serialized SummaryMetadata proto. Contains plugin -// data. -func TensorSummaryV2(scope *Scope, tag tf.Output, tensor tf.Output, serialized_summary_metadata tf.Output) (summary tf.Output) { +// parameters: Value of parameters used in the Adadelta optimization algorithm. +// accumulators: Value of accumulators used in the Adadelta optimization algorithm. +// updates: Value of updates used in the Adadelta optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingAdadeltaParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, updates tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingAdadeltaParametersAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingAdadeltaParameters", + Input: []tf.Input{ + parameters, accumulators, updates, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Produce a string tensor that encodes the state of a Reader. +// +// Not all Readers support being serialized, so this can produce an +// Unimplemented error. +// +// Arguments: +// reader_handle: Handle to a Reader. +func ReaderSerializeStateV2(scope *Scope, reader_handle tf.Output) (state tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "TensorSummaryV2", + Type: "ReaderSerializeStateV2", Input: []tf.Input{ - tag, tensor, serialized_summary_metadata, + reader_handle, }, } op := scope.AddOperation(opspec) @@ -19056,233 +18867,166 @@ func TPUReplicatedInput(scope *Scope, inputs []tf.Output) (output tf.Output) { return op.Output(0) } -// Table initializer that takes two tensors for keys and values respectively. +// ResourceApplyGradientDescentAttr is an optional argument to ResourceApplyGradientDescent. +type ResourceApplyGradientDescentAttr func(optionalAttr) + +// ResourceApplyGradientDescentUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, the subtraction will be protected by a lock; +// otherwise the behavior is undefined, but may exhibit less contention. +// If not specified, defaults to false +func ResourceApplyGradientDescentUseLocking(value bool) ResourceApplyGradientDescentAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' by subtracting 'alpha' * 'delta' from it. // // Arguments: -// table_handle: Handle to a table which will be initialized. -// keys: Keys of type Tkey. -// values: Values of type Tval. +// var_: Should be from a Variable(). +// alpha: Scaling factor. Must be a scalar. +// delta: The change. // // Returns the created operation. -func InitializeTableV2(scope *Scope, table_handle tf.Output, keys tf.Output, values tf.Output) (o *tf.Operation) { +func ResourceApplyGradientDescent(scope *Scope, var_ tf.Output, alpha tf.Output, delta tf.Output, optional ...ResourceApplyGradientDescentAttr) (o *tf.Operation) { if scope.Err() != nil { return } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } opspec := tf.OpSpec{ - Type: "InitializeTableV2", + Type: "ResourceApplyGradientDescent", Input: []tf.Input{ - table_handle, keys, values, + var_, alpha, delta, }, + Attrs: attrs, } return scope.AddOperation(opspec) } -// Encode audio data using the WAV file format. -// -// This operation will generate a string suitable to be saved out to create a .wav -// audio file. It will be encoded in the 16-bit PCM format. It takes in float -// values in the range -1.0f to 1.0f, and any outside that value will be clamped to -// that range. -// -// `audio` is a 2-D float Tensor of shape `[length, channels]`. -// `sample_rate` is a scalar Tensor holding the rate to use (e.g. 44100). +// This op is used as a placeholder in If branch functions. It doesn't provide a +// valid output when run, so must either be removed (e.g. replaced with a +// function input) or guaranteed not to be used (e.g. if mirroring an +// intermediate output needed for the gradient computation of the other branch). // // Arguments: -// audio: 2-D with shape `[length, channels]`. -// sample_rate: Scalar containing the sample frequency. +// dtype: The type of the output. +// shape: The purported shape of the output. This is only used for shape inference; +// the output will not necessarily have this shape. Can be a partial shape. // -// Returns 0-D. WAV-encoded file contents. -func EncodeWav(scope *Scope, audio tf.Output, sample_rate tf.Output) (contents tf.Output) { +// Returns \"Fake\" output value. This should not be consumed by another op. +func FakeParam(scope *Scope, dtype tf.DataType, shape tf.Shape) (output tf.Output) { if scope.Err() != nil { return } + attrs := map[string]interface{}{"dtype": dtype, "shape": shape} opspec := tf.OpSpec{ - Type: "EncodeWav", - Input: []tf.Input{ - audio, sample_rate, - }, + Type: "FakeParam", + + Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } -// Does nothing. Only useful as a placeholder for control edges. +// ResourceScatterNdAddAttr is an optional argument to ResourceScatterNdAdd. +type ResourceScatterNdAddAttr func(optionalAttr) + +// ResourceScatterNdAddUseLocking sets the optional use_locking attribute to value. +// +// value: An optional bool. Defaults to True. If True, the assignment will +// be protected by a lock; otherwise the behavior is undefined, +// but may exhibit less contention. +// If not specified, defaults to true +func ResourceScatterNdAddUseLocking(value bool) ResourceScatterNdAddAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Applies sparse addition to individual values or slices in a Variable. +// +// `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. +// +// `indices` must be integer tensor, containing indices into `ref`. +// It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. +// +// The innermost dimension of `indices` (with length `K`) corresponds to +// indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th +// dimension of `ref`. +// +// `updates` is `Tensor` of rank `Q-1+P-K` with shape: +// +// ``` +// [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]] +// ``` +// +// For example, say we want to add 4 scattered elements to a rank-1 tensor to +// 8 elements. In Python, that addition would look like this: +// +// ```python +// ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8], use_resource=True) +// indices = tf.constant([[4], [3], [1], [7]]) +// updates = tf.constant([9, 10, 11, 12]) +// add = tf.scatter_nd_add(ref, indices, updates) +// with tf.Session() as sess: +// print sess.run(add) +// ``` +// +// The resulting update to ref would look like this: +// +// [1, 13, 3, 14, 14, 6, 7, 20] +// +// See `tf.scatter_nd` for more details about how to make updates to +// slices. +// +// Arguments: +// ref: A resource handle. Must be from a VarHandleOp. +// indices: A Tensor. Must be one of the following types: int32, int64. +// A tensor of indices into ref. +// updates: A Tensor. Must have the same type as ref. A tensor of +// values to add to ref. // // Returns the created operation. -func NoOp(scope *Scope) (o *tf.Operation) { +func ResourceScatterNdAdd(scope *Scope, ref tf.Output, indices tf.Output, updates tf.Output, optional ...ResourceScatterNdAddAttr) (o *tf.Operation) { if scope.Err() != nil { return } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } opspec := tf.OpSpec{ - Type: "NoOp", + Type: "ResourceScatterNdAdd", + Input: []tf.Input{ + ref, indices, updates, + }, + Attrs: attrs, } return scope.AddOperation(opspec) } -// AllCandidateSamplerAttr is an optional argument to AllCandidateSampler. -type AllCandidateSamplerAttr func(optionalAttr) - -// AllCandidateSamplerSeed sets the optional seed attribute to value. +// Computes the gradient for the inverse of `x` wrt its input. // -// value: If either seed or seed2 are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func AllCandidateSamplerSeed(value int64) AllCandidateSamplerAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// AllCandidateSamplerSeed2 sets the optional seed2 attribute to value. -// -// value: An second seed to avoid seed collision. -// If not specified, defaults to 0 -func AllCandidateSamplerSeed2(value int64) AllCandidateSamplerAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Generates labels for candidate sampling with a learned unigram distribution. -// -// See explanations of candidate sampling and the data formats at -// go/candidate-sampling. -// -// For each batch, this op picks a single set of sampled candidate labels. -// -// The advantages of sampling candidates per-batch are simplicity and the -// possibility of efficient dense matrix multiplication. The disadvantage is that -// the sampled candidates must be chosen independently of the context and of the -// true labels. -// -// Arguments: -// true_classes: A batch_size * num_true matrix, in which each row contains the -// IDs of the num_true target_classes in the corresponding original label. -// num_true: Number of true labels per context. -// num_sampled: Number of candidates to produce. -// unique: If unique is true, we sample with rejection, so that all sampled -// candidates in a batch are unique. This requires some approximation to -// estimate the post-rejection sampling probabilities. -// -// Returns A vector of length num_sampled, in which each element is -// the ID of a sampled candidate.A batch_size * num_true matrix, representing -// the number of times each candidate is expected to occur in a batch -// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled -// candidate representing the number of times the candidate is expected -// to occur in a batch of sampled candidates. If unique=true, then this is a -// probability. -func AllCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, optional ...AllCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AllCandidateSampler", - Input: []tf.Input{ - true_classes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Returns element-wise smallest integer not less than x. -func Ceil(scope *Scope, x tf.Output) (y tf.Output) { +// Specifically, `grad = -dy * y*y`, where `y = 1/x`, and `dy` +// is the corresponding input gradient. +func InvGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Ceil", + Type: "InvGrad", Input: []tf.Input{ - x, + y, dy, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// EncodeProtoAttr is an optional argument to EncodeProto. -type EncodeProtoAttr func(optionalAttr) - -// EncodeProtoDescriptorSource sets the optional descriptor_source attribute to value. -// If not specified, defaults to "local://" -func EncodeProtoDescriptorSource(value string) EncodeProtoAttr { - return func(m optionalAttr) { - m["descriptor_source"] = value - } -} - -// The op serializes protobuf messages provided in the input tensors. -// -// The types of the tensors in `values` must match the schema for the -// fields specified in `field_names`. All the tensors in `values` must -// have a common shape prefix, *batch_shape*. -// -// The `sizes` tensor specifies repeat counts for each field. The repeat -// count (last dimension) of a each tensor in `values` must be greater -// than or equal to corresponding repeat count in `sizes`. -// -// A `message_type` name must be provided to give context for the field -// names. The actual message descriptor can be looked up either in the -// linked-in descriptor pool or a filename provided by the caller using -// the `descriptor_source` attribute. -// -// The `descriptor_source` attribute selects a source of protocol -// descriptors to consult when looking up `message_type`. This may be a -// filename containing a serialized `FileDescriptorSet` message, -// or the special value `local://`, in which case only descriptors linked -// into the code will be searched; the filename can be on any filesystem -// accessible to TensorFlow. -// -// You can build a `descriptor_source` file using the `--descriptor_set_out` -// and `--include_imports` options to the protocol compiler `protoc`. -// -// The `local://` database only covers descriptors linked into the -// code via C++ libraries, not Python imports. You can link in a proto descriptor -// by creating a cc_library target with alwayslink=1. -// -// There are a few special cases in the value mapping: -// -// Submessage and group fields must be pre-serialized as TensorFlow strings. -// -// TensorFlow lacks support for unsigned int64s, so they must be -// represented as `tf.int64` with the same twos-complement bit pattern -// (the obvious way). -// -// Unsigned int32 values can be represented exactly with `tf.int64`, or -// with sign wrapping if the input is of type `tf.int32`. -// -// Arguments: -// sizes: Tensor of int32 with shape `[batch_shape, len(field_names)]`. -// values: List of tensors containing values for the corresponding field. -// field_names: List of strings containing proto field names. -// message_type: Name of the proto message type to decode. -// -// Returns Tensor of serialized protos with shape `batch_shape`. -func EncodeProto(scope *Scope, sizes tf.Output, values []tf.Output, field_names []string, message_type string, optional ...EncodeProtoAttr) (bytes tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"field_names": field_names, "message_type": message_type} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "EncodeProto", - Input: []tf.Input{ - sizes, tf.OutputList(values), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Computes rectified linear 6 gradients for a Relu6 operation. // // Arguments: @@ -19306,6 +19050,61 @@ func Relu6Grad(scope *Scope, gradients tf.Output, features tf.Output) (backprops return op.Output(0) } +// LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingAdagradParametersGradAccumDebug. +type LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr func(optionalAttr) + +// LoadTPUEmbeddingAdagradParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingAdagradParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingAdagradParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingAdagradParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load Adagrad embedding parameters with debug support. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the Adagrad optimization algorithm. +// accumulators: Value of accumulators used in the Adagrad optimization algorithm. +// gradient_accumulators: Value of gradient_accumulators used in the Adagrad optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingAdagradParametersGradAccumDebug(scope *Scope, parameters tf.Output, accumulators tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingAdagradParametersGradAccumDebugAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingAdagradParametersGradAccumDebug", + Input: []tf.Input{ + parameters, accumulators, gradient_accumulators, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + // ResourceApplyAdadeltaAttr is an optional argument to ResourceApplyAdadelta. type ResourceApplyAdadeltaAttr func(optionalAttr) @@ -19355,143 +19154,6 @@ func ResourceApplyAdadelta(scope *Scope, var_ tf.Output, accum tf.Output, accum_ return scope.AddOperation(opspec) } -// SpaceToBatch for N-D tensors of type T. -// -// This operation divides "spatial" dimensions `[1, ..., M]` of the input into a -// grid of blocks of shape `block_shape`, and interleaves these blocks with the -// "batch" dimension (0) such that in the output, the spatial dimensions -// `[1, ..., M]` correspond to the position within the grid, and the batch -// dimension combines both the position within a spatial block and the original -// batch position. Prior to division into blocks, the spatial dimensions of the -// input are optionally zero padded according to `paddings`. See below for a -// precise description. -// -// Arguments: -// input: N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`, -// where spatial_shape has `M` dimensions. -// block_shape: 1-D with shape `[M]`, all values must be >= 1. -// paddings: 2-D with shape `[M, 2]`, all values must be >= 0. -// `paddings[i] = [pad_start, pad_end]` specifies the padding for input dimension -// `i + 1`, which corresponds to spatial dimension `i`. It is required that -// `block_shape[i]` divides `input_shape[i + 1] + pad_start + pad_end`. -// -// This operation is equivalent to the following steps: -// -// 1. Zero-pad the start and end of dimensions `[1, ..., M]` of the -// input according to `paddings` to produce `padded` of shape `padded_shape`. -// -// 2. Reshape `padded` to `reshaped_padded` of shape: -// -// [batch] + -// [padded_shape[1] / block_shape[0], -// block_shape[0], -// ..., -// padded_shape[M] / block_shape[M-1], -// block_shape[M-1]] + -// remaining_shape -// -// 3. Permute dimensions of `reshaped_padded` to produce -// `permuted_reshaped_padded` of shape: -// -// block_shape + -// [batch] + -// [padded_shape[1] / block_shape[0], -// ..., -// padded_shape[M] / block_shape[M-1]] + -// remaining_shape -// -// 4. Reshape `permuted_reshaped_padded` to flatten `block_shape` into the batch -// dimension, producing an output tensor of shape: -// -// [batch * prod(block_shape)] + -// [padded_shape[1] / block_shape[0], -// ..., -// padded_shape[M] / block_shape[M-1]] + -// remaining_shape -// -// Some examples: -// -// (1) For the following input of shape `[1, 2, 2, 1]`, `block_shape = [2, 2]`, and -// `paddings = [[0, 0], [0, 0]]`: -// -// ``` -// x = [[[[1], [2]], [[3], [4]]]] -// ``` -// -// The output tensor has shape `[4, 1, 1, 1]` and value: -// -// ``` -// [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] -// ``` -// -// (2) For the following input of shape `[1, 2, 2, 3]`, `block_shape = [2, 2]`, and -// `paddings = [[0, 0], [0, 0]]`: -// -// ``` -// x = [[[[1, 2, 3], [4, 5, 6]], -// [[7, 8, 9], [10, 11, 12]]]] -// ``` -// -// The output tensor has shape `[4, 1, 1, 3]` and value: -// -// ``` -// [[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]] -// ``` -// -// (3) For the following input of shape `[1, 4, 4, 1]`, `block_shape = [2, 2]`, and -// `paddings = [[0, 0], [0, 0]]`: -// -// ``` -// x = [[[[1], [2], [3], [4]], -// [[5], [6], [7], [8]], -// [[9], [10], [11], [12]], -// [[13], [14], [15], [16]]]] -// ``` -// -// The output tensor has shape `[4, 2, 2, 1]` and value: -// -// ``` -// x = [[[[1], [3]], [[9], [11]]], -// [[[2], [4]], [[10], [12]]], -// [[[5], [7]], [[13], [15]]], -// [[[6], [8]], [[14], [16]]]] -// ``` -// -// (4) For the following input of shape `[2, 2, 4, 1]`, block_shape = `[2, 2]`, and -// paddings = `[[0, 0], [2, 0]]`: -// -// ``` -// x = [[[[1], [2], [3], [4]], -// [[5], [6], [7], [8]]], -// [[[9], [10], [11], [12]], -// [[13], [14], [15], [16]]]] -// ``` -// -// The output tensor has shape `[8, 1, 3, 1]` and value: -// -// ``` -// x = [[[[0], [1], [3]]], [[[0], [9], [11]]], -// [[[0], [2], [4]]], [[[0], [10], [12]]], -// [[[0], [5], [7]]], [[[0], [13], [15]]], -// [[[0], [6], [8]]], [[[0], [14], [16]]]] -// ``` -// -// Among others, this operation is useful for reducing atrous convolution into -// regular convolution. -func SpaceToBatchND(scope *Scope, input tf.Output, block_shape tf.Output, paddings tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SpaceToBatchND", - Input: []tf.Input{ - input, block_shape, paddings, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // ImagAttr is an optional argument to Imag. type ImagAttr func(optionalAttr) @@ -19535,59 +19197,6 @@ func Imag(scope *Scope, input tf.Output, optional ...ImagAttr) (output tf.Output return op.Output(0) } -// RandomStandardNormalAttr is an optional argument to RandomStandardNormal. -type RandomStandardNormalAttr func(optionalAttr) - -// RandomStandardNormalSeed sets the optional seed attribute to value. -// -// value: If either `seed` or `seed2` are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func RandomStandardNormalSeed(value int64) RandomStandardNormalAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// RandomStandardNormalSeed2 sets the optional seed2 attribute to value. -// -// value: A second seed to avoid seed collision. -// If not specified, defaults to 0 -func RandomStandardNormalSeed2(value int64) RandomStandardNormalAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Outputs random values from a normal distribution. -// -// The generated values will have mean 0 and standard deviation 1. -// -// Arguments: -// shape: The shape of the output tensor. -// dtype: The type of the output. -// -// Returns A tensor of the specified shape filled with random normal values. -func RandomStandardNormal(scope *Scope, shape tf.Output, dtype tf.DataType, optional ...RandomStandardNormalAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RandomStandardNormal", - Input: []tf.Input{ - shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // UnpackAttr is an optional argument to Unpack. type UnpackAttr func(optionalAttr) @@ -19713,6 +19322,58 @@ func ResourceSparseApplyKerasMomentum(scope *Scope, var_ tf.Output, accum tf.Out return scope.AddOperation(opspec) } +// UniqueAttr is an optional argument to Unique. +type UniqueAttr func(optionalAttr) + +// UniqueOutIdx sets the optional out_idx attribute to value. +// If not specified, defaults to DT_INT32 +func UniqueOutIdx(value tf.DataType) UniqueAttr { + return func(m optionalAttr) { + m["out_idx"] = value + } +} + +// Finds unique elements in a 1-D tensor. +// +// This operation returns a tensor `y` containing all of the unique elements of `x` +// sorted in the same order that they occur in `x`. This operation also returns a +// tensor `idx` the same size as `x` that contains the index of each value of `x` +// in the unique output `y`. In other words: +// +// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` +// +// For example: +// +// ``` +// # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] +// y, idx = unique(x) +// y ==> [1, 2, 4, 7, 8] +// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] +// ``` +// +// Arguments: +// x: 1-D. +// +// Returns 1-D.1-D. +func Unique(scope *Scope, x tf.Output, optional ...UniqueAttr) (y tf.Output, idx tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Unique", + Input: []tf.Input{ + x, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + // MeanAttr is an optional argument to Mean. type MeanAttr func(optionalAttr) @@ -19758,173 +19419,87 @@ func Mean(scope *Scope, input tf.Output, axis tf.Output, optional ...MeanAttr) ( return op.Output(0) } -// Computes softmax activations. +// Returns the truth value of (x > y) element-wise. // -// For each batch `i` and class `j` we have -// -// $$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$ -// -// Arguments: -// logits: 2-D with shape `[batch_size, num_classes]`. -// -// Returns Same shape as `logits`. -func Softmax(scope *Scope, logits tf.Output) (softmax tf.Output) { +// *NOTE*: `Greater` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func Greater(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Softmax", + Type: "Greater", Input: []tf.Input{ - logits, + x, y, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// SdcaOptimizerAttr is an optional argument to SdcaOptimizer. -type SdcaOptimizerAttr func(optionalAttr) - -// SdcaOptimizerAdaptative sets the optional adaptative attribute to value. +// JPEG encode input image with provided compression quality. // -// value: Whether to use Adaptive SDCA for the inner loop. -// If not specified, defaults to true -func SdcaOptimizerAdaptative(value bool) SdcaOptimizerAttr { - return func(m optionalAttr) { - m["adaptative"] = value - } -} - -// Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for +// `image` is a 3-D uint8 Tensor of shape `[height, width, channels]`. +// `quality` is an int32 jpeg compression quality value between 0 and 100. // -// linear models with L1 + L2 regularization. As global optimization objective is -// strongly-convex, the optimizer optimizes the dual objective at each step. The -// optimizer applies each update one example at a time. Examples are sampled -// uniformly, and the optimizer is learning rate free and enjoys linear convergence -// rate. -// -// [Proximal Stochastic Dual Coordinate Ascent](http://arxiv.org/pdf/1211.2717v1.pdf).
-// Shai Shalev-Shwartz, Tong Zhang. 2012 -// -// $$Loss Objective = \sum f_{i} (wx_{i}) + (l2 / 2) * |w|^2 + l1 * |w|$$ -// -// [Adding vs. Averaging in Distributed Primal-Dual Optimization](http://arxiv.org/abs/1502.03508).
-// Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, -// Peter Richtarik, Martin Takac. 2015 -// -// [Stochastic Dual Coordinate Ascent with Adaptive Probabilities](https://arxiv.org/abs/1502.08053).
-// Dominik Csiba, Zheng Qu, Peter Richtarik. 2015 // // Arguments: -// sparse_example_indices: a list of vectors which contain example indices. -// sparse_feature_indices: a list of vectors which contain feature indices. -// sparse_feature_values: a list of vectors which contains feature value -// associated with each feature group. -// dense_features: a list of matrices which contains the dense feature values. -// example_weights: a vector which contains the weight associated with each -// example. -// example_labels: a vector which contains the label/target associated with each -// example. -// sparse_indices: a list of vectors where each value is the indices which has -// corresponding weights in sparse_weights. This field maybe omitted for the -// dense approach. -// sparse_weights: a list of vectors where each value is the weight associated with -// a sparse feature group. -// dense_weights: a list of vectors where the values are the weights associated -// with a dense feature group. -// example_state_data: a list of vectors containing the example state data. -// loss_type: Type of the primal loss. Currently SdcaSolver supports logistic, -// squared and hinge losses. -// l1: Symmetric l1 regularization strength. -// l2: Symmetric l2 regularization strength. -// num_loss_partitions: Number of partitions of the global loss function. -// num_inner_iterations: Number of iterations per mini-batch. +// images: Images to adjust. At least 3-D. +// quality: An int quality to encode to. // -// Returns a list of vectors containing the updated example state -// data.a list of vectors where each value is the delta -// weights associated with a sparse feature group.a list of vectors where the values are the delta -// weights associated with a dense feature group. -func SdcaOptimizer(scope *Scope, sparse_example_indices []tf.Output, sparse_feature_indices []tf.Output, sparse_feature_values []tf.Output, dense_features []tf.Output, example_weights tf.Output, example_labels tf.Output, sparse_indices []tf.Output, sparse_weights []tf.Output, dense_weights []tf.Output, example_state_data tf.Output, loss_type string, l1 float32, l2 float32, num_loss_partitions int64, num_inner_iterations int64, optional ...SdcaOptimizerAttr) (out_example_state_data tf.Output, out_delta_sparse_weights []tf.Output, out_delta_dense_weights []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"loss_type": loss_type, "l1": l1, "l2": l2, "num_loss_partitions": num_loss_partitions, "num_inner_iterations": num_inner_iterations} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SdcaOptimizer", - Input: []tf.Input{ - tf.OutputList(sparse_example_indices), tf.OutputList(sparse_feature_indices), tf.OutputList(sparse_feature_values), tf.OutputList(dense_features), example_weights, example_labels, tf.OutputList(sparse_indices), tf.OutputList(sparse_weights), tf.OutputList(dense_weights), example_state_data, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - out_example_state_data = op.Output(idx) - if out_delta_sparse_weights, idx, err = makeOutputList(op, idx, "out_delta_sparse_weights"); err != nil { - scope.UpdateErr("SdcaOptimizer", err) - return - } - if out_delta_dense_weights, idx, err = makeOutputList(op, idx, "out_delta_dense_weights"); err != nil { - scope.UpdateErr("SdcaOptimizer", err) - return - } - return out_example_state_data, out_delta_sparse_weights, out_delta_dense_weights -} - -// Computes the gradient of the sigmoid of `x` wrt its input. -// -// Specifically, `grad = dy * y * (1 - y)`, where `y = sigmoid(x)`, and -// `dy` is the corresponding input gradient. -func SigmoidGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { +// Returns 0-D. JPEG-encoded image. +func EncodeJpegVariableQuality(scope *Scope, images tf.Output, quality tf.Output) (contents tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "SigmoidGrad", + Type: "EncodeJpegVariableQuality", Input: []tf.Input{ - y, dy, + images, quality, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// RetrieveTPUEmbeddingAdagradParametersAttr is an optional argument to RetrieveTPUEmbeddingAdagradParameters. -type RetrieveTPUEmbeddingAdagradParametersAttr func(optionalAttr) +// LoadTPUEmbeddingRMSPropParametersAttr is an optional argument to LoadTPUEmbeddingRMSPropParameters. +type LoadTPUEmbeddingRMSPropParametersAttr func(optionalAttr) -// RetrieveTPUEmbeddingAdagradParametersTableId sets the optional table_id attribute to value. +// LoadTPUEmbeddingRMSPropParametersTableId sets the optional table_id attribute to value. // If not specified, defaults to -1 // // REQUIRES: value >= -1 -func RetrieveTPUEmbeddingAdagradParametersTableId(value int64) RetrieveTPUEmbeddingAdagradParametersAttr { +func LoadTPUEmbeddingRMSPropParametersTableId(value int64) LoadTPUEmbeddingRMSPropParametersAttr { return func(m optionalAttr) { m["table_id"] = value } } -// RetrieveTPUEmbeddingAdagradParametersTableName sets the optional table_name attribute to value. +// LoadTPUEmbeddingRMSPropParametersTableName sets the optional table_name attribute to value. // If not specified, defaults to "" -func RetrieveTPUEmbeddingAdagradParametersTableName(value string) RetrieveTPUEmbeddingAdagradParametersAttr { +func LoadTPUEmbeddingRMSPropParametersTableName(value string) LoadTPUEmbeddingRMSPropParametersAttr { return func(m optionalAttr) { m["table_name"] = value } } -// Retrieve Adagrad embedding parameters. +// Load RMSProp embedding parameters. // -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. // -// Returns Parameter parameters updated by the Adagrad optimization algorithm.Parameter accumulators updated by the Adagrad optimization algorithm. -func RetrieveTPUEmbeddingAdagradParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingAdagradParametersAttr) (parameters tf.Output, accumulators tf.Output) { +// Arguments: +// parameters: Value of parameters used in the RMSProp optimization algorithm. +// ms: Value of ms used in the RMSProp optimization algorithm. +// mom: Value of mom used in the RMSProp optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingRMSPropParameters(scope *Scope, parameters tf.Output, ms tf.Output, mom tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingRMSPropParametersAttr) (o *tf.Operation) { if scope.Err() != nil { return } @@ -19933,149 +19508,361 @@ func RetrieveTPUEmbeddingAdagradParameters(scope *Scope, num_shards int64, shard a(attrs) } opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingAdagradParameters", - + Type: "LoadTPUEmbeddingRMSPropParameters", + Input: []tf.Input{ + parameters, ms, mom, + }, Attrs: attrs, } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) + return scope.AddOperation(opspec) } -// OutfeedDequeueAttr is an optional argument to OutfeedDequeue. -type OutfeedDequeueAttr func(optionalAttr) - -// OutfeedDequeueDeviceOrdinal sets the optional device_ordinal attribute to value. +// Applies softmax to a batched N-D `SparseTensor`. // -// value: The TPU device to use. This should be -1 when the Op -// is running on a TPU device, and >= 0 when the Op is running on the CPU -// device. -// If not specified, defaults to -1 -func OutfeedDequeueDeviceOrdinal(value int64) OutfeedDequeueAttr { - return func(m optionalAttr) { - m["device_ordinal"] = value - } -} - -// Retrieves a single tensor from the computation outfeed. +// The inputs represent an N-D SparseTensor with logical shape `[..., B, C]` +// (where `N >= 2`), and with indices sorted in the canonical lexicographic order. // -// This operation will block indefinitely until data is available. +// This op is equivalent to applying the normal `tf.nn.softmax()` to each innermost +// logical submatrix with shape `[B, C]`, but with the catch that *the implicitly +// zero elements do not participate*. Specifically, the algorithm is equivalent +// to the following: +// +// (1) Applies `tf.nn.softmax()` to a densified view of each innermost submatrix +// with shape `[B, C]`, along the size-C dimension; +// (2) Masks out the original implicitly-zero locations; +// (3) Renormalizes the remaining elements. +// +// Hence, the `SparseTensor` result has exactly the same non-zero indices and +// shape. // // Arguments: -// dtype: The type of elements in the tensor. -// shape: The shape of the tensor. +// sp_indices: 2-D. `NNZ x R` matrix with the indices of non-empty values in a +// SparseTensor, in canonical ordering. +// sp_values: 1-D. `NNZ` non-empty values corresponding to `sp_indices`. +// sp_shape: 1-D. Shape of the input SparseTensor. // -// Returns A tensor that will be read from the device outfeed. -func OutfeedDequeue(scope *Scope, dtype tf.DataType, shape tf.Shape, optional ...OutfeedDequeueAttr) (output tf.Output) { +// Returns 1-D. The `NNZ` values for the result `SparseTensor`. +func SparseSoftmax(scope *Scope, sp_indices tf.Output, sp_values tf.Output, sp_shape tf.Output) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"dtype": dtype, "shape": shape} + opspec := tf.OpSpec{ + Type: "SparseSoftmax", + Input: []tf.Input{ + sp_indices, sp_values, sp_shape, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the sum along segments of a tensor. +// +// Read +// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) +// for an explanation of segments. +// +// Computes a tensor such that +// \\(output[i] = \sum_{j...} data[j...]\\) where the sum is over tuples `j...` such +// that `segment_ids[j...] == i`. Unlike `SegmentSum`, `segment_ids` +// need not be sorted and need not cover all values in the full +// range of valid values. +// +// If the sum is empty for a given segment ID `i`, `output[i] = 0`. +// If the given segment ID `i` is negative, the value is dropped and will not be +// added to the sum of the segment. +// +// `num_segments` should equal the number of distinct segment IDs. +// +//
+// +//
+// +// ``` python +// c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]]) +// tf.unsorted_segment_sum(c, tf.constant([0, 1, 0]), num_segments=2) +// # ==> [[ 5, 5, 5, 5], +// # [5, 6, 7, 8]] +// ``` +// +// +// Arguments: +// +// segment_ids: A tensor whose shape is a prefix of `data.shape`. +// +// +// Returns Has same shape as data, except for the first `segment_ids.rank` +// dimensions, which are replaced with a single dimension which has size +// `num_segments`. +func UnsortedSegmentSum(scope *Scope, data tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "UnsortedSegmentSum", + Input: []tf.Input{ + data, segment_ids, num_segments, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// SkipgramAttr is an optional argument to Skipgram. +type SkipgramAttr func(optionalAttr) + +// SkipgramWindowSize sets the optional window_size attribute to value. +// +// value: The number of words to predict to the left and right of the target. +// If not specified, defaults to 5 +func SkipgramWindowSize(value int64) SkipgramAttr { + return func(m optionalAttr) { + m["window_size"] = value + } +} + +// SkipgramMinCount sets the optional min_count attribute to value. +// +// value: The minimum number of word occurrences for it to be included in the +// vocabulary. +// If not specified, defaults to 5 +func SkipgramMinCount(value int64) SkipgramAttr { + return func(m optionalAttr) { + m["min_count"] = value + } +} + +// SkipgramSubsample sets the optional subsample attribute to value. +// +// value: Threshold for word occurrence. Words that appear with higher +// frequency will be randomly down-sampled. Set to 0 to disable. +// If not specified, defaults to 0.001 +func SkipgramSubsample(value float32) SkipgramAttr { + return func(m optionalAttr) { + m["subsample"] = value + } +} + +// Parses a text file and creates a batch of examples. +// +// DEPRECATED at GraphDef version 19: Moving word2vec into tensorflow_models/tutorials and deprecating its ops here as a result +// +// Arguments: +// filename: The corpus's text file name. +// batch_size: The size of produced batch. +// +// Returns A vector of words in the corpus.Frequencies of words. Sorted in the non-ascending order.Number of words per epoch in the data file.The current epoch number.The total number of words processed so far.A vector of word ids.A vector of word ids. +func Skipgram(scope *Scope, filename string, batch_size int64, optional ...SkipgramAttr) (vocab_word tf.Output, vocab_freq tf.Output, words_per_epoch tf.Output, current_epoch tf.Output, total_words_processed tf.Output, examples tf.Output, labels tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"filename": filename, "batch_size": batch_size} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "OutfeedDequeue", + Type: "Skipgram", Attrs: attrs, } op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4), op.Output(5), op.Output(6) +} + +// Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. +// +// The `input` tensor has shape `[batch, in_height, in_width, depth]` and the +// `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each +// input channel is processed independently of the others with its own structuring +// function. The `output` tensor has shape +// `[batch, out_height, out_width, depth]`. The spatial dimensions of the output +// tensor depend on the `padding` algorithm. We currently only support the default +// "NHWC" `data_format`. +// +// In detail, the grayscale morphological 2-D dilation is the max-sum correlation +// (for consistency with `conv2d`, we use unmirrored filters): +// +// output[b, y, x, c] = +// max_{dy, dx} input[b, +// strides[1] * y + rates[1] * dy, +// strides[2] * x + rates[2] * dx, +// c] + +// filter[dy, dx, c] +// +// Max-pooling is a special case when the filter has size equal to the pooling +// kernel size and contains all zeros. +// +// Note on duality: The dilation of `input` by the `filter` is equal to the +// negation of the erosion of `-input` by the reflected `filter`. +// +// Arguments: +// input: 4-D with shape `[batch, in_height, in_width, depth]`. +// filter: 3-D with shape `[filter_height, filter_width, depth]`. +// strides: The stride of the sliding window for each dimension of the input +// tensor. Must be: `[1, stride_height, stride_width, 1]`. +// rates: The input stride for atrous morphological dilation. Must be: +// `[1, rate_height, rate_width, 1]`. +// padding: The type of padding algorithm to use. +// +// Returns 4-D with shape `[batch, out_height, out_width, depth]`. +func Dilation2D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, rates []int64, padding string) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "rates": rates, "padding": padding} + opspec := tf.OpSpec{ + Type: "Dilation2D", + Input: []tf.Input{ + input, filter, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) return op.Output(0) } -// 3D fast Fourier transform. +// Returns the index of a data point that should be added to the seed set. // -// Computes the 3-dimensional discrete Fourier transform over the inner-most 3 -// dimensions of `input`. +// Entries in distances are assumed to be squared distances of candidate points to +// the already sampled centers in the seed set. The op constructs one Markov chain +// of the k-MC^2 algorithm and returns the index of one candidate point to be added +// as an additional cluster center. // // Arguments: -// input: A complex64 tensor. +// distances: Vector with squared distances to the closest previously sampled cluster center +// for each candidate point. +// seed: Scalar. Seed for initializing the random number generator. // -// Returns A complex64 tensor of the same shape as `input`. The inner-most 3 -// dimensions of `input` are replaced with their 3D Fourier transform. -// -// @compatibility(numpy) -// Equivalent to np.fft.fftn with 3 dimensions. -// @end_compatibility -func FFT3D(scope *Scope, input tf.Output) (output tf.Output) { +// Returns Scalar with the index of the sampled point. +func KMC2ChainInitialization(scope *Scope, distances tf.Output, seed tf.Output) (index tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "FFT3D", + Type: "KMC2ChainInitialization", Input: []tf.Input{ - input, + distances, seed, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// Concats all tensors in the list along the 0th dimension. +// ResizeNearestNeighborAttr is an optional argument to ResizeNearestNeighbor. +type ResizeNearestNeighborAttr func(optionalAttr) + +// ResizeNearestNeighborAlignCorners sets the optional align_corners attribute to value. // -// Requires that all tensors have the same shape except the first dimension. +// value: If true, the centers of the 4 corner pixels of the input and output tensors are +// aligned, preserving the values at the corner pixels. Defaults to false. +// If not specified, defaults to false +func ResizeNearestNeighborAlignCorners(value bool) ResizeNearestNeighborAttr { + return func(m optionalAttr) { + m["align_corners"] = value + } +} + +// ResizeNearestNeighborHalfPixelCenters sets the optional half_pixel_centers attribute to value. +// If not specified, defaults to false +func ResizeNearestNeighborHalfPixelCenters(value bool) ResizeNearestNeighborAttr { + return func(m optionalAttr) { + m["half_pixel_centers"] = value + } +} + +// Resize `images` to `size` using nearest neighbor interpolation. // -// input_handle: The input list. -// element_shape: The shape of the uninitialized elements in the list. If the first -// dimension is not -1, it is assumed that all list elements have the same -// leading dim. -// leading_dims: The list of leading dims of uninitialized list elements. Used if -// the leading dim of input_handle.element_shape or the element_shape input arg -// is not already set. -// tensor: The concated result. -// lengths: Output tensor containing sizes of the 0th dimension of tensors in the list, used for computing the gradient. +// Arguments: +// images: 4-D with shape `[batch, height, width, channels]`. +// size: = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The +// new size for the images. // -func TensorListConcatV2(scope *Scope, input_handle tf.Output, element_shape tf.Output, leading_dims tf.Output, element_dtype tf.DataType) (tensor tf.Output, lengths tf.Output) { +// Returns 4-D with shape +// `[batch, new_height, new_width, channels]`. +func ResizeNearestNeighbor(scope *Scope, images tf.Output, size tf.Output, optional ...ResizeNearestNeighborAttr) (resized_images tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"element_dtype": element_dtype} + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } opspec := tf.OpSpec{ - Type: "TensorListConcatV2", + Type: "ResizeNearestNeighbor", Input: []tf.Input{ - input_handle, element_shape, leading_dims, + images, size, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) + return op.Output(0) } -// Inverse 2D real-valued fast Fourier transform. +// LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingFTRLParametersGradAccumDebug. +type LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr func(optionalAttr) + +// LoadTPUEmbeddingFTRLParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 // -// Computes the inverse 2-dimensional discrete Fourier transform of a real-valued -// signal over the inner-most 2 dimensions of `input`. +// REQUIRES: value >= -1 +func LoadTPUEmbeddingFTRLParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingFTRLParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingFTRLParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load FTRL embedding parameters with debug support. // -// The inner-most 2 dimensions of `input` are assumed to be the result of `RFFT2D`: -// The inner-most dimension contains the `fft_length / 2 + 1` unique components of -// the DFT of a real-valued signal. If `fft_length` is not provided, it is computed -// from the size of the inner-most 2 dimensions of `input`. If the FFT length used -// to compute `input` is odd, it should be provided since it cannot be inferred -// properly. -// -// Along each axis `IRFFT2D` is computed on, if `fft_length` (or -// `fft_length / 2 + 1` for the inner-most dimension) is smaller than the -// corresponding dimension of `input`, the dimension is cropped. If it is larger, -// the dimension is padded with zeros. +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. // // Arguments: -// input: A complex64 tensor. -// fft_length: An int32 tensor of shape [2]. The FFT length for each dimension. +// parameters: Value of parameters used in the FTRL optimization algorithm. +// accumulators: Value of accumulators used in the FTRL optimization algorithm. +// linears: Value of linears used in the FTRL optimization algorithm. +// gradient_accumulators: Value of gradient_accumulators used in the FTRL optimization algorithm. // -// Returns A float32 tensor of the same rank as `input`. The inner-most 2 -// dimensions of `input` are replaced with the `fft_length` samples of their -// inverse 2D Fourier transform. // -// @compatibility(numpy) -// Equivalent to np.fft.irfft2 -// @end_compatibility -func IRFFT2D(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { +// +// Returns the created operation. +func LoadTPUEmbeddingFTRLParametersGradAccumDebug(scope *Scope, parameters tf.Output, accumulators tf.Output, linears tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingFTRLParametersGradAccumDebug", + Input: []tf.Input{ + parameters, accumulators, linears, gradient_accumulators, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Returns the truth value of NOT x element-wise. +func LogicalNot(scope *Scope, x tf.Output) (y tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "IRFFT2D", + Type: "LogicalNot", Input: []tf.Input{ - input, fft_length, + x, }, } op := scope.AddOperation(opspec) @@ -20129,10 +19916,2060 @@ func ResourceApplyProximalAdagrad(scope *Scope, var_ tf.Output, accum tf.Output, return scope.AddOperation(opspec) } -// FractionalAvgPoolGradAttr is an optional argument to FractionalAvgPoolGrad. -type FractionalAvgPoolGradAttr func(optionalAttr) +// ResourceSparseApplyRMSPropAttr is an optional argument to ResourceSparseApplyRMSProp. +type ResourceSparseApplyRMSPropAttr func(optionalAttr) -// FractionalAvgPoolGradOverlapping sets the optional overlapping attribute to value. +// ResourceSparseApplyRMSPropUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var, ms, and mom tensors is protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceSparseApplyRMSPropUseLocking(value bool) ResourceSparseApplyRMSPropAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' according to the RMSProp algorithm. +// +// Note that in dense implementation of this algorithm, ms and mom will +// update even if the grad is zero, but in this sparse implementation, ms +// and mom will not update in iterations during which the grad is zero. +// +// mean_square = decay * mean_square + (1-decay) * gradient ** 2 +// Delta = learning_rate * gradient / sqrt(mean_square + epsilon) +// +// ms <- rho * ms_{t-1} + (1-rho) * grad * grad +// mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) +// var <- var - mom +// +// Arguments: +// var_: Should be from a Variable(). +// ms: Should be from a Variable(). +// mom: Should be from a Variable(). +// lr: Scaling factor. Must be a scalar. +// rho: Decay rate. Must be a scalar. +// +// epsilon: Ridge term. Must be a scalar. +// grad: The gradient. +// indices: A vector of indices into the first dimension of var, ms and mom. +// +// Returns the created operation. +func ResourceSparseApplyRMSProp(scope *Scope, var_ tf.Output, ms tf.Output, mom tf.Output, lr tf.Output, rho tf.Output, momentum tf.Output, epsilon tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyRMSPropAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceSparseApplyRMSProp", + Input: []tf.Input{ + var_, ms, mom, lr, rho, momentum, epsilon, grad, indices, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// LeakyReluAttr is an optional argument to LeakyRelu. +type LeakyReluAttr func(optionalAttr) + +// LeakyReluAlpha sets the optional alpha attribute to value. +// If not specified, defaults to 0.2 +func LeakyReluAlpha(value float32) LeakyReluAttr { + return func(m optionalAttr) { + m["alpha"] = value + } +} + +// Computes rectified linear: `max(features, features * alpha)`. +func LeakyRelu(scope *Scope, features tf.Output, optional ...LeakyReluAttr) (activations tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LeakyRelu", + Input: []tf.Input{ + features, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// VarHandleOpAttr is an optional argument to VarHandleOp. +type VarHandleOpAttr func(optionalAttr) + +// VarHandleOpContainer sets the optional container attribute to value. +// +// value: the container this variable is placed in. +// If not specified, defaults to "" +func VarHandleOpContainer(value string) VarHandleOpAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// VarHandleOpSharedName sets the optional shared_name attribute to value. +// +// value: the name by which this variable is referred to. +// If not specified, defaults to "" +func VarHandleOpSharedName(value string) VarHandleOpAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Creates a handle to a Variable resource. +// +// Arguments: +// dtype: the type of this variable. Must agree with the dtypes +// of all ops using this variable. +// shape: The (possibly partially specified) shape of this variable. +func VarHandleOp(scope *Scope, dtype tf.DataType, shape tf.Shape, optional ...VarHandleOpAttr) (resource tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype, "shape": shape} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "VarHandleOp", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Slice a `SparseTensor` based on the `start` and `size`. +// +// For example, if the input is +// +// input_tensor = shape = [2, 7] +// [ a d e ] +// [b c ] +// +// Graphically the output tensors are: +// +// sparse_slice([0, 0], [2, 4]) = shape = [2, 4] +// [ a ] +// [b c ] +// +// sparse_slice([0, 4], [2, 3]) = shape = [2, 3] +// [ d e ] +// [ ] +// +// Arguments: +// indices: 2-D tensor represents the indices of the sparse tensor. +// values: 1-D tensor represents the values of the sparse tensor. +// shape: 1-D. tensor represents the shape of the sparse tensor. +// start: 1-D. tensor represents the start of the slice. +// size: 1-D. tensor represents the size of the slice. +// output indices: A list of 1-D tensors represents the indices of the output +// sparse tensors. +// +// Returns A list of 1-D tensors represents the values of the output sparse +// tensors.A list of 1-D tensors represents the shape of the output sparse +// tensors. +func SparseSlice(scope *Scope, indices tf.Output, values tf.Output, shape tf.Output, start tf.Output, size tf.Output) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSlice", + Input: []tf.Input{ + indices, values, shape, start, size, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// NonDeterministicIntsAttr is an optional argument to NonDeterministicInts. +type NonDeterministicIntsAttr func(optionalAttr) + +// NonDeterministicIntsDtype sets the optional dtype attribute to value. +// +// value: The type of the output. +// If not specified, defaults to DT_INT64 +func NonDeterministicIntsDtype(value tf.DataType) NonDeterministicIntsAttr { + return func(m optionalAttr) { + m["dtype"] = value + } +} + +// Non-deterministically generates some integers. +// +// This op may use some OS-provided source of non-determinism (e.g. an RNG), so each execution will give different results. +// +// Arguments: +// shape: The shape of the output tensor. +// +// Returns Non-deterministic integer values with specified shape. +func NonDeterministicInts(scope *Scope, shape tf.Output, optional ...NonDeterministicIntsAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "NonDeterministicInts", + Input: []tf.Input{ + shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// QuantizedResizeBilinearAttr is an optional argument to QuantizedResizeBilinear. +type QuantizedResizeBilinearAttr func(optionalAttr) + +// QuantizedResizeBilinearAlignCorners sets the optional align_corners attribute to value. +// +// value: If true, the centers of the 4 corner pixels of the input and output tensors are +// aligned, preserving the values at the corner pixels. Defaults to false. +// If not specified, defaults to false +func QuantizedResizeBilinearAlignCorners(value bool) QuantizedResizeBilinearAttr { + return func(m optionalAttr) { + m["align_corners"] = value + } +} + +// QuantizedResizeBilinearHalfPixelCenters sets the optional half_pixel_centers attribute to value. +// If not specified, defaults to false +func QuantizedResizeBilinearHalfPixelCenters(value bool) QuantizedResizeBilinearAttr { + return func(m optionalAttr) { + m["half_pixel_centers"] = value + } +} + +// Resize quantized `images` to `size` using quantized bilinear interpolation. +// +// Input images and output images must be quantized types. +// +// Arguments: +// images: 4-D with shape `[batch, height, width, channels]`. +// size: = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The +// new size for the images. +// +// +// +// Returns 4-D with shape +// `[batch, new_height, new_width, channels]`. +func QuantizedResizeBilinear(scope *Scope, images tf.Output, size tf.Output, min tf.Output, max tf.Output, optional ...QuantizedResizeBilinearAttr) (resized_images tf.Output, out_min tf.Output, out_max tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "QuantizedResizeBilinear", + Input: []tf.Input{ + images, size, min, max, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Generates values in an interval. +// +// A sequence of `num` evenly-spaced values are generated beginning at `start`. +// If `num > 1`, the values in the sequence increase by `stop - start / num - 1`, +// so that the last one is exactly `stop`. +// +// For example: +// +// ``` +// tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0 11.0 12.0] +// ``` +// +// Arguments: +// start: 0-D tensor. First entry in the range. +// stop: 0-D tensor. Last entry in the range. +// num: 0-D tensor. Number of values to generate. +// +// Returns 1-D. The generated values. +func LinSpace(scope *Scope, start tf.Output, stop tf.Output, num tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "LinSpace", + Input: []tf.Input{ + start, stop, num, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// DecodeRawAttr is an optional argument to DecodeRaw. +type DecodeRawAttr func(optionalAttr) + +// DecodeRawLittleEndian sets the optional little_endian attribute to value. +// +// value: Whether the input `bytes` are in little-endian order. +// Ignored for `out_type` values that are stored in a single byte like +// `uint8`. +// If not specified, defaults to true +func DecodeRawLittleEndian(value bool) DecodeRawAttr { + return func(m optionalAttr) { + m["little_endian"] = value + } +} + +// Reinterpret the bytes of a string as a vector of numbers. +// +// Arguments: +// bytes: All the elements must have the same length. +// +// +// Returns A Tensor with one more dimension than the input `bytes`. The +// added dimension will have size equal to the length of the elements +// of `bytes` divided by the number of bytes to represent `out_type`. +func DecodeRaw(scope *Scope, bytes tf.Output, out_type tf.DataType, optional ...DecodeRawAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"out_type": out_type} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DecodeRaw", + Input: []tf.Input{ + bytes, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingMomentumParametersGradAccumDebug. +type RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr func(optionalAttr) + +// RetrieveTPUEmbeddingMomentumParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingMomentumParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// RetrieveTPUEmbeddingMomentumParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingMomentumParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Retrieve Momentum embedding parameters with debug support. +// +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. +// +// Returns Parameter parameters updated by the Momentum optimization algorithm.Parameter momenta updated by the Momentum optimization algorithm.Parameter gradient_accumulators updated by the Momentum optimization algorithm. +func RetrieveTPUEmbeddingMomentumParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr) (parameters tf.Output, momenta tf.Output, gradient_accumulators tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RetrieveTPUEmbeddingMomentumParametersGradAccumDebug", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// AvgPoolGradAttr is an optional argument to AvgPoolGrad. +type AvgPoolGradAttr func(optionalAttr) + +// AvgPoolGradDataFormat sets the optional data_format attribute to value. +// +// value: Specify the data format of the input and output data. With the +// default format "NHWC", the data is stored in the order of: +// [batch, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCHW", the data storage order of: +// [batch, in_channels, in_height, in_width]. +// If not specified, defaults to "NHWC" +func AvgPoolGradDataFormat(value string) AvgPoolGradAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Computes gradients of the average pooling function. +// +// Arguments: +// orig_input_shape: 1-D. Shape of the original input to `avg_pool`. +// grad: 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. +// the output of `avg_pool`. +// ksize: The size of the sliding window for each dimension of the input. +// strides: The stride of the sliding window for each dimension of the input. +// padding: The type of padding algorithm to use. +// +// Returns 4-D. Gradients w.r.t. the input of `avg_pool`. +func AvgPoolGrad(scope *Scope, orig_input_shape tf.Output, grad tf.Output, ksize []int64, strides []int64, padding string, optional ...AvgPoolGradAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "AvgPoolGrad", + Input: []tf.Input{ + orig_input_shape, grad, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes softplus: `log(exp(features) + 1)`. +func Softplus(scope *Scope, features tf.Output) (activations tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Softplus", + Input: []tf.Input{ + features, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ResourceSparseApplyMomentumAttr is an optional argument to ResourceSparseApplyMomentum. +type ResourceSparseApplyMomentumAttr func(optionalAttr) + +// ResourceSparseApplyMomentumUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var and accum tensors will be protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceSparseApplyMomentumUseLocking(value bool) ResourceSparseApplyMomentumAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// ResourceSparseApplyMomentumUseNesterov sets the optional use_nesterov attribute to value. +// +// value: If `True`, the tensor passed to compute grad will be +// var - lr * momentum * accum, so in the end, the var you get is actually +// var - lr * momentum * accum. +// If not specified, defaults to false +func ResourceSparseApplyMomentumUseNesterov(value bool) ResourceSparseApplyMomentumAttr { + return func(m optionalAttr) { + m["use_nesterov"] = value + } +} + +// Update relevant entries in '*var' and '*accum' according to the momentum scheme. +// +// Set use_nesterov = True if you want to use Nesterov momentum. +// +// That is for rows we have grad for, we update var and accum as follows: +// +// accum = accum * momentum + grad +// var -= lr * accum +// +// Arguments: +// var_: Should be from a Variable(). +// accum: Should be from a Variable(). +// lr: Learning rate. Must be a scalar. +// grad: The gradient. +// indices: A vector of indices into the first dimension of var and accum. +// momentum: Momentum. Must be a scalar. +// +// Returns the created operation. +func ResourceSparseApplyMomentum(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, grad tf.Output, indices tf.Output, momentum tf.Output, optional ...ResourceSparseApplyMomentumAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceSparseApplyMomentum", + Input: []tf.Input{ + var_, accum, lr, grad, indices, momentum, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// ResourceApplyCenteredRMSPropAttr is an optional argument to ResourceApplyCenteredRMSProp. +type ResourceApplyCenteredRMSPropAttr func(optionalAttr) + +// ResourceApplyCenteredRMSPropUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var, mg, ms, and mom tensors is +// protected by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceApplyCenteredRMSPropUseLocking(value bool) ResourceApplyCenteredRMSPropAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' according to the centered RMSProp algorithm. +// +// The centered RMSProp algorithm uses an estimate of the centered second moment +// (i.e., the variance) for normalization, as opposed to regular RMSProp, which +// uses the (uncentered) second moment. This often helps with training, but is +// slightly more expensive in terms of computation and memory. +// +// Note that in dense implementation of this algorithm, mg, ms, and mom will +// update even if the grad is zero, but in this sparse implementation, mg, ms, +// and mom will not update in iterations during which the grad is zero. +// +// mean_square = decay * mean_square + (1-decay) * gradient ** 2 +// mean_grad = decay * mean_grad + (1-decay) * gradient +// +// Delta = learning_rate * gradient / sqrt(mean_square + epsilon - mean_grad ** 2) +// +// mg <- rho * mg_{t-1} + (1-rho) * grad +// ms <- rho * ms_{t-1} + (1-rho) * grad * grad +// mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon) +// var <- var - mom +// +// Arguments: +// var_: Should be from a Variable(). +// mg: Should be from a Variable(). +// ms: Should be from a Variable(). +// mom: Should be from a Variable(). +// lr: Scaling factor. Must be a scalar. +// rho: Decay rate. Must be a scalar. +// +// epsilon: Ridge term. Must be a scalar. +// grad: The gradient. +// +// Returns the created operation. +func ResourceApplyCenteredRMSProp(scope *Scope, var_ tf.Output, mg tf.Output, ms tf.Output, mom tf.Output, lr tf.Output, rho tf.Output, momentum tf.Output, epsilon tf.Output, grad tf.Output, optional ...ResourceApplyCenteredRMSPropAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceApplyCenteredRMSProp", + Input: []tf.Input{ + var_, mg, ms, mom, lr, rho, momentum, epsilon, grad, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Returns the complex conjugate of a complex number. +// +// Given a tensor `input` of complex numbers, this operation returns a tensor of +// complex numbers that are the complex conjugate of each element in `input`. The +// complex numbers in `input` must be of the form \\(a + bj\\), where *a* is the +// real part and *b* is the imaginary part. +// +// The complex conjugate returned by this operation is of the form \\(a - bj\\). +// +// For example: +// +// ``` +// # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] +// tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j] +// ``` +func Conj(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Conj", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// DecodePngAttr is an optional argument to DecodePng. +type DecodePngAttr func(optionalAttr) + +// DecodePngChannels sets the optional channels attribute to value. +// +// value: Number of color channels for the decoded image. +// If not specified, defaults to 0 +func DecodePngChannels(value int64) DecodePngAttr { + return func(m optionalAttr) { + m["channels"] = value + } +} + +// DecodePngDtype sets the optional dtype attribute to value. +// If not specified, defaults to DT_UINT8 +func DecodePngDtype(value tf.DataType) DecodePngAttr { + return func(m optionalAttr) { + m["dtype"] = value + } +} + +// Decode a PNG-encoded image to a uint8 or uint16 tensor. +// +// The attr `channels` indicates the desired number of color channels for the +// decoded image. +// +// Accepted values are: +// +// * 0: Use the number of channels in the PNG-encoded image. +// * 1: output a grayscale image. +// * 3: output an RGB image. +// * 4: output an RGBA image. +// +// If needed, the PNG-encoded image is transformed to match the requested number +// of color channels. +// +// This op also supports decoding JPEGs and non-animated GIFs since the interface +// is the same, though it is cleaner to use `tf.image.decode_image`. +// +// Arguments: +// contents: 0-D. The PNG-encoded image. +// +// Returns 3-D with shape `[height, width, channels]`. +func DecodePng(scope *Scope, contents tf.Output, optional ...DecodePngAttr) (image tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DecodePng", + Input: []tf.Input{ + contents, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Interleave the values from the `data` tensors into a single tensor. +// +// Builds a merged tensor such that +// +// ```python +// merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...] +// ``` +// +// For example, if each `indices[m]` is scalar or vector, we have +// +// ```python +// # Scalar indices: +// merged[indices[m], ...] = data[m][...] +// +// # Vector indices: +// merged[indices[m][i], ...] = data[m][i, ...] +// ``` +// +// Each `data[i].shape` must start with the corresponding `indices[i].shape`, +// and the rest of `data[i].shape` must be constant w.r.t. `i`. That is, we +// must have `data[i].shape = indices[i].shape + constant`. In terms of this +// `constant`, the output shape is +// +// merged.shape = [max(indices)] + constant +// +// Values may be merged in parallel, so if an index appears in both `indices[m][i]` +// and `indices[n][j]`, the result may be invalid. This differs from the normal +// DynamicStitch operator that defines the behavior in that case. +// +// For example: +// +// ```python +// indices[0] = 6 +// indices[1] = [4, 1] +// indices[2] = [[5, 2], [0, 3]] +// data[0] = [61, 62] +// data[1] = [[41, 42], [11, 12]] +// data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]] +// merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42], +// [51, 52], [61, 62]] +// ``` +// +// This method can be used to merge partitions created by `dynamic_partition` +// as illustrated on the following example: +// +// ```python +// # Apply function (increments x_i) on elements for which a certain condition +// # apply (x_i != -1 in this example). +// x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4]) +// condition_mask=tf.not_equal(x,tf.constant(-1.)) +// partitioned_data = tf.dynamic_partition( +// x, tf.cast(condition_mask, tf.int32) , 2) +// partitioned_data[1] = partitioned_data[1] + 1.0 +// condition_indices = tf.dynamic_partition( +// tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2) +// x = tf.dynamic_stitch(condition_indices, partitioned_data) +// # Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain +// # unchanged. +// ``` +// +//
+// +//
+func ParallelDynamicStitch(scope *Scope, indices []tf.Output, data []tf.Output) (merged tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ParallelDynamicStitch", + Input: []tf.Input{ + tf.OutputList(indices), tf.OutputList(data), + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// AudioSummaryAttr is an optional argument to AudioSummary. +type AudioSummaryAttr func(optionalAttr) + +// AudioSummaryMaxOutputs sets the optional max_outputs attribute to value. +// +// value: Max number of batch elements to generate audio for. +// If not specified, defaults to 3 +// +// REQUIRES: value >= 1 +func AudioSummaryMaxOutputs(value int64) AudioSummaryAttr { + return func(m optionalAttr) { + m["max_outputs"] = value + } +} + +// Outputs a `Summary` protocol buffer with audio. +// +// DEPRECATED at GraphDef version 15: Use AudioSummaryV2. +// +// The summary has up to `max_outputs` summary values containing audio. The +// audio is built from `tensor` which must be 3-D with shape `[batch_size, +// frames, channels]` or 2-D with shape `[batch_size, frames]`. The values are +// assumed to be in the range of `[-1.0, 1.0]` with a sample rate of `sample_rate`. +// +// The `tag` argument is a scalar `Tensor` of type `string`. It is used to +// build the `tag` of the summary values: +// +// * If `max_outputs` is 1, the summary value tag is '*tag*/audio'. +// * If `max_outputs` is greater than 1, the summary value tags are +// generated sequentially as '*tag*/audio/0', '*tag*/audio/1', etc. +// +// Arguments: +// tag: Scalar. Used to build the `tag` attribute of the summary values. +// tensor: 2-D of shape `[batch_size, frames]`. +// sample_rate: The sample rate of the signal in hertz. +// +// Returns Scalar. Serialized `Summary` protocol buffer. +func AudioSummary(scope *Scope, tag tf.Output, tensor tf.Output, sample_rate float32, optional ...AudioSummaryAttr) (summary tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"sample_rate": sample_rate} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "AudioSummary", + Input: []tf.Input{ + tag, tensor, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// AddSparseToTensorsMapAttr is an optional argument to AddSparseToTensorsMap. +type AddSparseToTensorsMapAttr func(optionalAttr) + +// AddSparseToTensorsMapContainer sets the optional container attribute to value. +// +// value: The container name for the `SparseTensorsMap` created by this op. +// If not specified, defaults to "" +func AddSparseToTensorsMapContainer(value string) AddSparseToTensorsMapAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// AddSparseToTensorsMapSharedName sets the optional shared_name attribute to value. +// +// value: The shared name for the `SparseTensorsMap` created by this op. +// If blank, the new Operation's unique name is used. +// If not specified, defaults to "" +func AddSparseToTensorsMapSharedName(value string) AddSparseToTensorsMapAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Add a `SparseTensor` to a `SparseTensorsMap` return its handle. +// +// A `SparseTensor` is represented by three tensors: `sparse_indices`, +// `sparse_values`, and `sparse_shape`. +// +// This operator takes the given `SparseTensor` and adds it to a container +// object (a `SparseTensorsMap`). A unique key within this container is generated +// in the form of an `int64`, and this is the value that is returned. +// +// The `SparseTensor` can then be read out as part of a minibatch by passing +// the key as a vector element to `TakeManySparseFromTensorsMap`. To ensure +// the correct `SparseTensorsMap` is accessed, ensure that the same +// `container` and `shared_name` are passed to that Op. If no `shared_name` +// is provided here, instead use the *name* of the Operation created by calling +// `AddSparseToTensorsMap` as the `shared_name` passed to +// `TakeManySparseFromTensorsMap`. Ensure the Operations are colocated. +// +// Arguments: +// sparse_indices: 2-D. The `indices` of the `SparseTensor`. +// sparse_values: 1-D. The `values` of the `SparseTensor`. +// sparse_shape: 1-D. The `shape` of the `SparseTensor`. +// +// Returns 0-D. The handle of the `SparseTensor` now stored in the +// `SparseTensorsMap`. +func AddSparseToTensorsMap(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output, optional ...AddSparseToTensorsMapAttr) (sparse_handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "AddSparseToTensorsMap", + Input: []tf.Input{ + sparse_indices, sparse_values, sparse_shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// PackAttr is an optional argument to Pack. +type PackAttr func(optionalAttr) + +// PackAxis sets the optional axis attribute to value. +// +// value: Dimension along which to pack. Negative values wrap around, so the +// valid range is `[-(R+1), R+1)`. +// If not specified, defaults to 0 +func PackAxis(value int64) PackAttr { + return func(m optionalAttr) { + m["axis"] = value + } +} + +// Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. +// +// Packs the `N` tensors in `values` into a tensor with rank one higher than each +// tensor in `values`, by packing them along the `axis` dimension. +// Given a list of tensors of shape `(A, B, C)`; +// +// if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`. +// if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`. +// Etc. +// +// For example: +// +// ``` +// # 'x' is [1, 4] +// # 'y' is [2, 5] +// # 'z' is [3, 6] +// pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim. +// pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]] +// ``` +// +// This is the opposite of `unpack`. +// +// Arguments: +// values: Must be of same shape and type. +// +// Returns The packed tensor. +func Pack(scope *Scope, values []tf.Output, optional ...PackAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Pack", + Input: []tf.Input{ + tf.OutputList(values), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Conv3DBackpropFilterAttr is an optional argument to Conv3DBackpropFilter. +type Conv3DBackpropFilterAttr func(optionalAttr) + +// Conv3DBackpropFilterDilations sets the optional dilations attribute to value. +// If not specified, defaults to +func Conv3DBackpropFilterDilations(value []int64) Conv3DBackpropFilterAttr { + return func(m optionalAttr) { + m["dilations"] = value + } +} + +// Computes the gradients of 3-D convolution with respect to the filter. +// +// DEPRECATED at GraphDef version 10: Use Conv3DBackpropFilterV2 +// +// Arguments: +// input: Shape `[batch, depth, rows, cols, in_channels]`. +// filter: Shape `[depth, rows, cols, in_channels, out_channels]`. +// `in_channels` must match between `input` and `filter`. +// out_backprop: Backprop signal of shape `[batch, out_depth, out_rows, out_cols, +// out_channels]`. +// strides: 1-D tensor of length 5. The stride of the sliding window for each +// dimension of `input`. Must have `strides[0] = strides[4] = 1`. +// padding: The type of padding algorithm to use. +func Conv3DBackpropFilter(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv3DBackpropFilterAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Conv3DBackpropFilter", + Input: []tf.Input{ + input, filter, out_backprop, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// UniqueV2Attr is an optional argument to UniqueV2. +type UniqueV2Attr func(optionalAttr) + +// UniqueV2OutIdx sets the optional out_idx attribute to value. +// If not specified, defaults to DT_INT32 +func UniqueV2OutIdx(value tf.DataType) UniqueV2Attr { + return func(m optionalAttr) { + m["out_idx"] = value + } +} + +// Finds unique elements along an axis of a tensor. +// +// This operation either returns a tensor `y` containing unique elements +// along the `axis` of a tensor. The returned unique elements is sorted +// in the same order as they occur along `axis` in `x`. +// This operation also returns a tensor `idx` that is the same size as +// the number of the elements in `x` along the `axis` dimension. It +// contains the index in the unique output `y`. +// In other words, for an `1-D` tensor `x` with `axis = None: +// +// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` +// +// For example: +// +// ``` +// # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] +// y, idx = unique(x) +// y ==> [1, 2, 4, 7, 8] +// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] +// ``` +// +// For an `2-D` tensor `x` with `axis = 0`: +// +// ``` +// # tensor 'x' is [[1, 0, 0], +// # [1, 0, 0], +// # [2, 0, 0]] +// y, idx = unique(x, axis=0) +// y ==> [[1, 0, 0], +// [2, 0, 0]] +// idx ==> [0, 0, 1] +// ``` +// +// For an `2-D` tensor `x` with `axis = 1`: +// +// ``` +// # tensor 'x' is [[1, 0, 0], +// # [1, 0, 0], +// # [2, 0, 0]] +// y, idx = unique(x, axis=1) +// y ==> [[1, 0], +// [1, 0], +// [2, 0]] +// idx ==> [0, 1, 1] +// ``` +// +// Arguments: +// x: A `Tensor`. +// axis: A `Tensor` of type `int32` (default: None). The axis of the Tensor to +// find the unique elements. +// +// Returns A `Tensor`. Unique elements along the `axis` of `Tensor` x.A 1-D Tensor. Has the same type as x that contains the index of each +// value of x in the output y. +func UniqueV2(scope *Scope, x tf.Output, axis tf.Output, optional ...UniqueV2Attr) (y tf.Output, idx tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "UniqueV2", + Input: []tf.Input{ + x, axis, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// PaddedBatchDatasetV2Attr is an optional argument to PaddedBatchDatasetV2. +type PaddedBatchDatasetV2Attr func(optionalAttr) + +// PaddedBatchDatasetV2ParallelCopy sets the optional parallel_copy attribute to value. +// If not specified, defaults to false +func PaddedBatchDatasetV2ParallelCopy(value bool) PaddedBatchDatasetV2Attr { + return func(m optionalAttr) { + m["parallel_copy"] = value + } +} + +// Creates a dataset that batches and pads `batch_size` elements from the input. +// +// Arguments: +// +// batch_size: A scalar representing the number of elements to accumulate in a +// batch. +// padded_shapes: A list of int64 tensors representing the desired padded shapes +// of the corresponding output components. These shapes may be partially +// specified, using `-1` to indicate that a particular dimension should be +// padded to the maximum size of all batch elements. +// padding_values: A list of scalars containing the padding value to use for +// each of the outputs. +// drop_remainder: A scalar representing whether the last batch should be dropped in case its size +// is smaller than desired. +// +func PaddedBatchDatasetV2(scope *Scope, input_dataset tf.Output, batch_size tf.Output, padded_shapes []tf.Output, padding_values []tf.Output, drop_remainder tf.Output, output_shapes []tf.Shape, optional ...PaddedBatchDatasetV2Attr) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_shapes": output_shapes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "PaddedBatchDatasetV2", + Input: []tf.Input{ + input_dataset, batch_size, tf.OutputList(padded_shapes), tf.OutputList(padding_values), drop_remainder, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the gradient of morphological 2-D dilation with respect to the input. +// +// Arguments: +// input: 4-D with shape `[batch, in_height, in_width, depth]`. +// filter: 3-D with shape `[filter_height, filter_width, depth]`. +// out_backprop: 4-D with shape `[batch, out_height, out_width, depth]`. +// strides: 1-D of length 4. The stride of the sliding window for each dimension of +// the input tensor. Must be: `[1, stride_height, stride_width, 1]`. +// rates: 1-D of length 4. The input stride for atrous morphological dilation. +// Must be: `[1, rate_height, rate_width, 1]`. +// padding: The type of padding algorithm to use. +// +// Returns 4-D with shape `[batch, in_height, in_width, depth]`. +func Dilation2DBackpropInput(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, rates []int64, padding string) (in_backprop tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "rates": rates, "padding": padding} + opspec := tf.OpSpec{ + Type: "Dilation2DBackpropInput", + Input: []tf.Input{ + input, filter, out_backprop, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ResourceSparseApplyAdagradDAAttr is an optional argument to ResourceSparseApplyAdagradDA. +type ResourceSparseApplyAdagradDAAttr func(optionalAttr) + +// ResourceSparseApplyAdagradDAUseLocking sets the optional use_locking attribute to value. +// +// value: If True, updating of the var and accum tensors will be protected by +// a lock; otherwise the behavior is undefined, but may exhibit less contention. +// If not specified, defaults to false +func ResourceSparseApplyAdagradDAUseLocking(value bool) ResourceSparseApplyAdagradDAAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update entries in '*var' and '*accum' according to the proximal adagrad scheme. +// +// Arguments: +// var_: Should be from a Variable(). +// gradient_accumulator: Should be from a Variable(). +// gradient_squared_accumulator: Should be from a Variable(). +// grad: The gradient. +// indices: A vector of indices into the first dimension of var and accum. +// lr: Learning rate. Must be a scalar. +// l1: L1 regularization. Must be a scalar. +// l2: L2 regularization. Must be a scalar. +// global_step: Training step number. Must be a scalar. +// +// Returns the created operation. +func ResourceSparseApplyAdagradDA(scope *Scope, var_ tf.Output, gradient_accumulator tf.Output, gradient_squared_accumulator tf.Output, grad tf.Output, indices tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, global_step tf.Output, optional ...ResourceSparseApplyAdagradDAAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceSparseApplyAdagradDA", + Input: []tf.Input{ + var_, gradient_accumulator, gradient_squared_accumulator, grad, indices, lr, l1, l2, global_step, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// LoadTPUEmbeddingADAMParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingADAMParametersGradAccumDebug. +type LoadTPUEmbeddingADAMParametersGradAccumDebugAttr func(optionalAttr) + +// LoadTPUEmbeddingADAMParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingADAMParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingADAMParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingADAMParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingADAMParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingADAMParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load ADAM embedding parameters with debug support. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the ADAM optimization algorithm. +// momenta: Value of momenta used in the ADAM optimization algorithm. +// velocities: Value of velocities used in the ADAM optimization algorithm. +// gradient_accumulators: Value of gradient_accumulators used in the ADAM optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingADAMParametersGradAccumDebug(scope *Scope, parameters tf.Output, momenta tf.Output, velocities tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingADAMParametersGradAccumDebugAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingADAMParametersGradAccumDebug", + Input: []tf.Input{ + parameters, momenta, velocities, gradient_accumulators, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// StatefulStandardNormalAttr is an optional argument to StatefulStandardNormal. +type StatefulStandardNormalAttr func(optionalAttr) + +// StatefulStandardNormalDtype sets the optional dtype attribute to value. +// +// value: The type of the output. +// If not specified, defaults to DT_FLOAT +func StatefulStandardNormalDtype(value tf.DataType) StatefulStandardNormalAttr { + return func(m optionalAttr) { + m["dtype"] = value + } +} + +// Outputs random values from a normal distribution. This op is deprecated in favor of op 'StatefulStandardNormalV2' +// +// DEPRECATED at GraphDef version 29: Use StatefulStandardNormalV2 instead +// +// The generated values will have mean 0 and standard deviation 1. +// +// Arguments: +// resource: The handle of the resource variable that stores the state of the RNG. +// shape: The shape of the output tensor. +// +// Returns A tensor of the specified shape filled with random normal values. +func StatefulStandardNormal(scope *Scope, resource tf.Output, shape tf.Output, optional ...StatefulStandardNormalAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StatefulStandardNormal", + Input: []tf.Input{ + resource, shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Get the current size of the TensorArray. +// +// Arguments: +// handle: The handle to a TensorArray (output of TensorArray or TensorArrayGrad). +// flow_in: A float scalar that enforces proper chaining of operations. +// +// Returns The current size of the TensorArray. +func TensorArraySizeV3(scope *Scope, handle tf.Output, flow_in tf.Output) (size tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorArraySizeV3", + Input: []tf.Input{ + handle, flow_in, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Worker heartbeat op. +// +// Heartbeats may be sent periodically to indicate the coordinator is still active, +// to retrieve the current worker status and to expedite shutdown when necessary. +// +// Arguments: +// request: A string tensor containing a serialized WorkerHeartbeatRequest +// +// Returns A string tensor containing a serialized WorkerHeartbeatResponse +func WorkerHeartbeat(scope *Scope, request tf.Output) (response tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "WorkerHeartbeat", + Input: []tf.Input{ + request, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Set a summary_writer_interface to record statistics using given stats_aggregator. +// +// Returns the created operation. +func StatsAggregatorSetSummaryWriter(scope *Scope, stats_aggregator tf.Output, summary tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "StatsAggregatorSetSummaryWriter", + Input: []tf.Input{ + stats_aggregator, summary, + }, + } + return scope.AddOperation(opspec) +} + +// SparseReduceMaxSparseAttr is an optional argument to SparseReduceMaxSparse. +type SparseReduceMaxSparseAttr func(optionalAttr) + +// SparseReduceMaxSparseKeepDims sets the optional keep_dims attribute to value. +// +// value: If true, retain reduced dimensions with length 1. +// If not specified, defaults to false +func SparseReduceMaxSparseKeepDims(value bool) SparseReduceMaxSparseAttr { + return func(m optionalAttr) { + m["keep_dims"] = value + } +} + +// Computes the max of elements across dimensions of a SparseTensor. +// +// This Op takes a SparseTensor and is the sparse counterpart to +// `tf.reduce_max()`. In contrast to SparseReduceMax, this Op returns a +// SparseTensor. +// +// Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless +// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in +// `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained +// with length 1. +// +// If `reduction_axes` has no entries, all dimensions are reduced, and a tensor +// with a single element is returned. Additionally, the axes can be negative, +// which are interpreted according to the indexing rules in Python. +// +// Arguments: +// input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a +// SparseTensor, possibly not in canonical ordering. +// input_values: 1-D. `N` non-empty values corresponding to `input_indices`. +// input_shape: 1-D. Shape of the input SparseTensor. +// reduction_axes: 1-D. Length-`K` vector containing the reduction axes. +func SparseReduceMaxSparse(scope *Scope, input_indices tf.Output, input_values tf.Output, input_shape tf.Output, reduction_axes tf.Output, optional ...SparseReduceMaxSparseAttr) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "SparseReduceMaxSparse", + Input: []tf.Input{ + input_indices, input_values, input_shape, reduction_axes, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// RandomPoissonV2Attr is an optional argument to RandomPoissonV2. +type RandomPoissonV2Attr func(optionalAttr) + +// RandomPoissonV2Seed sets the optional seed attribute to value. +// +// value: If either `seed` or `seed2` are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func RandomPoissonV2Seed(value int64) RandomPoissonV2Attr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// RandomPoissonV2Seed2 sets the optional seed2 attribute to value. +// +// value: A second seed to avoid seed collision. +// If not specified, defaults to 0 +func RandomPoissonV2Seed2(value int64) RandomPoissonV2Attr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// RandomPoissonV2Dtype sets the optional dtype attribute to value. +// If not specified, defaults to DT_INT64 +func RandomPoissonV2Dtype(value tf.DataType) RandomPoissonV2Attr { + return func(m optionalAttr) { + m["dtype"] = value + } +} + +// Outputs random values from the Poisson distribution(s) described by rate. +// +// This op uses two algorithms, depending on rate. If rate >= 10, then +// the algorithm by Hormann is used to acquire samples via +// transformation-rejection. +// See http://www.sciencedirect.com/science/article/pii/0167668793909974. +// +// Otherwise, Knuth's algorithm is used to acquire samples via multiplying uniform +// random variables. +// See Donald E. Knuth (1969). Seminumerical Algorithms. The Art of Computer +// Programming, Volume 2. Addison Wesley +// +// Arguments: +// shape: 1-D integer tensor. Shape of independent samples to draw from each +// distribution described by the shape parameters given in rate. +// rate: A tensor in which each scalar is a "rate" parameter describing the +// associated poisson distribution. +// +// Returns A tensor with shape `shape + shape(rate)`. Each slice +// `[:, ..., :, i0, i1, ...iN]` contains the samples drawn for +// `rate[i0, i1, ...iN]`. +func RandomPoissonV2(scope *Scope, shape tf.Output, rate tf.Output, optional ...RandomPoissonV2Attr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RandomPoissonV2", + Input: []tf.Input{ + shape, rate, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the trignometric inverse tangent of x element-wise. +// +// The `tf.math.atan` operation returns the inverse of `tf.math.tan`, such that +// if `y = tf.math.tan(x)` then, `x = tf.math.atan(y)`. +// +// **Note**: The output of `tf.math.atan` will lie within the invertible range +// of tan, i.e (-pi/2, pi/2). +// +// For example: +// +// ```python +// # Note: [1.047, 0.785] ~= [(pi/3), (pi/4)] +// x = tf.constant([1.047, 0.785]) +// y = tf.math.tan(x) # [1.731261, 0.99920404] +// +// tf.math.atan(y) # [1.047, 0.785] = x +// ``` +// +func Atan(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Atan", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// SparseTensorDenseMatMulAttr is an optional argument to SparseTensorDenseMatMul. +type SparseTensorDenseMatMulAttr func(optionalAttr) + +// SparseTensorDenseMatMulAdjointA sets the optional adjoint_a attribute to value. +// +// value: Use the adjoint of A in the matrix multiply. If A is complex, this +// is transpose(conj(A)). Otherwise it's transpose(A). +// If not specified, defaults to false +func SparseTensorDenseMatMulAdjointA(value bool) SparseTensorDenseMatMulAttr { + return func(m optionalAttr) { + m["adjoint_a"] = value + } +} + +// SparseTensorDenseMatMulAdjointB sets the optional adjoint_b attribute to value. +// +// value: Use the adjoint of B in the matrix multiply. If B is complex, this +// is transpose(conj(B)). Otherwise it's transpose(B). +// If not specified, defaults to false +func SparseTensorDenseMatMulAdjointB(value bool) SparseTensorDenseMatMulAttr { + return func(m optionalAttr) { + m["adjoint_b"] = value + } +} + +// Multiply SparseTensor (of rank 2) "A" by dense matrix "B". +// +// No validity checking is performed on the indices of A. However, the following +// input format is recommended for optimal behavior: +// +// if adjoint_a == false: +// A should be sorted in lexicographically increasing order. Use SparseReorder +// if you're not sure. +// if adjoint_a == true: +// A should be sorted in order of increasing dimension 1 (i.e., "column major" +// order instead of "row major" order). +// +// Arguments: +// a_indices: 2-D. The `indices` of the `SparseTensor`, size `[nnz, 2]` Matrix. +// a_values: 1-D. The `values` of the `SparseTensor`, size `[nnz]` Vector. +// a_shape: 1-D. The `shape` of the `SparseTensor`, size `[2]` Vector. +// b: 2-D. A dense Matrix. +func SparseTensorDenseMatMul(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b tf.Output, optional ...SparseTensorDenseMatMulAttr) (product tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "SparseTensorDenseMatMul", + Input: []tf.Input{ + a_indices, a_values, a_shape, b, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Real-valued fast Fourier transform. +// +// Computes the 1-dimensional discrete Fourier transform of a real-valued signal +// over the inner-most dimension of `input`. +// +// Since the DFT of a real signal is Hermitian-symmetric, `RFFT` only returns the +// `fft_length / 2 + 1` unique components of the FFT: the zero-frequency term, +// followed by the `fft_length / 2` positive-frequency terms. +// +// Along the axis `RFFT` is computed on, if `fft_length` is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// +// Arguments: +// input: A float32 tensor. +// fft_length: An int32 tensor of shape [1]. The FFT length. +// +// Returns A complex64 tensor of the same rank as `input`. The inner-most +// dimension of `input` is replaced with the `fft_length / 2 + 1` unique +// frequency components of its 1D Fourier transform. +// +// @compatibility(numpy) +// Equivalent to np.fft.rfft +// @end_compatibility +func RFFT(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "RFFT", + Input: []tf.Input{ + input, fft_length, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Interleave the values from the `data` tensors into a single tensor. +// +// Builds a merged tensor such that +// +// ```python +// merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...] +// ``` +// +// For example, if each `indices[m]` is scalar or vector, we have +// +// ```python +// # Scalar indices: +// merged[indices[m], ...] = data[m][...] +// +// # Vector indices: +// merged[indices[m][i], ...] = data[m][i, ...] +// ``` +// +// Each `data[i].shape` must start with the corresponding `indices[i].shape`, +// and the rest of `data[i].shape` must be constant w.r.t. `i`. That is, we +// must have `data[i].shape = indices[i].shape + constant`. In terms of this +// `constant`, the output shape is +// +// merged.shape = [max(indices)] + constant +// +// Values are merged in order, so if an index appears in both `indices[m][i]` and +// `indices[n][j]` for `(m,i) < (n,j)` the slice `data[n][j]` will appear in the +// merged result. If you do not need this guarantee, ParallelDynamicStitch might +// perform better on some devices. +// +// For example: +// +// ```python +// indices[0] = 6 +// indices[1] = [4, 1] +// indices[2] = [[5, 2], [0, 3]] +// data[0] = [61, 62] +// data[1] = [[41, 42], [11, 12]] +// data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]] +// merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42], +// [51, 52], [61, 62]] +// ``` +// +// This method can be used to merge partitions created by `dynamic_partition` +// as illustrated on the following example: +// +// ```python +// # Apply function (increments x_i) on elements for which a certain condition +// # apply (x_i != -1 in this example). +// x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4]) +// condition_mask=tf.not_equal(x,tf.constant(-1.)) +// partitioned_data = tf.dynamic_partition( +// x, tf.cast(condition_mask, tf.int32) , 2) +// partitioned_data[1] = partitioned_data[1] + 1.0 +// condition_indices = tf.dynamic_partition( +// tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2) +// x = tf.dynamic_stitch(condition_indices, partitioned_data) +// # Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain +// # unchanged. +// ``` +// +//
+// +//
+func DynamicStitch(scope *Scope, indices []tf.Output, data []tf.Output) (merged tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "DynamicStitch", + Input: []tf.Input{ + tf.OutputList(indices), tf.OutputList(data), + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Conv3DBackpropInputAttr is an optional argument to Conv3DBackpropInput. +type Conv3DBackpropInputAttr func(optionalAttr) + +// Conv3DBackpropInputDilations sets the optional dilations attribute to value. +// If not specified, defaults to +func Conv3DBackpropInputDilations(value []int64) Conv3DBackpropInputAttr { + return func(m optionalAttr) { + m["dilations"] = value + } +} + +// Computes the gradients of 3-D convolution with respect to the input. +// +// DEPRECATED at GraphDef version 10: Use Conv3DBackpropInputV2 +// +// Arguments: +// input: Shape `[batch, depth, rows, cols, in_channels]`. +// filter: Shape `[depth, rows, cols, in_channels, out_channels]`. +// `in_channels` must match between `input` and `filter`. +// out_backprop: Backprop signal of shape `[batch, out_depth, out_rows, out_cols, +// out_channels]`. +// strides: 1-D tensor of length 5. The stride of the sliding window for each +// dimension of `input`. Must have `strides[0] = strides[4] = 1`. +// padding: The type of padding algorithm to use. +func Conv3DBackpropInput(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv3DBackpropInputAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Conv3DBackpropInput", + Input: []tf.Input{ + input, filter, out_backprop, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ArgMaxAttr is an optional argument to ArgMax. +type ArgMaxAttr func(optionalAttr) + +// ArgMaxOutputType sets the optional output_type attribute to value. +// If not specified, defaults to DT_INT64 +func ArgMaxOutputType(value tf.DataType) ArgMaxAttr { + return func(m optionalAttr) { + m["output_type"] = value + } +} + +// Returns the index with the largest value across dimensions of a tensor. +// +// Note that in case of ties the identity of the return value is not guaranteed. +// +// Usage: +// ```python +// import tensorflow as tf +// a = [1, 10, 26.9, 2.8, 166.32, 62.3] +// b = tf.math.argmax(input = a) +// c = tf.keras.backend.eval(b) +// # c = 4 +// # here a[4] = 166.32 which is the largest element of a across axis 0 +// ``` +// +// Arguments: +// +// dimension: int32 or int64, must be in the range `[-rank(input), rank(input))`. +// Describes which dimension of the input Tensor to reduce across. For vectors, +// use dimension = 0. +func ArgMax(scope *Scope, input tf.Output, dimension tf.Output, optional ...ArgMaxAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ArgMax", + Input: []tf.Input{ + input, dimension, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// MaxAttr is an optional argument to Max. +type MaxAttr func(optionalAttr) + +// MaxKeepDims sets the optional keep_dims attribute to value. +// +// value: If true, retain reduced dimensions with length 1. +// If not specified, defaults to false +func MaxKeepDims(value bool) MaxAttr { + return func(m optionalAttr) { + m["keep_dims"] = value + } +} + +// Computes the maximum of elements across dimensions of a tensor. +// +// Reduces `input` along the dimensions given in `axis`. Unless +// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in +// `axis`. If `keep_dims` is true, the reduced dimensions are +// retained with length 1. +// +// Arguments: +// input: The tensor to reduce. +// axis: The dimensions to reduce. Must be in the range +// `[-rank(input), rank(input))`. +// +// Returns The reduced tensor. +func Max(scope *Scope, input tf.Output, axis tf.Output, optional ...MaxAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Max", + Input: []tf.Input{ + input, axis, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Output a fact about factorials. +func Fact(scope *Scope) (fact tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Fact", + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes fingerprints of the input strings. +// +// Arguments: +// input: vector of strings to compute fingerprints on. +// +// Returns a (N,2) shaped matrix where N is the number of elements in the input +// vector. Each row contains the low and high parts of the fingerprint. +func SdcaFprint(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SdcaFprint", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// StringSplitAttr is an optional argument to StringSplit. +type StringSplitAttr func(optionalAttr) + +// StringSplitSkipEmpty sets the optional skip_empty attribute to value. +// +// value: A `bool`. If `True`, skip the empty strings from the result. +// If not specified, defaults to true +func StringSplitSkipEmpty(value bool) StringSplitAttr { + return func(m optionalAttr) { + m["skip_empty"] = value + } +} + +// Split elements of `input` based on `delimiter` into a `SparseTensor`. +// +// Let N be the size of source (typically N will be the batch size). Split each +// element of `input` based on `delimiter` and return a `SparseTensor` +// containing the splitted tokens. Empty tokens are ignored. +// +// `delimiter` can be empty, or a string of split characters. If `delimiter` is an +// empty string, each element of `input` is split into individual single-byte +// character strings, including splitting of UTF-8 multibyte sequences. Otherwise +// every character of `delimiter` is a potential split point. +// +// For example: +// N = 2, input[0] is 'hello world' and input[1] is 'a b c', then the output +// will be +// +// indices = [0, 0; +// 0, 1; +// 1, 0; +// 1, 1; +// 1, 2] +// shape = [2, 3] +// values = ['hello', 'world', 'a', 'b', 'c'] +// +// Arguments: +// input: 1-D. Strings to split. +// delimiter: 0-D. Delimiter characters (bytes), or empty string. +// +// Returns A dense matrix of int64 representing the indices of the sparse tensor.A vector of strings corresponding to the splited values.a length-2 vector of int64 representing the shape of the sparse +// tensor, where the first value is N and the second value is the maximum number +// of tokens in a single input entry. +func StringSplit(scope *Scope, input tf.Output, delimiter tf.Output, optional ...StringSplitAttr) (indices tf.Output, values tf.Output, shape tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StringSplit", + Input: []tf.Input{ + input, delimiter, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Computes softsign: `features / (abs(features) + 1)`. +func Softsign(scope *Scope, features tf.Output) (activations tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Softsign", + Input: []tf.Input{ + features, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Reads the value of a variable. +// +// The tensor returned by this operation is immutable. +// +// The value returned by this operation is guaranteed to be influenced by all the +// writes on which this operation depends directly or indirectly, and to not be +// influenced by any of the writes which depend directly or indirectly on this +// operation. +// +// Arguments: +// resource: handle to the resource in which to store the variable. +// dtype: the dtype of the value. +func ReadVariableOp(scope *Scope, resource tf.Output, dtype tf.DataType) (value tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + opspec := tf.OpSpec{ + Type: "ReadVariableOp", + Input: []tf.Input{ + resource, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// RandomStandardNormalAttr is an optional argument to RandomStandardNormal. +type RandomStandardNormalAttr func(optionalAttr) + +// RandomStandardNormalSeed sets the optional seed attribute to value. +// +// value: If either `seed` or `seed2` are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func RandomStandardNormalSeed(value int64) RandomStandardNormalAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// RandomStandardNormalSeed2 sets the optional seed2 attribute to value. +// +// value: A second seed to avoid seed collision. +// If not specified, defaults to 0 +func RandomStandardNormalSeed2(value int64) RandomStandardNormalAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Outputs random values from a normal distribution. +// +// The generated values will have mean 0 and standard deviation 1. +// +// Arguments: +// shape: The shape of the output tensor. +// dtype: The type of the output. +// +// Returns A tensor of the specified shape filled with random normal values. +func RandomStandardNormal(scope *Scope, shape tf.Output, dtype tf.DataType, optional ...RandomStandardNormalAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RandomStandardNormal", + Input: []tf.Input{ + shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// MaxPool3DAttr is an optional argument to MaxPool3D. +type MaxPool3DAttr func(optionalAttr) + +// MaxPool3DDataFormat sets the optional data_format attribute to value. +// +// value: The data format of the input and output data. With the +// default format "NDHWC", the data is stored in the order of: +// [batch, in_depth, in_height, in_width, in_channels]. +// Alternatively, the format could be "NCDHW", the data storage order is: +// [batch, in_channels, in_depth, in_height, in_width]. +// If not specified, defaults to "NDHWC" +func MaxPool3DDataFormat(value string) MaxPool3DAttr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// Performs 3D max pooling on the input. +// +// Arguments: +// input: Shape `[batch, depth, rows, cols, channels]` tensor to pool over. +// ksize: 1-D tensor of length 5. The size of the window for each dimension of +// the input tensor. Must have `ksize[0] = ksize[4] = 1`. +// strides: 1-D tensor of length 5. The stride of the sliding window for each +// dimension of `input`. Must have `strides[0] = strides[4] = 1`. +// padding: The type of padding algorithm to use. +// +// Returns The max pooled output tensor. +func MaxPool3D(scope *Scope, input tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPool3DAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "MaxPool3D", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// FractionalMaxPoolGradAttr is an optional argument to FractionalMaxPoolGrad. +type FractionalMaxPoolGradAttr func(optionalAttr) + +// FractionalMaxPoolGradOverlapping sets the optional overlapping attribute to value. // // value: When set to True, it means when pooling, the values at the boundary // of adjacent pooling cells are used by both cells. For example: @@ -20142,33 +21979,28 @@ type FractionalAvgPoolGradAttr func(optionalAttr) // `value 20 5 16 3 7` // // If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. -// The result would be [41/3, 26/3] for fractional avg pooling. +// The result would be [20, 16] for fractional max pooling. // If not specified, defaults to false -func FractionalAvgPoolGradOverlapping(value bool) FractionalAvgPoolGradAttr { +func FractionalMaxPoolGradOverlapping(value bool) FractionalMaxPoolGradAttr { return func(m optionalAttr) { m["overlapping"] = value } } -// Computes gradient of the FractionalAvgPool function. -// -// Unlike FractionalMaxPoolGrad, we don't need to find arg_max for -// FractionalAvgPoolGrad, we just need to evenly back-propagate each element of -// out_backprop to those indices that form the same pooling cell. Therefore, we -// just need to know the shape of original input tensor, instead of the whole -// tensor. +// Computes gradient of the FractionalMaxPool function. // // Arguments: -// orig_input_tensor_shape: Original input tensor shape for `fractional_avg_pool` +// orig_input: Original input for `fractional_max_pool` +// orig_output: Original output for `fractional_max_pool` // out_backprop: 4-D with shape `[batch, height, width, channels]`. Gradients -// w.r.t. the output of `fractional_avg_pool`. +// w.r.t. the output of `fractional_max_pool`. // row_pooling_sequence: row pooling sequence, form pooling region with // col_pooling_sequence. // col_pooling_sequence: column pooling sequence, form pooling region with // row_pooling sequence. // -// Returns 4-D. Gradients w.r.t. the input of `fractional_avg_pool`. -func FractionalAvgPoolGrad(scope *Scope, orig_input_tensor_shape tf.Output, out_backprop tf.Output, row_pooling_sequence tf.Output, col_pooling_sequence tf.Output, optional ...FractionalAvgPoolGradAttr) (output tf.Output) { +// Returns 4-D. Gradients w.r.t. the input of `fractional_max_pool`. +func FractionalMaxPoolGrad(scope *Scope, orig_input tf.Output, orig_output tf.Output, out_backprop tf.Output, row_pooling_sequence tf.Output, col_pooling_sequence tf.Output, optional ...FractionalMaxPoolGradAttr) (output tf.Output) { if scope.Err() != nil { return } @@ -20177,9 +22009,9 @@ func FractionalAvgPoolGrad(scope *Scope, orig_input_tensor_shape tf.Output, out_ a(attrs) } opspec := tf.OpSpec{ - Type: "FractionalAvgPoolGrad", + Type: "FractionalMaxPoolGrad", Input: []tf.Input{ - orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence, + orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence, }, Attrs: attrs, } @@ -20187,27 +22019,38 @@ func FractionalAvgPoolGrad(scope *Scope, orig_input_tensor_shape tf.Output, out_ return op.Output(0) } -// QuantizedReluXAttr is an optional argument to QuantizedReluX. -type QuantizedReluXAttr func(optionalAttr) +// ResourceApplyPowerSignAttr is an optional argument to ResourceApplyPowerSign. +type ResourceApplyPowerSignAttr func(optionalAttr) -// QuantizedReluXOutType sets the optional out_type attribute to value. -// If not specified, defaults to DT_QUINT8 -func QuantizedReluXOutType(value tf.DataType) QuantizedReluXAttr { +// ResourceApplyPowerSignUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var and m tensors is +// protected by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceApplyPowerSignUseLocking(value bool) ResourceApplyPowerSignAttr { return func(m optionalAttr) { - m["out_type"] = value + m["use_locking"] = value } } -// Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` +// Update '*var' according to the AddSign update. +// +// m_t <- beta1 * m_{t-1} + (1 - beta1) * g +// update <- exp(logbase * sign_decay * sign(g) * sign(m_t)) * g +// variable <- variable - lr_t * update // // Arguments: +// var_: Should be from a Variable(). +// m: Should be from a Variable(). +// lr: Scaling factor. Must be a scalar. +// logbase: Must be a scalar. +// sign_decay: Must be a scalar. +// beta: Must be a scalar. +// grad: The gradient. // -// -// min_features: The float value that the lowest quantized value represents. -// max_features: The float value that the highest quantized value represents. -// -// Returns Has the same output shape as "features".The float value that the lowest quantized value represents.The float value that the highest quantized value represents. -func QuantizedReluX(scope *Scope, features tf.Output, max_value tf.Output, min_features tf.Output, max_features tf.Output, optional ...QuantizedReluXAttr) (activations tf.Output, min_activations tf.Output, max_activations tf.Output) { +// Returns the created operation. +func ResourceApplyPowerSign(scope *Scope, var_ tf.Output, m tf.Output, lr tf.Output, logbase tf.Output, sign_decay tf.Output, beta tf.Output, grad tf.Output, optional ...ResourceApplyPowerSignAttr) (o *tf.Operation) { if scope.Err() != nil { return } @@ -20216,9 +22059,119 @@ func QuantizedReluX(scope *Scope, features tf.Output, max_value tf.Output, min_f a(attrs) } opspec := tf.OpSpec{ - Type: "QuantizedReluX", + Type: "ResourceApplyPowerSign", Input: []tf.Input{ - features, max_value, min_features, max_features, + var_, m, lr, logbase, sign_decay, beta, grad, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// ResourceSparseApplyAdagradAttr is an optional argument to ResourceSparseApplyAdagrad. +type ResourceSparseApplyAdagradAttr func(optionalAttr) + +// ResourceSparseApplyAdagradUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var and accum tensors will be protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceSparseApplyAdagradUseLocking(value bool) ResourceSparseApplyAdagradAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// ResourceSparseApplyAdagradUpdateSlots sets the optional update_slots attribute to value. +// If not specified, defaults to true +func ResourceSparseApplyAdagradUpdateSlots(value bool) ResourceSparseApplyAdagradAttr { + return func(m optionalAttr) { + m["update_slots"] = value + } +} + +// Update relevant entries in '*var' and '*accum' according to the adagrad scheme. +// +// That is for rows we have grad for, we update var and accum as follows: +// accum += grad * grad +// var -= lr * grad * (1 / sqrt(accum)) +// +// Arguments: +// var_: Should be from a Variable(). +// accum: Should be from a Variable(). +// lr: Learning rate. Must be a scalar. +// grad: The gradient. +// indices: A vector of indices into the first dimension of var and accum. +// +// Returns the created operation. +func ResourceSparseApplyAdagrad(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyAdagradAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceSparseApplyAdagrad", + Input: []tf.Input{ + var_, accum, lr, grad, indices, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// QuantizedDepthwiseConv2DWithBiasAttr is an optional argument to QuantizedDepthwiseConv2DWithBias. +type QuantizedDepthwiseConv2DWithBiasAttr func(optionalAttr) + +// QuantizedDepthwiseConv2DWithBiasOutType sets the optional out_type attribute to value. +// +// value: The type of the output. +// If not specified, defaults to DT_QINT32 +func QuantizedDepthwiseConv2DWithBiasOutType(value tf.DataType) QuantizedDepthwiseConv2DWithBiasAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// QuantizedDepthwiseConv2DWithBiasDilations sets the optional dilations attribute to value. +// +// value: List of dilation values. +// If not specified, defaults to +func QuantizedDepthwiseConv2DWithBiasDilations(value []int64) QuantizedDepthwiseConv2DWithBiasAttr { + return func(m optionalAttr) { + m["dilations"] = value + } +} + +// Computes quantized depthwise Conv2D with Bias. +// +// Arguments: +// input: The original input tensor. +// filter: The original filter tensor. +// bias: The original bias tensor. +// min_input: The float value that the minimum quantized input value represents. +// max_input: The float value that the maximum quantized input value represents. +// min_filter: The float value that the minimum quantized filter value represents. +// max_filter: The float value that the maximum quantized filter value represents. +// strides: List of stride values. +// +// +// Returns The output tensor.The float value that the minimum quantized output value represents.The float value that the maximum quantized output value represents. +func QuantizedDepthwiseConv2DWithBias(scope *Scope, input tf.Output, filter tf.Output, bias tf.Output, min_input tf.Output, max_input tf.Output, min_filter tf.Output, max_filter tf.Output, strides []int64, padding string, optional ...QuantizedDepthwiseConv2DWithBiasAttr) (output tf.Output, min_output tf.Output, max_output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"strides": strides, "padding": padding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "QuantizedDepthwiseConv2DWithBias", + Input: []tf.Input{ + input, filter, bias, min_input, max_input, min_filter, max_filter, }, Attrs: attrs, } @@ -20226,6 +22179,800 @@ func QuantizedReluX(scope *Scope, features tf.Output, max_value tf.Output, min_f return op.Output(0), op.Output(1), op.Output(2) } +// Computes the matrix logarithm of one or more square matrices: +// +// +// \\(log(exp(A)) = A\\) +// +// This op is only defined for complex matrices. If A is positive-definite and +// real, then casting to a complex matrix, taking the logarithm and casting back +// to a real matrix will give the correct result. +// +// This function computes the matrix logarithm using the Schur-Parlett algorithm. +// Details of the algorithm can be found in Section 11.6.2 of: +// Nicholas J. Higham, Functions of Matrices: Theory and Computation, SIAM 2008. +// ISBN 978-0-898716-46-7. +// +// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions +// form square matrices. The output is a tensor of the same shape as the input +// containing the exponential for all input submatrices `[..., :, :]`. +// +// Arguments: +// input: Shape is `[..., M, M]`. +// +// Returns Shape is `[..., M, M]`. +// +// @compatibility(scipy) +// Equivalent to scipy.linalg.logm +// @end_compatibility +func MatrixLogarithm(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "MatrixLogarithm", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// UnicodeTranscodeAttr is an optional argument to UnicodeTranscode. +type UnicodeTranscodeAttr func(optionalAttr) + +// UnicodeTranscodeErrors sets the optional errors attribute to value. +// +// value: Error handling policy when there is invalid formatting found in the input. +// The value of 'strict' will cause the operation to produce a InvalidArgument +// error on any invalid input formatting. A value of 'replace' (the default) will +// cause the operation to replace any invalid formatting in the input with the +// `replacement_char` codepoint. A value of 'ignore' will cause the operation to +// skip any invalid formatting in the input and produce no corresponding output +// character. +// If not specified, defaults to "replace" +func UnicodeTranscodeErrors(value string) UnicodeTranscodeAttr { + return func(m optionalAttr) { + m["errors"] = value + } +} + +// UnicodeTranscodeReplacementChar sets the optional replacement_char attribute to value. +// +// value: The replacement character codepoint to be used in place of any invalid +// formatting in the input when `errors='replace'`. Any valid unicode codepoint may +// be used. The default value is the default unicode replacement character is +// 0xFFFD or U+65533.) +// +// Note that for UTF-8, passing a replacement character expressible in 1 byte, such +// as ' ', will preserve string alignment to the source since invalid bytes will be +// replaced with a 1-byte replacement. For UTF-16-BE and UTF-16-LE, any 1 or 2 byte +// replacement character will preserve byte alignment to the source. +// If not specified, defaults to 65533 +func UnicodeTranscodeReplacementChar(value int64) UnicodeTranscodeAttr { + return func(m optionalAttr) { + m["replacement_char"] = value + } +} + +// UnicodeTranscodeReplaceControlCharacters sets the optional replace_control_characters attribute to value. +// +// value: Whether to replace the C0 control characters (00-1F) with the +// `replacement_char`. Default is false. +// If not specified, defaults to false +func UnicodeTranscodeReplaceControlCharacters(value bool) UnicodeTranscodeAttr { + return func(m optionalAttr) { + m["replace_control_characters"] = value + } +} + +// Transcode the input text from a source encoding to a destination encoding. +// +// The input is a string tensor of any shape. The output is a string tensor of +// the same shape containing the transcoded strings. Output strings are always +// valid unicode. If the input contains invalid encoding positions, the +// `errors` attribute sets the policy for how to deal with them. If the default +// error-handling policy is used, invalid formatting will be substituted in the +// output by the `replacement_char`. If the errors policy is to `ignore`, any +// invalid encoding positions in the input are skipped and not included in the +// output. If it set to `strict` then any invalid formatting will result in an +// InvalidArgument error. +// +// This operation can be used with `output_encoding = input_encoding` to enforce +// correct formatting for inputs even if they are already in the desired encoding. +// +// If the input is prefixed by a Byte Order Mark needed to determine encoding +// (e.g. if the encoding is UTF-16 and the BOM indicates big-endian), then that +// BOM will be consumed and not emitted into the output. If the input encoding +// is marked with an explicit endianness (e.g. UTF-16-BE), then the BOM is +// interpreted as a non-breaking-space and is preserved in the output (including +// always for UTF-8). +// +// The end result is that if the input is marked as an explicit endianness the +// transcoding is faithful to all codepoints in the source. If it is not marked +// with an explicit endianness, the BOM is not considered part of the string itself +// but as metadata, and so is not preserved in the output. +// +// Arguments: +// input: The text to be processed. Can have any shape. +// input_encoding: Text encoding of the input strings. This is any of the encodings supported +// by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. +// output_encoding: The unicode encoding to use in the output. Must be one of +// `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. Multi-byte encodings will be big-endian. +// +// Returns A string tensor containing unicode text encoded using `output_encoding`. +func UnicodeTranscode(scope *Scope, input tf.Output, input_encoding string, output_encoding string, optional ...UnicodeTranscodeAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"input_encoding": input_encoding, "output_encoding": output_encoding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "UnicodeTranscode", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Return a slice from 'input'. +// +// The output tensor is a tensor with dimensions described by 'size' +// whose values are extracted from 'input' starting at the offsets in +// 'begin'. +// +// *Requirements*: +// 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n) +// +// Arguments: +// +// begin: begin[i] specifies the offset into the 'i'th dimension of +// 'input' to slice from. +// size: size[i] specifies the number of elements of the 'i'th dimension +// of 'input' to slice. If size[i] is -1, all remaining elements in dimension +// i are included in the slice (i.e. this is equivalent to setting +// size[i] = input.dim_size(i) - begin[i]). +func Slice(scope *Scope, input tf.Output, begin tf.Output, size tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Slice", + Input: []tf.Input{ + input, begin, size, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Connects outputs of an N-way replicated computation to N outputs. +func TPUReplicatedOutput(scope *Scope, input tf.Output, num_replicas int64) (outputs []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_replicas": num_replicas} + opspec := tf.OpSpec{ + Type: "TPUReplicatedOutput", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if outputs, idx, err = makeOutputList(op, idx, "outputs"); err != nil { + scope.UpdateErr("TPUReplicatedOutput", err) + return + } + return outputs +} + +// Outputs a `Summary` protocol buffer with a tensor and per-plugin data. +// +// Arguments: +// tag: A string attached to this summary. Used for organization in TensorBoard. +// tensor: A tensor to serialize. +// serialized_summary_metadata: A serialized SummaryMetadata proto. Contains plugin +// data. +func TensorSummaryV2(scope *Scope, tag tf.Output, tensor tf.Output, serialized_summary_metadata tf.Output) (summary tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorSummaryV2", + Input: []tf.Input{ + tag, tensor, serialized_summary_metadata, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// BatchToSpace for N-D tensors of type T. +// +// This operation reshapes the "batch" dimension 0 into `M + 1` dimensions of shape +// `block_shape + [batch]`, interleaves these blocks back into the grid defined by +// the spatial dimensions `[1, ..., M]`, to obtain a result with the same rank as +// the input. The spatial dimensions of this intermediate result are then +// optionally cropped according to `crops` to produce the output. This is the +// reverse of SpaceToBatch. See below for a precise description. +// +// Arguments: +// input: N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`, +// where spatial_shape has M dimensions. +// block_shape: 1-D with shape `[M]`, all values must be >= 1. +// crops: 2-D with shape `[M, 2]`, all values must be >= 0. +// `crops[i] = [crop_start, crop_end]` specifies the amount to crop from input +// dimension `i + 1`, which corresponds to spatial dimension `i`. It is +// required that +// `crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1]`. +// +// This operation is equivalent to the following steps: +// +// 1. Reshape `input` to `reshaped` of shape: +// [block_shape[0], ..., block_shape[M-1], +// batch / prod(block_shape), +// input_shape[1], ..., input_shape[N-1]] +// +// 2. Permute dimensions of `reshaped` to produce `permuted` of shape +// [batch / prod(block_shape), +// +// input_shape[1], block_shape[0], +// ..., +// input_shape[M], block_shape[M-1], +// +// input_shape[M+1], ..., input_shape[N-1]] +// +// 3. Reshape `permuted` to produce `reshaped_permuted` of shape +// [batch / prod(block_shape), +// +// input_shape[1] * block_shape[0], +// ..., +// input_shape[M] * block_shape[M-1], +// +// input_shape[M+1], +// ..., +// input_shape[N-1]] +// +// 4. Crop the start and end of dimensions `[1, ..., M]` of +// `reshaped_permuted` according to `crops` to produce the output of shape: +// [batch / prod(block_shape), +// +// input_shape[1] * block_shape[0] - crops[0,0] - crops[0,1], +// ..., +// input_shape[M] * block_shape[M-1] - crops[M-1,0] - crops[M-1,1], +// +// input_shape[M+1], ..., input_shape[N-1]] +// +// Some examples: +// +// (1) For the following input of shape `[4, 1, 1, 1]`, `block_shape = [2, 2]`, and +// `crops = [[0, 0], [0, 0]]`: +// +// ``` +// [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] +// ``` +// +// The output tensor has shape `[1, 2, 2, 1]` and value: +// +// ``` +// x = [[[[1], [2]], [[3], [4]]]] +// ``` +// +// (2) For the following input of shape `[4, 1, 1, 3]`, `block_shape = [2, 2]`, and +// `crops = [[0, 0], [0, 0]]`: +// +// ``` +// [[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]] +// ``` +// +// The output tensor has shape `[1, 2, 2, 3]` and value: +// +// ``` +// x = [[[[1, 2, 3], [4, 5, 6]], +// [[7, 8, 9], [10, 11, 12]]]] +// ``` +// +// (3) For the following input of shape `[4, 2, 2, 1]`, `block_shape = [2, 2]`, and +// `crops = [[0, 0], [0, 0]]`: +// +// ``` +// x = [[[[1], [3]], [[9], [11]]], +// [[[2], [4]], [[10], [12]]], +// [[[5], [7]], [[13], [15]]], +// [[[6], [8]], [[14], [16]]]] +// ``` +// +// The output tensor has shape `[1, 4, 4, 1]` and value: +// +// ``` +// x = [[[[1], [2], [3], [4]], +// [[5], [6], [7], [8]], +// [[9], [10], [11], [12]], +// [[13], [14], [15], [16]]]] +// ``` +// +// (4) For the following input of shape `[8, 1, 3, 1]`, `block_shape = [2, 2]`, and +// `crops = [[0, 0], [2, 0]]`: +// +// ``` +// x = [[[[0], [1], [3]]], [[[0], [9], [11]]], +// [[[0], [2], [4]]], [[[0], [10], [12]]], +// [[[0], [5], [7]]], [[[0], [13], [15]]], +// [[[0], [6], [8]]], [[[0], [14], [16]]]] +// ``` +// +// The output tensor has shape `[2, 2, 4, 1]` and value: +// +// ``` +// x = [[[[1], [2], [3], [4]], +// [[5], [6], [7], [8]]], +// [[[9], [10], [11], [12]], +// [[13], [14], [15], [16]]]] +// ``` +func BatchToSpaceND(scope *Scope, input tf.Output, block_shape tf.Output, crops tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "BatchToSpaceND", + Input: []tf.Input{ + input, block_shape, crops, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes gradients for SparseSegmentMean. +// +// Returns tensor "output" with same shape as grad, except for dimension 0 whose +// value is output_dim0. +// +// Arguments: +// grad: gradient propagated to the SparseSegmentMean op. +// indices: indices passed to the corresponding SparseSegmentMean op. +// segment_ids: segment_ids passed to the corresponding SparseSegmentMean op. +// output_dim0: dimension 0 of "data" passed to SparseSegmentMean op. +func SparseSegmentMeanGrad(scope *Scope, grad tf.Output, indices tf.Output, segment_ids tf.Output, output_dim0 tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSegmentMeanGrad", + Input: []tf.Input{ + grad, indices, segment_ids, output_dim0, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset that contains `count` elements from the `input_dataset`. +// +// Arguments: +// +// count: A scalar representing the number of elements from the `input_dataset` +// that should be taken. A value of `-1` indicates that all of `input_dataset` +// is taken. +// +// +func TakeDataset(scope *Scope, input_dataset tf.Output, count tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "TakeDataset", + Input: []tf.Input{ + input_dataset, count, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// StringLengthAttr is an optional argument to StringLength. +type StringLengthAttr func(optionalAttr) + +// StringLengthUnit sets the optional unit attribute to value. +// +// value: The unit that is counted to compute string length. One of: `"BYTE"` (for +// the number of bytes in each string) or `"UTF8_CHAR"` (for the number of UTF-8 +// encoded Unicode code points in each string). Results are undefined +// if `unit=UTF8_CHAR` and the `input` strings do not contain structurally +// valid UTF-8. +// If not specified, defaults to "BYTE" +func StringLengthUnit(value string) StringLengthAttr { + return func(m optionalAttr) { + m["unit"] = value + } +} + +// String lengths of `input`. +// +// Computes the length of each string given in the input tensor. +// +// Arguments: +// input: The string for which to compute the length. +// +// Returns Integer tensor that has the same shape as `input`. The output contains the +// element-wise string lengths of `input`. +func StringLength(scope *Scope, input tf.Output, optional ...StringLengthAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StringLength", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Deprecated. Use TensorArrayGradV3 +// +// DEPRECATED at GraphDef version 26: Use TensorArrayGradV3 +func TensorArrayGradV2(scope *Scope, handle tf.Output, flow_in tf.Output, source string) (grad_handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"source": source} + opspec := tf.OpSpec{ + Type: "TensorArrayGradV2", + Input: []tf.Input{ + handle, flow_in, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ResourceSparseApplyProximalAdagradAttr is an optional argument to ResourceSparseApplyProximalAdagrad. +type ResourceSparseApplyProximalAdagradAttr func(optionalAttr) + +// ResourceSparseApplyProximalAdagradUseLocking sets the optional use_locking attribute to value. +// +// value: If True, updating of the var and accum tensors will be protected by +// a lock; otherwise the behavior is undefined, but may exhibit less contention. +// If not specified, defaults to false +func ResourceSparseApplyProximalAdagradUseLocking(value bool) ResourceSparseApplyProximalAdagradAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. +// +// That is for rows we have grad for, we update var and accum as follows: +// accum += grad * grad +// prox_v = var +// prox_v -= lr * grad * (1 / sqrt(accum)) +// var = sign(prox_v)/(1+lr*l2) * max{|prox_v|-lr*l1,0} +// +// Arguments: +// var_: Should be from a Variable(). +// accum: Should be from a Variable(). +// lr: Learning rate. Must be a scalar. +// l1: L1 regularization. Must be a scalar. +// l2: L2 regularization. Must be a scalar. +// grad: The gradient. +// indices: A vector of indices into the first dimension of var and accum. +// +// Returns the created operation. +func ResourceSparseApplyProximalAdagrad(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyProximalAdagradAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceSparseApplyProximalAdagrad", + Input: []tf.Input{ + var_, accum, lr, l1, l2, grad, indices, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// QuantizedInstanceNormAttr is an optional argument to QuantizedInstanceNorm. +type QuantizedInstanceNormAttr func(optionalAttr) + +// QuantizedInstanceNormOutputRangeGiven sets the optional output_range_given attribute to value. +// +// value: If True, `given_y_min` and `given_y_min` +// and `given_y_max` are used as the output range. Otherwise, +// the implementation computes the output range. +// If not specified, defaults to false +func QuantizedInstanceNormOutputRangeGiven(value bool) QuantizedInstanceNormAttr { + return func(m optionalAttr) { + m["output_range_given"] = value + } +} + +// QuantizedInstanceNormGivenYMin sets the optional given_y_min attribute to value. +// +// value: Output in `y_min` if `output_range_given` is True. +// If not specified, defaults to 0 +func QuantizedInstanceNormGivenYMin(value float32) QuantizedInstanceNormAttr { + return func(m optionalAttr) { + m["given_y_min"] = value + } +} + +// QuantizedInstanceNormGivenYMax sets the optional given_y_max attribute to value. +// +// value: Output in `y_max` if `output_range_given` is True. +// If not specified, defaults to 0 +func QuantizedInstanceNormGivenYMax(value float32) QuantizedInstanceNormAttr { + return func(m optionalAttr) { + m["given_y_max"] = value + } +} + +// QuantizedInstanceNormVarianceEpsilon sets the optional variance_epsilon attribute to value. +// +// value: A small float number to avoid dividing by 0. +// If not specified, defaults to 1e-05 +func QuantizedInstanceNormVarianceEpsilon(value float32) QuantizedInstanceNormAttr { + return func(m optionalAttr) { + m["variance_epsilon"] = value + } +} + +// QuantizedInstanceNormMinSeparation sets the optional min_separation attribute to value. +// +// value: Minimum value of `y_max - y_min` +// If not specified, defaults to 0.001 +func QuantizedInstanceNormMinSeparation(value float32) QuantizedInstanceNormAttr { + return func(m optionalAttr) { + m["min_separation"] = value + } +} + +// Quantized Instance normalization. +// +// Arguments: +// x: A 4D input Tensor. +// x_min: The value represented by the lowest quantized input. +// x_max: The value represented by the highest quantized input. +// +// Returns A 4D Tensor.The value represented by the lowest quantized output.The value represented by the highest quantized output. +func QuantizedInstanceNorm(scope *Scope, x tf.Output, x_min tf.Output, x_max tf.Output, optional ...QuantizedInstanceNormAttr) (y tf.Output, y_min tf.Output, y_max tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "QuantizedInstanceNorm", + Input: []tf.Input{ + x, x_min, x_max, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// StridedSliceAttr is an optional argument to StridedSlice. +type StridedSliceAttr func(optionalAttr) + +// StridedSliceBeginMask sets the optional begin_mask attribute to value. +// +// value: a bitmask where a bit i being 1 means to ignore the begin +// value and instead use the largest interval possible. At runtime +// begin[i] will be replaced with `[0, n-1)` if `stride[i] > 0` or +// `[-1, n-1]` if `stride[i] < 0` +// If not specified, defaults to 0 +func StridedSliceBeginMask(value int64) StridedSliceAttr { + return func(m optionalAttr) { + m["begin_mask"] = value + } +} + +// StridedSliceEndMask sets the optional end_mask attribute to value. +// +// value: analogous to `begin_mask` +// If not specified, defaults to 0 +func StridedSliceEndMask(value int64) StridedSliceAttr { + return func(m optionalAttr) { + m["end_mask"] = value + } +} + +// StridedSliceEllipsisMask sets the optional ellipsis_mask attribute to value. +// +// value: a bitmask where bit `i` being 1 means the `i`th +// position is actually an ellipsis. One bit at most can be 1. +// If `ellipsis_mask == 0`, then an implicit ellipsis mask of `1 << (m+1)` +// is provided. This means that `foo[3:5] == foo[3:5, ...]`. An ellipsis +// implicitly creates as many range specifications as necessary to fully +// specify the sliced range for every dimension. For example for a 4-dimensional +// tensor `foo` the slice `foo[2, ..., 5:8]` implies `foo[2, :, :, 5:8]`. +// If not specified, defaults to 0 +func StridedSliceEllipsisMask(value int64) StridedSliceAttr { + return func(m optionalAttr) { + m["ellipsis_mask"] = value + } +} + +// StridedSliceNewAxisMask sets the optional new_axis_mask attribute to value. +// +// value: a bitmask where bit `i` being 1 means the `i`th +// specification creates a new shape 1 dimension. For example +// `foo[:4, tf.newaxis, :2]` would produce a shape `(4, 1, 2)` tensor. +// If not specified, defaults to 0 +func StridedSliceNewAxisMask(value int64) StridedSliceAttr { + return func(m optionalAttr) { + m["new_axis_mask"] = value + } +} + +// StridedSliceShrinkAxisMask sets the optional shrink_axis_mask attribute to value. +// +// value: a bitmask where bit `i` implies that the `i`th +// specification should shrink the dimensionality. begin and end +// must imply a slice of size 1 in the dimension. For example in +// python one might do `foo[:, 3, :]` which would result in +// `shrink_axis_mask` being 2. +// If not specified, defaults to 0 +func StridedSliceShrinkAxisMask(value int64) StridedSliceAttr { + return func(m optionalAttr) { + m["shrink_axis_mask"] = value + } +} + +// Return a strided slice from `input`. +// +// Note, most python users will want to use the Python `Tensor.__getitem__` +// or `Variable.__getitem__` rather than this op directly. +// +// The goal of this op is to produce a new tensor with a subset of +// the elements from the `n` dimensional `input` tensor. The subset is chosen using +// a sequence of `m` sparse range specifications encoded into the arguments +// of this function. Note, in some cases +// `m` could be equal to `n`, but this need not be the case. Each +// range specification entry can be one of the following: +// +// - An ellipsis (...). Ellipses are used to imply zero or more +// dimensions of full-dimension selection and are produced using +// `ellipsis_mask`. For example, `foo[...]` is the identity slice. +// +// - A new axis. This is used to insert a new shape=1 dimension and is +// produced using `new_axis_mask`. For example, `foo[:, ...]` where +// `foo` is shape `(3, 4)` produces a `(1, 3, 4)` tensor. +// +// +// - A range `begin:end:stride`. This is used to specify how much to choose from +// a given dimension. `stride` can be any integer but 0. `begin` is an integer +// which represents the index of the first value to select while `end` represents +// the index of the last value to select. The number of values selected in each +// dimension is `end - begin` if `stride > 0` and `begin - end` if `stride < 0`. +// `begin` and `end` can be negative where `-1` is the last element, `-2` is +// the second to last. `begin_mask` controls whether to replace the explicitly +// given `begin` with an implicit effective value of `0` if `stride > 0` and +// `-1` if `stride < 0`. `end_mask` is analogous but produces the number +// required to create the largest open interval. For example, given a shape +// `(3,)` tensor `foo[:]`, the effective `begin` and `end` are `0` and `3`. Do +// not assume this is equivalent to `foo[0:-1]` which has an effective `begin` +// and `end` of `0` and `2`. Another example is `foo[-2::-1]` which reverses the +// first dimension of a tensor while dropping the last two (in the original +// order elements). For example `foo = [1,2,3,4]; foo[-2::-1]` is `[4,3]`. +// +// - A single index. This is used to keep only elements that have a given +// index. For example (`foo[2, :]` on a shape `(5,6)` tensor produces a +// shape `(6,)` tensor. This is encoded in `begin` and `end` and +// `shrink_axis_mask`. +// +// Each conceptual range specification is encoded in the op's argument. This +// encoding is best understand by considering a non-trivial example. In +// particular, +// `foo[1, 2:4, None, ..., :-3:-1, :]` will be encoded as +// +// ``` +// begin = [1, 2, x, x, 0, x] # x denotes don't care (usually 0) +// end = [2, 4, x, x, -3, x] +// strides = [1, 1, x, x, -1, 1] +// begin_mask = 1<<4 | 1 << 5 = 48 +// end_mask = 1<<5 = 32 +// ellipsis_mask = 1<<3 = 8 +// new_axis_mask = 1<<2 4 +// shrink_axis_mask = 1<<0 +// ``` +// +// In this case if `foo.shape` is (5, 5, 5, 5, 5, 5) the final shape of +// the slice becomes (2, 1, 5, 5, 2, 5). +// Let us walk step by step through each argument specification. +// +// 1. The first argument in the example slice is turned into `begin = 1` and +// `end = begin + 1 = 2`. To disambiguate from the original spec `2:4` we +// also set the appropriate bit in `shrink_axis_mask`. +// +// 2. `2:4` is contributes 2, 4, 1 to begin, end, and stride. All masks have +// zero bits contributed. +// +// 3. None is a synonym for `tf.newaxis`. This means insert a dimension of size 1 +// dimension in the final shape. Dummy values are contributed to begin, +// end and stride, while the new_axis_mask bit is set. +// +// 4. `...` grab the full ranges from as many dimensions as needed to +// fully specify a slice for every dimension of the input shape. +// +// 5. `:-3:-1` shows the use of negative indices. A negative index `i` associated +// with a dimension that has shape `s` is converted to a positive index +// `s + i`. So `-1` becomes `s-1` (i.e. the last element). This conversion +// is done internally so begin, end and strides receive x, -3, and -1. +// The appropriate begin_mask bit is set to indicate the start range is the +// full range (ignoring the x). +// +// 6. `:` indicates that the entire contents of the corresponding dimension +// is selected. This is equivalent to `::` or `0::1`. begin, end, and strides +// receive 0, 0, and 1, respectively. The appropriate bits in `begin_mask` and +// `end_mask` are also set. +// +// *Requirements*: +// `0 != strides[i] for i in [0, m)` +// `ellipsis_mask must be a power of two (only one ellipsis)` +// +// Arguments: +// +// begin: `begin[k]` specifies the offset into the `k`th range specification. +// The exact dimension this corresponds to will be determined by context. +// Out-of-bounds values will be silently clamped. If the `k`th bit of +// `begin_mask` then `begin[k]` is ignored and the full range of the +// appropriate dimension is used instead. Negative values causes indexing +// to start from the highest element e.g. If `foo==[1,2,3]` then `foo[-1]==3`. +// end: `end[i]` is like `begin` with the exception that `end_mask` is +// used to determine full ranges. +// strides: `strides[i]` specifies the increment in the `i`th specification +// after extracting a given element. Negative indices will reverse +// the original order. Out or range values are +// clamped to `[0,dim[i]) if slice[i]>0` or `[-1,dim[i]-1] if slice[i] < 0` +func StridedSlice(scope *Scope, input tf.Output, begin tf.Output, end tf.Output, strides tf.Output, optional ...StridedSliceAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StridedSlice", + Input: []tf.Input{ + input, begin, end, strides, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // ResourceSparseApplyAdadeltaAttr is an optional argument to ResourceSparseApplyAdadelta. type ResourceSparseApplyAdadeltaAttr func(optionalAttr) @@ -20299,28 +23046,60 @@ func IFFT2D(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// Computes the gradient of morphological 2-D dilation with respect to the filter. +// PrintAttr is an optional argument to Print. +type PrintAttr func(optionalAttr) + +// PrintMessage sets the optional message attribute to value. +// +// value: A string, prefix of the error message. +// If not specified, defaults to "" +func PrintMessage(value string) PrintAttr { + return func(m optionalAttr) { + m["message"] = value + } +} + +// PrintFirstN sets the optional first_n attribute to value. +// +// value: Only log `first_n` number of times. -1 disables logging. +// If not specified, defaults to -1 +func PrintFirstN(value int64) PrintAttr { + return func(m optionalAttr) { + m["first_n"] = value + } +} + +// PrintSummarize sets the optional summarize attribute to value. +// +// value: Only print this many entries of each tensor. +// If not specified, defaults to 3 +func PrintSummarize(value int64) PrintAttr { + return func(m optionalAttr) { + m["summarize"] = value + } +} + +// Prints a list of tensors. +// +// Passes `input` through to `output` and prints `data` when evaluating. // // Arguments: -// input: 4-D with shape `[batch, in_height, in_width, depth]`. -// filter: 3-D with shape `[filter_height, filter_width, depth]`. -// out_backprop: 4-D with shape `[batch, out_height, out_width, depth]`. -// strides: 1-D of length 4. The stride of the sliding window for each dimension of -// the input tensor. Must be: `[1, stride_height, stride_width, 1]`. -// rates: 1-D of length 4. The input stride for atrous morphological dilation. -// Must be: `[1, rate_height, rate_width, 1]`. -// padding: The type of padding algorithm to use. +// input: The tensor passed to `output` +// data: A list of tensors to print out when op is evaluated. // -// Returns 3-D with shape `[filter_height, filter_width, depth]`. -func Dilation2DBackpropFilter(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, rates []int64, padding string) (filter_backprop tf.Output) { +// Returns = The unmodified `input` tensor +func Print(scope *Scope, input tf.Output, data []tf.Output, optional ...PrintAttr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"strides": strides, "rates": rates, "padding": padding} + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } opspec := tf.OpSpec{ - Type: "Dilation2DBackpropFilter", + Type: "Print", Input: []tf.Input{ - input, filter, out_backprop, + input, tf.OutputList(data), }, Attrs: attrs, } @@ -20328,169 +23107,94 @@ func Dilation2DBackpropFilter(scope *Scope, input tf.Output, filter tf.Output, o return op.Output(0) } -// Returns which elements of x are NaN. +// OutfeedDequeueAttr is an optional argument to OutfeedDequeue. +type OutfeedDequeueAttr func(optionalAttr) + +// OutfeedDequeueDeviceOrdinal sets the optional device_ordinal attribute to value. +// +// value: The TPU device to use. This should be -1 when the Op +// is running on a TPU device, and >= 0 when the Op is running on the CPU +// device. +// If not specified, defaults to -1 +func OutfeedDequeueDeviceOrdinal(value int64) OutfeedDequeueAttr { + return func(m optionalAttr) { + m["device_ordinal"] = value + } +} + +// Retrieves a single tensor from the computation outfeed. +// +// This operation will block indefinitely until data is available. +// +// Arguments: +// dtype: The type of elements in the tensor. +// shape: The shape of the tensor. +// +// Returns A tensor that will be read from the device outfeed. +func OutfeedDequeue(scope *Scope, dtype tf.DataType, shape tf.Shape, optional ...OutfeedDequeueAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype, "shape": shape} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "OutfeedDequeue", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// 3D fast Fourier transform. +// +// Computes the 3-dimensional discrete Fourier transform over the inner-most 3 +// dimensions of `input`. +// +// Arguments: +// input: A complex64 tensor. +// +// Returns A complex64 tensor of the same shape as `input`. The inner-most 3 +// dimensions of `input` are replaced with their 3D Fourier transform. // // @compatibility(numpy) -// Equivalent to np.isnan +// Equivalent to np.fft.fftn with 3 dimensions. // @end_compatibility -func IsNan(scope *Scope, x tf.Output) (y tf.Output) { +func FFT3D(scope *Scope, input tf.Output) (output tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "IsNan", + Type: "FFT3D", Input: []tf.Input{ - x, + input, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// Store the input tensor in the state of the current session. +// Reduces `input` from `num_devices` using `reduction` to a single device. // -// Arguments: -// value: The tensor to be stored. +// Reduces `input` from `num_devices` using `reduction` to a single device. // -// Returns The handle for the tensor stored in the session state, represented -// as a string. -func GetSessionHandle(scope *Scope, value tf.Output) (handle tf.Output) { +// The graph should be constructed so that all inputs have a valid device +// assignment, and the op itself is assigned one of these devices. +// +// input: The input to the reduction. +// data: the value of the reduction across all `num_devices` devices. +// reduction: the reduction operation to perform. +func NcclReduce(scope *Scope, input []tf.Output, reduction string) (data tf.Output) { if scope.Err() != nil { return } + attrs := map[string]interface{}{"reduction": reduction} opspec := tf.OpSpec{ - Type: "GetSessionHandle", + Type: "NcclReduce", Input: []tf.Input{ - value, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes arctangent of `y/x` element-wise, respecting signs of the arguments. -// -// This is the angle \( \theta \in [-\pi, \pi] \) such that -// \[ x = r \cos(\theta) \] -// and -// \[ y = r \sin(\theta) \] -// where \(r = \sqrt(x^2 + y^2) \). -func Atan2(scope *Scope, y tf.Output, x tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Atan2", - Input: []tf.Input{ - y, x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingProximalAdagradParametersAttr is an optional argument to LoadTPUEmbeddingProximalAdagradParameters. -type LoadTPUEmbeddingProximalAdagradParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingProximalAdagradParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingProximalAdagradParametersTableId(value int64) LoadTPUEmbeddingProximalAdagradParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingProximalAdagradParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingProximalAdagradParametersTableName(value string) LoadTPUEmbeddingProximalAdagradParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load proximal Adagrad embedding parameters. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the proximal Adagrad optimization algorithm. -// accumulators: Value of accumulators used in the proximal Adagrad optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingProximalAdagradParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingProximalAdagradParametersAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingProximalAdagradParameters", - Input: []tf.Input{ - parameters, accumulators, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Computes sin of x element-wise. -func Sin(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Sin", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// NonDeterministicIntsAttr is an optional argument to NonDeterministicInts. -type NonDeterministicIntsAttr func(optionalAttr) - -// NonDeterministicIntsDtype sets the optional dtype attribute to value. -// -// value: The type of the output. -// If not specified, defaults to DT_INT64 -func NonDeterministicIntsDtype(value tf.DataType) NonDeterministicIntsAttr { - return func(m optionalAttr) { - m["dtype"] = value - } -} - -// Non-deterministically generates some integers. -// -// This op may use some OS-provided source of non-determinism (e.g. an RNG), so each execution will give different results. -// -// Arguments: -// shape: The shape of the output tensor. -// -// Returns Non-deterministic integer values with specified shape. -func NonDeterministicInts(scope *Scope, shape tf.Output, optional ...NonDeterministicIntsAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "NonDeterministicInts", - Input: []tf.Input{ - shape, + tf.OutputList(input), }, Attrs: attrs, } @@ -20498,310 +23202,29 @@ func NonDeterministicInts(scope *Scope, shape tf.Output, optional ...NonDetermin return op.Output(0) } -// Slice a `SparseTensor` based on the `start` and `size`. -// -// For example, if the input is -// -// input_tensor = shape = [2, 7] -// [ a d e ] -// [b c ] -// -// Graphically the output tensors are: -// -// sparse_slice([0, 0], [2, 4]) = shape = [2, 4] -// [ a ] -// [b c ] -// -// sparse_slice([0, 4], [2, 3]) = shape = [2, 3] -// [ d e ] -// [ ] +// Splits a tensor into `num_split` tensors along one dimension. // // Arguments: -// indices: 2-D tensor represents the indices of the sparse tensor. -// values: 1-D tensor represents the values of the sparse tensor. -// shape: 1-D. tensor represents the shape of the sparse tensor. -// start: 1-D. tensor represents the start of the slice. -// size: 1-D. tensor represents the size of the slice. -// output indices: A list of 1-D tensors represents the indices of the output -// sparse tensors. +// value: The tensor to split. +// size_splits: list containing the sizes of each output tensor along the split +// dimension. Must sum to the dimension of value along split_dim. +// Can contain one -1 indicating that dimension is to be inferred. +// axis: 0-D. The dimension along which to split. Must be in the range +// `[-rank(value), rank(value))`. // -// Returns A list of 1-D tensors represents the values of the output sparse -// tensors.A list of 1-D tensors represents the shape of the output sparse -// tensors. -func SparseSlice(scope *Scope, indices tf.Output, values tf.Output, shape tf.Output, start tf.Output, size tf.Output) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { +// +// Returns Tensors whose shape matches that of `value` +// except along `axis`, where their sizes are +// `size_splits[i]`. +func SplitV(scope *Scope, value tf.Output, size_splits tf.Output, axis tf.Output, num_split int64) (output []tf.Output) { if scope.Err() != nil { return } + attrs := map[string]interface{}{"num_split": num_split} opspec := tf.OpSpec{ - Type: "SparseSlice", + Type: "SplitV", Input: []tf.Input{ - indices, values, shape, start, size, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingFTRLParametersGradAccumDebug. -type LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr func(optionalAttr) - -// LoadTPUEmbeddingFTRLParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingFTRLParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingFTRLParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingFTRLParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load FTRL embedding parameters with debug support. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the FTRL optimization algorithm. -// accumulators: Value of accumulators used in the FTRL optimization algorithm. -// linears: Value of linears used in the FTRL optimization algorithm. -// gradient_accumulators: Value of gradient_accumulators used in the FTRL optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingFTRLParametersGradAccumDebug(scope *Scope, parameters tf.Output, accumulators tf.Output, linears tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingFTRLParametersGradAccumDebugAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingFTRLParametersGradAccumDebug", - Input: []tf.Input{ - parameters, accumulators, linears, gradient_accumulators, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Performs gradient updates of embedding tables. -// -// Arguments: -// inputs: A TensorList of gradients with which to update embedding tables. -// This argument has the same length and shapes as the return value of -// RecvTPUEmbeddingActivations, but contains gradients of the model's loss -// with respect to the embedding activations. The embedding tables are updated -// from these gradients via the optimizer specified in the TPU embedding -// configuration given to tpu.initialize_system. -// learning_rates: A TensorList of float32 scalars, one for each dynamic learning -// rate tag: see the comments in -// //third_party/tensorflow/core/protobuf/tpu/optimization_parameters.proto. -// Multiple tables can share the same dynamic learning rate tag as specified -// in the configuration. If the learning rates for all tables are constant, -// this list should be empty. -// config: Serialized TPUEmbeddingConfiguration proto. -// -// Returns the created operation. -func SendTPUEmbeddingGradients(scope *Scope, inputs []tf.Output, learning_rates []tf.Output, config string) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"config": config} - opspec := tf.OpSpec{ - Type: "SendTPUEmbeddingGradients", - Input: []tf.Input{ - tf.OutputList(inputs), tf.OutputList(learning_rates), - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// SerializeSparseAttr is an optional argument to SerializeSparse. -type SerializeSparseAttr func(optionalAttr) - -// SerializeSparseOutType sets the optional out_type attribute to value. -// -// value: The `dtype` to use for serialization; the supported types are `string` -// (default) and `variant`. -// If not specified, defaults to DT_STRING -func SerializeSparseOutType(value tf.DataType) SerializeSparseAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// Serialize a `SparseTensor` into a `[3]` `Tensor` object. -// -// Arguments: -// sparse_indices: 2-D. The `indices` of the `SparseTensor`. -// sparse_values: 1-D. The `values` of the `SparseTensor`. -// sparse_shape: 1-D. The `shape` of the `SparseTensor`. -func SerializeSparse(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output, optional ...SerializeSparseAttr) (serialized_sparse tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SerializeSparse", - Input: []tf.Input{ - sparse_indices, sparse_values, sparse_shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// UnbatchGradAttr is an optional argument to UnbatchGrad. -type UnbatchGradAttr func(optionalAttr) - -// UnbatchGradContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func UnbatchGradContainer(value string) UnbatchGradAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// UnbatchGradSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func UnbatchGradSharedName(value string) UnbatchGradAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Gradient of Unbatch. -// -// Acts like Batch but using the given batch_index index of batching things as they -// become available. This ensures that the gradients are propagated back in the -// same session which did the forward pass. -// -// original_input: The input to the Unbatch operation this is the gradient of. -// batch_index: The batch_index given to the Unbatch operation this is the gradient -// of. -// grad: The downstream gradient. -// id: The id scalar emitted by Batch. -// batched_grad: The return value, either an empty tensor or the batched gradient. -// container: Container to control resource sharing. -// shared_name: Instances of UnbatchGrad with the same container and shared_name -// are assumed to possibly belong to the same batch. If left empty, the op name -// will be used as the shared name. -func UnbatchGrad(scope *Scope, original_input tf.Output, batch_index tf.Output, grad tf.Output, id tf.Output, optional ...UnbatchGradAttr) (batched_grad tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "UnbatchGrad", - Input: []tf.Input{ - original_input, batch_index, grad, id, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Deprecated. Use TensorArrayReadV3 -// -// DEPRECATED at GraphDef version 26: Use TensorArrayReadV3 -func TensorArrayReadV2(scope *Scope, handle tf.Output, index tf.Output, flow_in tf.Output, dtype tf.DataType) (value tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - opspec := tf.OpSpec{ - Type: "TensorArrayReadV2", - Input: []tf.Input{ - handle, index, flow_in, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns x + y element-wise. -// -// *NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func AddV2(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "AddV2", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// QueueDequeueV2Attr is an optional argument to QueueDequeueV2. -type QueueDequeueV2Attr func(optionalAttr) - -// QueueDequeueV2TimeoutMs sets the optional timeout_ms attribute to value. -// -// value: If the queue is empty, this operation will block for up to -// timeout_ms milliseconds. -// Note: This option is not supported yet. -// If not specified, defaults to -1 -func QueueDequeueV2TimeoutMs(value int64) QueueDequeueV2Attr { - return func(m optionalAttr) { - m["timeout_ms"] = value - } -} - -// Dequeues a tuple of one or more tensors from the given queue. -// -// This operation has k outputs, where k is the number of components -// in the tuples stored in the given queue, and output i is the ith -// component of the dequeued tuple. -// -// N.B. If the queue is empty, this operation will block until an element -// has been dequeued (or 'timeout_ms' elapses, if specified). -// -// Arguments: -// handle: The handle to a queue. -// component_types: The type of each component in a tuple. -// -// Returns One or more tensors that were dequeued as a tuple. -func QueueDequeueV2(scope *Scope, handle tf.Output, component_types []tf.DataType, optional ...QueueDequeueV2Attr) (components []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"component_types": component_types} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "QueueDequeueV2", - Input: []tf.Input{ - handle, + value, size_splits, axis, }, Attrs: attrs, } @@ -20811,30 +23234,1053 @@ func QueueDequeueV2(scope *Scope, handle tf.Output, component_types []tf.DataTyp } var idx int var err error - if components, idx, err = makeOutputList(op, idx, "components"); err != nil { - scope.UpdateErr("QueueDequeueV2", err) + if output, idx, err = makeOutputList(op, idx, "output"); err != nil { + scope.UpdateErr("SplitV", err) return } - return components + return output } -// A container for an iterator resource. +// Creates a dataset that asynchronously prefetches elements from `input_dataset`. // // Arguments: -// handle: A handle to the iterator to delete. -// deleter: A variant deleter. // -// Returns the created operation. -func DeleteIterator(scope *Scope, handle tf.Output, deleter tf.Output) (o *tf.Operation) { +// buffer_size: The maximum number of elements to buffer in an iterator over +// this dataset. +// +// +func PrefetchDataset(scope *Scope, input_dataset tf.Output, buffer_size tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "PrefetchDataset", + Input: []tf.Input{ + input_dataset, buffer_size, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Convert JSON-encoded Example records to binary protocol buffer strings. +// +// This op translates a tensor containing Example records, encoded using +// the [standard JSON +// mapping](https://developers.google.com/protocol-buffers/docs/proto3#json), +// into a tensor containing the same records encoded as binary protocol +// buffers. The resulting tensor can then be fed to any of the other +// Example-parsing ops. +// +// Arguments: +// json_examples: Each string is a JSON object serialized according to the JSON +// mapping of the Example proto. +// +// Returns Each string is a binary Example protocol buffer corresponding +// to the respective element of `json_examples`. +func DecodeJSONExample(scope *Scope, json_examples tf.Output) (binary_examples tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "DeleteIterator", + Type: "DecodeJSONExample", Input: []tf.Input{ - handle, deleter, + json_examples, }, } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingAdadeltaParametersGradAccumDebug. +type LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr func(optionalAttr) + +// LoadTPUEmbeddingAdadeltaParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingAdadeltaParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingAdadeltaParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingAdadeltaParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load Adadelta parameters with debug support. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the Adadelta optimization algorithm. +// accumulators: Value of accumulators used in the Adadelta optimization algorithm. +// updates: Value of updates used in the Adadelta optimization algorithm. +// gradient_accumulators: Value of gradient_accumulators used in the Adadelta optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingAdadeltaParametersGradAccumDebug(scope *Scope, parameters tf.Output, accumulators tf.Output, updates tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingAdadeltaParametersGradAccumDebugAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingAdadeltaParametersGradAccumDebug", + Input: []tf.Input{ + parameters, accumulators, updates, gradient_accumulators, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// IdentityReaderV2Attr is an optional argument to IdentityReaderV2. +type IdentityReaderV2Attr func(optionalAttr) + +// IdentityReaderV2Container sets the optional container attribute to value. +// +// value: If non-empty, this reader is placed in the given container. +// Otherwise, a default container is used. +// If not specified, defaults to "" +func IdentityReaderV2Container(value string) IdentityReaderV2Attr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// IdentityReaderV2SharedName sets the optional shared_name attribute to value. +// +// value: If non-empty, this reader is named in the given bucket +// with this shared_name. Otherwise, the node name is used instead. +// If not specified, defaults to "" +func IdentityReaderV2SharedName(value string) IdentityReaderV2Attr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// A Reader that outputs the queued work as both the key and value. +// +// To use, enqueue strings in a Queue. ReaderRead will take the front +// work string and output (work, work). +// +// Returns The handle to reference the Reader. +func IdentityReaderV2(scope *Scope, optional ...IdentityReaderV2Attr) (reader_handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "IdentityReaderV2", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Saves input tensors slices to disk. +// +// This is like `Save` except that tensors can be listed in the saved file as being +// a slice of a larger tensor. `shapes_and_slices` specifies the shape of the +// larger tensor and the slice that this tensor covers. `shapes_and_slices` must +// have as many elements as `tensor_names`. +// +// Elements of the `shapes_and_slices` input must either be: +// +// * The empty string, in which case the corresponding tensor is +// saved normally. +// * A string of the form `dim0 dim1 ... dimN-1 slice-spec` where the +// `dimI` are the dimensions of the larger tensor and `slice-spec` +// specifies what part is covered by the tensor to save. +// +// `slice-spec` itself is a `:`-separated list: `slice0:slice1:...:sliceN-1` +// where each `sliceI` is either: +// +// * The string `-` meaning that the slice covers all indices of this dimension +// * `start,length` where `start` and `length` are integers. In that +// case the slice covers `length` indices starting at `start`. +// +// See also `Save`. +// +// Arguments: +// filename: Must have a single element. The name of the file to which we write the +// tensor. +// tensor_names: Shape `[N]`. The names of the tensors to be saved. +// shapes_and_slices: Shape `[N]`. The shapes and slice specifications to use when +// saving the tensors. +// data: `N` tensors to save. +// +// Returns the created operation. +func SaveSlices(scope *Scope, filename tf.Output, tensor_names tf.Output, shapes_and_slices tf.Output, data []tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SaveSlices", + Input: []tf.Input{ + filename, tensor_names, shapes_and_slices, tf.OutputList(data), + }, + } + return scope.AddOperation(opspec) +} + +// An op enabling differentiation of TPU Embeddings. +// +// This op simply returns its first input, which is assumed to have been sliced +// from the Tensors returned by TPUEmbeddingDequeueActivations. The presence of +// this op, and its first argument being a trainable Variable, enables automatic +// differentiation of graphs containing embeddings via the TPU Embedding Python +// libraries. +// +// Arguments: +// embedding_variable: A trainable variable, enabling optimizers to find this op. +// sliced_activations: The embedding activations Tensor to return. +// table_id: The id of the table in the embedding layer configuration from which +// these activations were computed. +// lookup_id: Identifier of the set of embedding indices which produced these +// activations. +func TPUEmbeddingActivations(scope *Scope, embedding_variable tf.Output, sliced_activations tf.Output, table_id int64, lookup_id int64) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"table_id": table_id, "lookup_id": lookup_id} + opspec := tf.OpSpec{ + Type: "TPUEmbeddingActivations", + Input: []tf.Input{ + embedding_variable, sliced_activations, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// LoadTPUEmbeddingMomentumParametersAttr is an optional argument to LoadTPUEmbeddingMomentumParameters. +type LoadTPUEmbeddingMomentumParametersAttr func(optionalAttr) + +// LoadTPUEmbeddingMomentumParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingMomentumParametersTableId(value int64) LoadTPUEmbeddingMomentumParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingMomentumParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingMomentumParametersTableName(value string) LoadTPUEmbeddingMomentumParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load Momentum embedding parameters. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the Momentum optimization algorithm. +// momenta: Value of momenta used in the Momentum optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingMomentumParameters(scope *Scope, parameters tf.Output, momenta tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingMomentumParametersAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingMomentumParameters", + Input: []tf.Input{ + parameters, momenta, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Add the quantile summaries to each quantile stream resource. +// +// An op that adds a list of quantile summaries to a quantile stream resource. Each +// summary Tensor is rank 2, containing summaries (value, weight, min_rank, max_rank) +// for a single feature. +// +// Arguments: +// quantile_stream_resource_handle: resource handle referring to a QuantileStreamResource. +// summaries: string; List of Rank 2 Tensor each containing the summaries for a single feature. +// +// Returns the created operation. +func BoostedTreesQuantileStreamResourceAddSummaries(scope *Scope, quantile_stream_resource_handle tf.Output, summaries []tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "BoostedTreesQuantileStreamResourceAddSummaries", + Input: []tf.Input{ + quantile_stream_resource_handle, tf.OutputList(summaries), + }, + } + return scope.AddOperation(opspec) +} + +// Mutually accumulates multiple tensors of identical type and shape. +func CollectiveGather(scope *Scope, input tf.Output, group_size int64, group_key int64, instance_key int64, shape tf.Shape) (data tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"group_size": group_size, "group_key": group_key, "instance_key": instance_key, "shape": shape} + opspec := tf.OpSpec{ + Type: "CollectiveGather", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Assigns sparse updates to the variable referenced by `resource`. +// +// This operation computes +// +// # Scalar indices +// ref[indices, ...] = updates[...] +// +// # Vector indices (for each i) +// ref[indices[i], ...] = updates[i, ...] +// +// # High rank indices (for each i, ..., j) +// ref[indices[i, ..., j], ...] = updates[i, ..., j, ...] +// +// Arguments: +// resource: Should be from a `Variable` node. +// indices: A tensor of indices into the first dimension of `ref`. +// updates: A tensor of updated values to add to `ref`. +// +// Returns the created operation. +func ResourceScatterUpdate(scope *Scope, resource tf.Output, indices tf.Output, updates tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ResourceScatterUpdate", + Input: []tf.Input{ + resource, indices, updates, + }, + } + return scope.AddOperation(opspec) +} + +// OrderedMapUnstageNoKeyAttr is an optional argument to OrderedMapUnstageNoKey. +type OrderedMapUnstageNoKeyAttr func(optionalAttr) + +// OrderedMapUnstageNoKeyCapacity sets the optional capacity attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func OrderedMapUnstageNoKeyCapacity(value int64) OrderedMapUnstageNoKeyAttr { + return func(m optionalAttr) { + m["capacity"] = value + } +} + +// OrderedMapUnstageNoKeyMemoryLimit sets the optional memory_limit attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func OrderedMapUnstageNoKeyMemoryLimit(value int64) OrderedMapUnstageNoKeyAttr { + return func(m optionalAttr) { + m["memory_limit"] = value + } +} + +// OrderedMapUnstageNoKeyContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func OrderedMapUnstageNoKeyContainer(value string) OrderedMapUnstageNoKeyAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// OrderedMapUnstageNoKeySharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func OrderedMapUnstageNoKeySharedName(value string) OrderedMapUnstageNoKeyAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Op removes and returns the (key, value) element with the smallest +// +// key from the underlying container. If the underlying container +// does not contain elements, the op will block until it does. +func OrderedMapUnstageNoKey(scope *Scope, indices tf.Output, dtypes []tf.DataType, optional ...OrderedMapUnstageNoKeyAttr) (key tf.Output, values []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtypes": dtypes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "OrderedMapUnstageNoKey", + Input: []tf.Input{ + indices, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + key = op.Output(idx) + if values, idx, err = makeOutputList(op, idx, "values"); err != nil { + scope.UpdateErr("OrderedMapUnstageNoKey", err) + return + } + return key, values +} + +// ResourceApplyRMSPropAttr is an optional argument to ResourceApplyRMSProp. +type ResourceApplyRMSPropAttr func(optionalAttr) + +// ResourceApplyRMSPropUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var, ms, and mom tensors is protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceApplyRMSPropUseLocking(value bool) ResourceApplyRMSPropAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' according to the RMSProp algorithm. +// +// Note that in dense implementation of this algorithm, ms and mom will +// update even if the grad is zero, but in this sparse implementation, ms +// and mom will not update in iterations during which the grad is zero. +// +// mean_square = decay * mean_square + (1-decay) * gradient ** 2 +// Delta = learning_rate * gradient / sqrt(mean_square + epsilon) +// +// ms <- rho * ms_{t-1} + (1-rho) * grad * grad +// mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) +// var <- var - mom +// +// Arguments: +// var_: Should be from a Variable(). +// ms: Should be from a Variable(). +// mom: Should be from a Variable(). +// lr: Scaling factor. Must be a scalar. +// rho: Decay rate. Must be a scalar. +// +// epsilon: Ridge term. Must be a scalar. +// grad: The gradient. +// +// Returns the created operation. +func ResourceApplyRMSProp(scope *Scope, var_ tf.Output, ms tf.Output, mom tf.Output, lr tf.Output, rho tf.Output, momentum tf.Output, epsilon tf.Output, grad tf.Output, optional ...ResourceApplyRMSPropAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceApplyRMSProp", + Input: []tf.Input{ + var_, ms, mom, lr, rho, momentum, epsilon, grad, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// PrelinearizeAttr is an optional argument to Prelinearize. +type PrelinearizeAttr func(optionalAttr) + +// PrelinearizeShape sets the optional shape attribute to value. +// +// value: The shape of the tensor. +// If not specified, defaults to <> +func PrelinearizeShape(value tf.Shape) PrelinearizeAttr { + return func(m optionalAttr) { + m["shape"] = value + } +} + +// PrelinearizeLayout sets the optional layout attribute to value. +// +// value: A vector holding the requested layout in minor-to-major sequence. If a layout +// attribute is passed but its values are all -1 the layout will be computed by +// the infeed operation. +// If not specified, defaults to <> +func PrelinearizeLayout(value []int64) PrelinearizeAttr { + return func(m optionalAttr) { + m["layout"] = value + } +} + +// An op which linearizes one Tensor value to an opaque variant tensor. +// +// Arguments: +// input: A tensor that will be linearized. +func Prelinearize(scope *Scope, input tf.Output, optional ...PrelinearizeAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Prelinearize", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// MatrixTriangularSolveAttr is an optional argument to MatrixTriangularSolve. +type MatrixTriangularSolveAttr func(optionalAttr) + +// MatrixTriangularSolveLower sets the optional lower attribute to value. +// +// value: Boolean indicating whether the innermost matrices in `matrix` are +// lower or upper triangular. +// If not specified, defaults to true +func MatrixTriangularSolveLower(value bool) MatrixTriangularSolveAttr { + return func(m optionalAttr) { + m["lower"] = value + } +} + +// MatrixTriangularSolveAdjoint sets the optional adjoint attribute to value. +// +// value: Boolean indicating whether to solve with `matrix` or its (block-wise) +// adjoint. +// +// @compatibility(numpy) +// Equivalent to scipy.linalg.solve_triangular +// @end_compatibility +// If not specified, defaults to false +func MatrixTriangularSolveAdjoint(value bool) MatrixTriangularSolveAttr { + return func(m optionalAttr) { + m["adjoint"] = value + } +} + +// Solves systems of linear equations with upper or lower triangular matrices by +// +// backsubstitution. +// +// `matrix` is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions form +// square matrices. If `lower` is `True` then the strictly upper triangular part +// of each inner-most matrix is assumed to be zero and not accessed. +// If `lower` is False then the strictly lower triangular part of each inner-most +// matrix is assumed to be zero and not accessed. +// `rhs` is a tensor of shape `[..., M, K]`. +// +// The output is a tensor of shape `[..., M, K]`. If `adjoint` is +// `True` then the innermost matrices in `output` satisfy matrix equations +// `matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]`. +// If `adjoint` is `False` then the strictly then the innermost matrices in +// `output` satisfy matrix equations +// `adjoint(matrix[..., i, k]) * output[..., k, j] = rhs[..., i, j]`. +// +// Arguments: +// matrix: Shape is `[..., M, M]`. +// rhs: Shape is `[..., M, K]`. +// +// Returns Shape is `[..., M, K]`. +func MatrixTriangularSolve(scope *Scope, matrix tf.Output, rhs tf.Output, optional ...MatrixTriangularSolveAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "MatrixTriangularSolve", + Input: []tf.Input{ + matrix, rhs, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Fills empty rows in the input 2-D `SparseTensor` with a default value. +// +// The input `SparseTensor` is represented via the tuple of inputs +// (`indices`, `values`, `dense_shape`). The output `SparseTensor` has the +// same `dense_shape` but with indices `output_indices` and values +// `output_values`. +// +// This op inserts a single entry for every row that doesn't have any values. +// The index is created as `[row, 0, ..., 0]` and the inserted value +// is `default_value`. +// +// For example, suppose `sp_input` has shape `[5, 6]` and non-empty values: +// +// [0, 1]: a +// [0, 3]: b +// [2, 0]: c +// [3, 1]: d +// +// Rows 1 and 4 are empty, so the output will be of shape `[5, 6]` with values: +// +// [0, 1]: a +// [0, 3]: b +// [1, 0]: default_value +// [2, 0]: c +// [3, 1]: d +// [4, 0]: default_value +// +// The output `SparseTensor` will be in row-major order and will have the +// same shape as the input. +// +// This op also returns an indicator vector shaped `[dense_shape[0]]` such that +// +// empty_row_indicator[i] = True iff row i was an empty row. +// +// And a reverse index map vector shaped `[indices.shape[0]]` that is used during +// backpropagation, +// +// reverse_index_map[j] = out_j s.t. indices[j, :] == output_indices[out_j, :] +// +// Arguments: +// indices: 2-D. the indices of the sparse tensor. +// values: 1-D. the values of the sparse tensor. +// dense_shape: 1-D. the shape of the sparse tensor. +// default_value: 0-D. default value to insert into location `[row, 0, ..., 0]` +// for rows missing from the input sparse tensor. +// output indices: 2-D. the indices of the filled sparse tensor. +// +// Returns 1-D. the values of the filled sparse tensor.1-D. whether the dense row was missing in the +// input sparse tensor.1-D. a map from the input indices to the output indices. +func SparseFillEmptyRows(scope *Scope, indices tf.Output, values tf.Output, dense_shape tf.Output, default_value tf.Output) (output_indices tf.Output, output_values tf.Output, empty_row_indicator tf.Output, reverse_index_map tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseFillEmptyRows", + Input: []tf.Input{ + indices, values, dense_shape, default_value, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3) +} + +// Returns the element-wise sum of a list of tensors. +// +// `tf.accumulate_n_v2` performs the same operation as `tf.add_n`, but does not +// wait for all of its inputs to be ready before beginning to sum. This can +// save memory if inputs are ready at different times, since minimum temporary +// storage is proportional to the output size rather than the inputs size. +// +// Unlike the original `accumulate_n`, `accumulate_n_v2` is differentiable. +// +// Returns a `Tensor` of same shape and type as the elements of `inputs`. +// +// Arguments: +// inputs: A list of `Tensor` objects, each with same shape and type. +// shape: Shape of elements of `inputs`. +func AccumulateNV2(scope *Scope, inputs []tf.Output, shape tf.Shape) (sum tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"shape": shape} + opspec := tf.OpSpec{ + Type: "AccumulateNV2", + Input: []tf.Input{ + tf.OutputList(inputs), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ResourceSparseApplyFtrlV2Attr is an optional argument to ResourceSparseApplyFtrlV2. +type ResourceSparseApplyFtrlV2Attr func(optionalAttr) + +// ResourceSparseApplyFtrlV2UseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var and accum tensors will be protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceSparseApplyFtrlV2UseLocking(value bool) ResourceSparseApplyFtrlV2Attr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update relevant entries in '*var' according to the Ftrl-proximal scheme. +// +// That is for rows we have grad for, we update var, accum and linear as follows: +// grad_with_shrinkage = grad + 2 * l2_shrinkage * var +// accum_new = accum + grad_with_shrinkage * grad_with_shrinkage +// linear += grad_with_shrinkage + +// (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var +// quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 +// var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 +// accum = accum_new +// +// Arguments: +// var_: Should be from a Variable(). +// accum: Should be from a Variable(). +// linear: Should be from a Variable(). +// grad: The gradient. +// indices: A vector of indices into the first dimension of var and accum. +// lr: Scaling factor. Must be a scalar. +// l1: L1 regularization. Must be a scalar. +// l2: L2 shrinkage regulariation. Must be a scalar. +// +// lr_power: Scaling factor. Must be a scalar. +// +// Returns the created operation. +func ResourceSparseApplyFtrlV2(scope *Scope, var_ tf.Output, accum tf.Output, linear tf.Output, grad tf.Output, indices tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, l2_shrinkage tf.Output, lr_power tf.Output, optional ...ResourceSparseApplyFtrlV2Attr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceSparseApplyFtrlV2", + Input: []tf.Input{ + var_, accum, linear, grad, indices, lr, l1, l2, l2_shrinkage, lr_power, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// FakeQuantWithMinMaxVarsPerChannelGradientAttr is an optional argument to FakeQuantWithMinMaxVarsPerChannelGradient. +type FakeQuantWithMinMaxVarsPerChannelGradientAttr func(optionalAttr) + +// FakeQuantWithMinMaxVarsPerChannelGradientNumBits sets the optional num_bits attribute to value. +// +// value: The bitwidth of the quantization; between 2 and 16, inclusive. +// If not specified, defaults to 8 +func FakeQuantWithMinMaxVarsPerChannelGradientNumBits(value int64) FakeQuantWithMinMaxVarsPerChannelGradientAttr { + return func(m optionalAttr) { + m["num_bits"] = value + } +} + +// FakeQuantWithMinMaxVarsPerChannelGradientNarrowRange sets the optional narrow_range attribute to value. +// +// value: Whether to quantize into 2^num_bits - 1 distinct values. +// If not specified, defaults to false +func FakeQuantWithMinMaxVarsPerChannelGradientNarrowRange(value bool) FakeQuantWithMinMaxVarsPerChannelGradientAttr { + return func(m optionalAttr) { + m["narrow_range"] = value + } +} + +// Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation. +// +// Arguments: +// gradients: Backpropagated gradients above the FakeQuantWithMinMaxVars operation, +// shape one of: `[d]`, `[b, d]`, `[b, h, w, d]`. +// inputs: Values passed as inputs to the FakeQuantWithMinMaxVars operation, shape +// same as `gradients`. +// min, max: Quantization interval, floats of shape `[d]`. +// +// +// +// Returns Backpropagated gradients w.r.t. inputs, shape same as +// `inputs`: +// `gradients * (inputs >= min && inputs <= max)`.Backpropagated gradients w.r.t. min parameter, shape `[d]`: +// `sum_per_d(gradients * (inputs < min))`.Backpropagated gradients w.r.t. max parameter, shape `[d]`: +// `sum_per_d(gradients * (inputs > max))`. +func FakeQuantWithMinMaxVarsPerChannelGradient(scope *Scope, gradients tf.Output, inputs tf.Output, min tf.Output, max tf.Output, optional ...FakeQuantWithMinMaxVarsPerChannelGradientAttr) (backprops_wrt_input tf.Output, backprop_wrt_min tf.Output, backprop_wrt_max tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "FakeQuantWithMinMaxVarsPerChannelGradient", + Input: []tf.Input{ + gradients, inputs, min, max, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// ResourceApplyFtrlV2Attr is an optional argument to ResourceApplyFtrlV2. +type ResourceApplyFtrlV2Attr func(optionalAttr) + +// ResourceApplyFtrlV2UseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var and accum tensors will be protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceApplyFtrlV2UseLocking(value bool) ResourceApplyFtrlV2Attr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' according to the Ftrl-proximal scheme. +// +// grad_with_shrinkage = grad + 2 * l2_shrinkage * var +// accum_new = accum + grad_with_shrinkage * grad_with_shrinkage +// linear += grad_with_shrinkage + +// (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var +// quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 +// var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 +// accum = accum_new +// +// Arguments: +// var_: Should be from a Variable(). +// accum: Should be from a Variable(). +// linear: Should be from a Variable(). +// grad: The gradient. +// lr: Scaling factor. Must be a scalar. +// l1: L1 regulariation. Must be a scalar. +// l2: L2 shrinkage regulariation. Must be a scalar. +// +// lr_power: Scaling factor. Must be a scalar. +// +// Returns the created operation. +func ResourceApplyFtrlV2(scope *Scope, var_ tf.Output, accum tf.Output, linear tf.Output, grad tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, l2_shrinkage tf.Output, lr_power tf.Output, optional ...ResourceApplyFtrlV2Attr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceApplyFtrlV2", + Input: []tf.Input{ + var_, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Selects elements from `x` or `y`, depending on `condition`. +// +// The `x`, and `y` tensors must all have the same shape, and the +// output will also have that shape. +// +// The `condition` tensor must be a scalar if `x` and `y` are scalars. +// If `x` and `y` are vectors or higher rank, then `condition` must be either a +// scalar, a vector with size matching the first dimension of `x`, or must have +// the same shape as `x`. +// +// The `condition` tensor acts as a mask that chooses, based on the value at each +// element, whether the corresponding element / row in the output should be +// taken from `x` (if true) or `y` (if false). +// +// If `condition` is a vector and `x` and `y` are higher rank matrices, then +// it chooses which row (outer dimension) to copy from `x` and `y`. +// If `condition` has the same shape as `x` and `y`, then it chooses which +// element to copy from `x` and `y`. +// +// For example: +// +// ```python +// # 'condition' tensor is [[True, False] +// # [False, True]] +// # 't' is [[1, 2], +// # [3, 4]] +// # 'e' is [[5, 6], +// # [7, 8]] +// select(condition, t, e) # => [[1, 6], [7, 4]] +// +// +// # 'condition' tensor is [True, False] +// # 't' is [[1, 2], +// # [3, 4]] +// # 'e' is [[5, 6], +// # [7, 8]] +// select(condition, t, e) ==> [[1, 2], +// [7, 8]] +// +// ``` +// +// Arguments: +// +// x: = A `Tensor` which may have the same shape as `condition`. +// If `condition` is rank 1, `x` may have higher rank, +// but its first dimension must match the size of `condition`. +// y: = A `Tensor` with the same type and shape as `x`. +// +// Returns = A `Tensor` with the same type and shape as `x` and `y`. +func Select(scope *Scope, condition tf.Output, x tf.Output, y tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Select", + Input: []tf.Input{ + condition, x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Stops gradient computation. +// +// When executed in a graph, this op outputs its input tensor as-is. +// +// When building ops to compute gradients, this op prevents the contribution of +// its inputs to be taken into account. Normally, the gradient generator adds ops +// to a graph to compute the derivatives of a specified 'loss' by recursively +// finding out inputs that contributed to its computation. If you insert this op +// in the graph it inputs are masked from the gradient generator. They are not +// taken into account for computing gradients. +// +// This is useful any time you want to compute a value with TensorFlow but need +// to pretend that the value was a constant. Some examples include: +// +// * The *EM* algorithm where the *M-step* should not involve backpropagation +// through the output of the *E-step*. +// * Contrastive divergence training of Boltzmann machines where, when +// differentiating the energy function, the training must not backpropagate +// through the graph that generated the samples from the model. +// * Adversarial training, where no backprop should happen through the adversarial +// example generation process. +func StopGradient(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "StopGradient", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes inverse hyperbolic cosine of x element-wise. +func Acosh(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Acosh", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// StageClearAttr is an optional argument to StageClear. +type StageClearAttr func(optionalAttr) + +// StageClearCapacity sets the optional capacity attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func StageClearCapacity(value int64) StageClearAttr { + return func(m optionalAttr) { + m["capacity"] = value + } +} + +// StageClearMemoryLimit sets the optional memory_limit attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func StageClearMemoryLimit(value int64) StageClearAttr { + return func(m optionalAttr) { + m["memory_limit"] = value + } +} + +// StageClearContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func StageClearContainer(value string) StageClearAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// StageClearSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func StageClearSharedName(value string) StageClearAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Op removes all elements in the underlying container. +// +// Returns the created operation. +func StageClear(scope *Scope, dtypes []tf.DataType, optional ...StageClearAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtypes": dtypes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StageClear", + + Attrs: attrs, + } return scope.AddOperation(opspec) } @@ -20984,2220 +24430,6 @@ func CropAndResize(scope *Scope, image tf.Output, boxes tf.Output, box_ind tf.Ou return op.Output(0) } -// LeakyReluAttr is an optional argument to LeakyRelu. -type LeakyReluAttr func(optionalAttr) - -// LeakyReluAlpha sets the optional alpha attribute to value. -// If not specified, defaults to 0.2 -func LeakyReluAlpha(value float32) LeakyReluAttr { - return func(m optionalAttr) { - m["alpha"] = value - } -} - -// Computes rectified linear: `max(features, features * alpha)`. -func LeakyRelu(scope *Scope, features tf.Output, optional ...LeakyReluAttr) (activations tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LeakyRelu", - Input: []tf.Input{ - features, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// VarHandleOpAttr is an optional argument to VarHandleOp. -type VarHandleOpAttr func(optionalAttr) - -// VarHandleOpContainer sets the optional container attribute to value. -// -// value: the container this variable is placed in. -// If not specified, defaults to "" -func VarHandleOpContainer(value string) VarHandleOpAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// VarHandleOpSharedName sets the optional shared_name attribute to value. -// -// value: the name by which this variable is referred to. -// If not specified, defaults to "" -func VarHandleOpSharedName(value string) VarHandleOpAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Creates a handle to a Variable resource. -// -// Arguments: -// dtype: the type of this variable. Must agree with the dtypes -// of all ops using this variable. -// shape: The (possibly partially specified) shape of this variable. -func VarHandleOp(scope *Scope, dtype tf.DataType, shape tf.Shape, optional ...VarHandleOpAttr) (resource tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype, "shape": shape} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "VarHandleOp", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the number of elements in the given table. -// -// Arguments: -// table_handle: Handle to the table. -// -// Returns Scalar that contains number of elements in the table. -func LookupTableSizeV2(scope *Scope, table_handle tf.Output) (size tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "LookupTableSizeV2", - Input: []tf.Input{ - table_handle, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Writes contents to the file at input filename. Creates file and recursively -// -// creates directory if not existing. -// -// Arguments: -// filename: scalar. The name of the file to which we write the contents. -// contents: scalar. The content to be written to the output file. -// -// Returns the created operation. -func WriteFile(scope *Scope, filename tf.Output, contents tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "WriteFile", - Input: []tf.Input{ - filename, contents, - }, - } - return scope.AddOperation(opspec) -} - -// TPUReplicateMetadataAttr is an optional argument to TPUReplicateMetadata. -type TPUReplicateMetadataAttr func(optionalAttr) - -// TPUReplicateMetadataNumCoresPerReplica sets the optional num_cores_per_replica attribute to value. -// -// value: Number of cores per replica. Used for model parallelism. -// If not specified, defaults to 1 -func TPUReplicateMetadataNumCoresPerReplica(value int64) TPUReplicateMetadataAttr { - return func(m optionalAttr) { - m["num_cores_per_replica"] = value - } -} - -// TPUReplicateMetadataTopology sets the optional topology attribute to value. -// -// value: TopologyProto indicating the topology of the TPU pod slice. -// If not specified, defaults to "" -func TPUReplicateMetadataTopology(value string) TPUReplicateMetadataAttr { - return func(m optionalAttr) { - m["topology"] = value - } -} - -// TPUReplicateMetadataUseTpu sets the optional use_tpu attribute to value. -// -// value: Whether to place the computation on the TPU. -// If not specified, defaults to true -func TPUReplicateMetadataUseTpu(value bool) TPUReplicateMetadataAttr { - return func(m optionalAttr) { - m["use_tpu"] = value - } -} - -// TPUReplicateMetadataDeviceAssignment sets the optional device_assignment attribute to value. -// -// value: The assignment of devices for the computation. -// If not specified, defaults to <> -func TPUReplicateMetadataDeviceAssignment(value []int64) TPUReplicateMetadataAttr { - return func(m optionalAttr) { - m["device_assignment"] = value - } -} - -// TPUReplicateMetadataComputationShape sets the optional computation_shape attribute to value. -// -// value: DEPRECATED. Use num_cores_per_replica instead. -// If not specified, defaults to <> -func TPUReplicateMetadataComputationShape(value []int64) TPUReplicateMetadataAttr { - return func(m optionalAttr) { - m["computation_shape"] = value - } -} - -// TPUReplicateMetadataHostComputeCore sets the optional host_compute_core attribute to value. -// If not specified, defaults to <> -func TPUReplicateMetadataHostComputeCore(value []string) TPUReplicateMetadataAttr { - return func(m optionalAttr) { - m["host_compute_core"] = value - } -} - -// TPUReplicateMetadataPaddingMap sets the optional padding_map attribute to value. -// If not specified, defaults to <> -func TPUReplicateMetadataPaddingMap(value []string) TPUReplicateMetadataAttr { - return func(m optionalAttr) { - m["padding_map"] = value - } -} - -// TPUReplicateMetadataStepMarkerLocation sets the optional step_marker_location attribute to value. -// If not specified, defaults to "STEP_MARK_AT_ENTRY" -func TPUReplicateMetadataStepMarkerLocation(value string) TPUReplicateMetadataAttr { - return func(m optionalAttr) { - m["step_marker_location"] = value - } -} - -// Metadata indicaitng how the TPU computation should be replicated. -// -// Arguments: -// num_replicas: Number of replicas of the computation -// -// Returns the created operation. -func TPUReplicateMetadata(scope *Scope, num_replicas int64, optional ...TPUReplicateMetadataAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_replicas": num_replicas} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "TPUReplicateMetadata", - - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// FakeQuantWithMinMaxVarsPerChannelAttr is an optional argument to FakeQuantWithMinMaxVarsPerChannel. -type FakeQuantWithMinMaxVarsPerChannelAttr func(optionalAttr) - -// FakeQuantWithMinMaxVarsPerChannelNumBits sets the optional num_bits attribute to value. -// If not specified, defaults to 8 -func FakeQuantWithMinMaxVarsPerChannelNumBits(value int64) FakeQuantWithMinMaxVarsPerChannelAttr { - return func(m optionalAttr) { - m["num_bits"] = value - } -} - -// FakeQuantWithMinMaxVarsPerChannelNarrowRange sets the optional narrow_range attribute to value. -// If not specified, defaults to false -func FakeQuantWithMinMaxVarsPerChannelNarrowRange(value bool) FakeQuantWithMinMaxVarsPerChannelAttr { - return func(m optionalAttr) { - m["narrow_range"] = value - } -} - -// Fake-quantize the 'inputs' tensor of type float and one of the shapes: `[d]`, -// -// `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max` of shape `[d]` -// to 'outputs' tensor of same shape as `inputs`. -// -// `[min; max]` define the clamping range for the `inputs` data. -// `inputs` values are quantized into the quantization range (`[0; 2^num_bits - 1]` -// when `narrow_range` is false and `[1; 2^num_bits - 1]` when it is true) and -// then de-quantized and output as floats in `[min; max]` interval. -// `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive. -// -// Before quantization, `min` and `max` values are adjusted with the following -// logic. -// It is suggested to have `min <= 0 <= max`. If `0` is not in the range of values, -// the behavior can be unexpected: -// If `0 < min < max`: `min_adj = 0` and `max_adj = max - min`. -// If `min < max < 0`: `min_adj = min - max` and `max_adj = 0`. -// If `min <= 0 <= max`: `scale = (max - min) / (2^num_bits - 1) `, -// `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`. -// -// This operation has a gradient and thus allows for training `min` and `max` -// values. -func FakeQuantWithMinMaxVarsPerChannel(scope *Scope, inputs tf.Output, min tf.Output, max tf.Output, optional ...FakeQuantWithMinMaxVarsPerChannelAttr) (outputs tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "FakeQuantWithMinMaxVarsPerChannel", - Input: []tf.Input{ - inputs, min, max, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// StaticRegexReplaceAttr is an optional argument to StaticRegexReplace. -type StaticRegexReplaceAttr func(optionalAttr) - -// StaticRegexReplaceReplaceGlobal sets the optional replace_global attribute to value. -// -// value: If True, the replacement is global, otherwise the replacement -// is done only on the first match. -// If not specified, defaults to true -func StaticRegexReplaceReplaceGlobal(value bool) StaticRegexReplaceAttr { - return func(m optionalAttr) { - m["replace_global"] = value - } -} - -// Replaces the match of pattern in input with rewrite. -// -// It follows the re2 syntax (https://github.com/google/re2/wiki/Syntax) -// -// Arguments: -// input: The text to be processed. -// pattern: The regular expression to match the input. -// rewrite: The rewrite to be applied to the matched expression. -// -// Returns The text after applying pattern and rewrite. -func StaticRegexReplace(scope *Scope, input tf.Output, pattern string, rewrite string, optional ...StaticRegexReplaceAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"pattern": pattern, "rewrite": rewrite} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StaticRegexReplace", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes rectified linear: `max(features, 0)`. -func Relu(scope *Scope, features tf.Output) (activations tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Relu", - Input: []tf.Input{ - features, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that batches input elements into a SparseTensor. -// -// Arguments: -// input_dataset: A handle to an input dataset. Must have a single component. -// batch_size: A scalar representing the number of elements to accumulate in a -// batch. -// row_shape: A vector representing the dense shape of each row in the produced -// SparseTensor. The shape may be partially specified, using `-1` to indicate -// that a particular dimension should use the maximum size of all batch elements. -// -// -func ExperimentalDenseToSparseBatchDataset(scope *Scope, input_dataset tf.Output, batch_size tf.Output, row_shape tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ExperimentalDenseToSparseBatchDataset", - Input: []tf.Input{ - input_dataset, batch_size, row_shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResizeBicubicGradAttr is an optional argument to ResizeBicubicGrad. -type ResizeBicubicGradAttr func(optionalAttr) - -// ResizeBicubicGradAlignCorners sets the optional align_corners attribute to value. -// -// value: If true, the centers of the 4 corner pixels of the input and grad tensors are -// aligned. Defaults to false. -// If not specified, defaults to false -func ResizeBicubicGradAlignCorners(value bool) ResizeBicubicGradAttr { - return func(m optionalAttr) { - m["align_corners"] = value - } -} - -// ResizeBicubicGradHalfPixelCenters sets the optional half_pixel_centers attribute to value. -// If not specified, defaults to false -func ResizeBicubicGradHalfPixelCenters(value bool) ResizeBicubicGradAttr { - return func(m optionalAttr) { - m["half_pixel_centers"] = value - } -} - -// Computes the gradient of bicubic interpolation. -// -// Arguments: -// grads: 4-D with shape `[batch, height, width, channels]`. -// original_image: 4-D with shape `[batch, orig_height, orig_width, channels]`, -// The image tensor that was resized. -// -// Returns 4-D with shape `[batch, orig_height, orig_width, channels]`. -// Gradients with respect to the input image. Input image must have been -// float or double. -func ResizeBicubicGrad(scope *Scope, grads tf.Output, original_image tf.Output, optional ...ResizeBicubicGradAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResizeBicubicGrad", - Input: []tf.Input{ - grads, original_image, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// OrderedMapUnstageNoKeyAttr is an optional argument to OrderedMapUnstageNoKey. -type OrderedMapUnstageNoKeyAttr func(optionalAttr) - -// OrderedMapUnstageNoKeyCapacity sets the optional capacity attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func OrderedMapUnstageNoKeyCapacity(value int64) OrderedMapUnstageNoKeyAttr { - return func(m optionalAttr) { - m["capacity"] = value - } -} - -// OrderedMapUnstageNoKeyMemoryLimit sets the optional memory_limit attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func OrderedMapUnstageNoKeyMemoryLimit(value int64) OrderedMapUnstageNoKeyAttr { - return func(m optionalAttr) { - m["memory_limit"] = value - } -} - -// OrderedMapUnstageNoKeyContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func OrderedMapUnstageNoKeyContainer(value string) OrderedMapUnstageNoKeyAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// OrderedMapUnstageNoKeySharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func OrderedMapUnstageNoKeySharedName(value string) OrderedMapUnstageNoKeyAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Op removes and returns the (key, value) element with the smallest -// -// key from the underlying container. If the underlying container -// does not contain elements, the op will block until it does. -func OrderedMapUnstageNoKey(scope *Scope, indices tf.Output, dtypes []tf.DataType, optional ...OrderedMapUnstageNoKeyAttr) (key tf.Output, values []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtypes": dtypes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "OrderedMapUnstageNoKey", - Input: []tf.Input{ - indices, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - key = op.Output(idx) - if values, idx, err = makeOutputList(op, idx, "values"); err != nil { - scope.UpdateErr("OrderedMapUnstageNoKey", err) - return - } - return key, values -} - -// Computes a range that covers the actual values present in a quantized tensor. -// -// Given a quantized tensor described by `(input, input_min, input_max)`, outputs a -// range that covers the actual values present in that tensor. This op is typically -// used to produce the `requested_output_min` and `requested_output_max` for -// `Requantize`. -// -// Arguments: -// -// input_min: The float value that the minimum quantized input value represents. -// input_max: The float value that the maximum quantized input value represents. -// -// Returns The computed min output.the computed max output. -func RequantizationRange(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output) (output_min tf.Output, output_max tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RequantizationRange", - Input: []tf.Input{ - input, input_min, input_max, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// ResourceApplyRMSPropAttr is an optional argument to ResourceApplyRMSProp. -type ResourceApplyRMSPropAttr func(optionalAttr) - -// ResourceApplyRMSPropUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var, ms, and mom tensors is protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceApplyRMSPropUseLocking(value bool) ResourceApplyRMSPropAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the RMSProp algorithm. -// -// Note that in dense implementation of this algorithm, ms and mom will -// update even if the grad is zero, but in this sparse implementation, ms -// and mom will not update in iterations during which the grad is zero. -// -// mean_square = decay * mean_square + (1-decay) * gradient ** 2 -// Delta = learning_rate * gradient / sqrt(mean_square + epsilon) -// -// ms <- rho * ms_{t-1} + (1-rho) * grad * grad -// mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) -// var <- var - mom -// -// Arguments: -// var_: Should be from a Variable(). -// ms: Should be from a Variable(). -// mom: Should be from a Variable(). -// lr: Scaling factor. Must be a scalar. -// rho: Decay rate. Must be a scalar. -// -// epsilon: Ridge term. Must be a scalar. -// grad: The gradient. -// -// Returns the created operation. -func ResourceApplyRMSProp(scope *Scope, var_ tf.Output, ms tf.Output, mom tf.Output, lr tf.Output, rho tf.Output, momentum tf.Output, epsilon tf.Output, grad tf.Output, optional ...ResourceApplyRMSPropAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyRMSProp", - Input: []tf.Input{ - var_, ms, mom, lr, rho, momentum, epsilon, grad, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Conv3DBackpropInputV2Attr is an optional argument to Conv3DBackpropInputV2. -type Conv3DBackpropInputV2Attr func(optionalAttr) - -// Conv3DBackpropInputV2DataFormat sets the optional data_format attribute to value. -// -// value: The data format of the input and output data. With the -// default format "NDHWC", the data is stored in the order of: -// [batch, in_depth, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCDHW", the data storage order is: -// [batch, in_channels, in_depth, in_height, in_width]. -// If not specified, defaults to "NDHWC" -func Conv3DBackpropInputV2DataFormat(value string) Conv3DBackpropInputV2Attr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Conv3DBackpropInputV2Dilations sets the optional dilations attribute to value. -// -// value: 1-D tensor of length 5. The dilation factor for each dimension of -// `input`. If set to k > 1, there will be k-1 skipped cells between each -// filter element on that dimension. The dimension order is determined by the -// value of `data_format`, see above for details. Dilations in the batch and -// depth dimensions must be 1. -// If not specified, defaults to -func Conv3DBackpropInputV2Dilations(value []int64) Conv3DBackpropInputV2Attr { - return func(m optionalAttr) { - m["dilations"] = value - } -} - -// Computes the gradients of 3-D convolution with respect to the input. -// -// Arguments: -// input_sizes: An integer vector representing the tensor shape of `input`, -// where `input` is a 5-D -// `[batch, depth, rows, cols, in_channels]` tensor. -// filter: Shape `[depth, rows, cols, in_channels, out_channels]`. -// `in_channels` must match between `input` and `filter`. -// out_backprop: Backprop signal of shape `[batch, out_depth, out_rows, out_cols, -// out_channels]`. -// strides: 1-D tensor of length 5. The stride of the sliding window for each -// dimension of `input`. Must have `strides[0] = strides[4] = 1`. -// padding: The type of padding algorithm to use. -func Conv3DBackpropInputV2(scope *Scope, input_sizes tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv3DBackpropInputV2Attr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Conv3DBackpropInputV2", - Input: []tf.Input{ - input_sizes, filter, out_backprop, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the reciprocal of x element-wise. -// -// I.e., \\(y = 1 / x\\). -func Inv(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Inv", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the gradient for the inverse of `x` wrt its input. -// -// Specifically, `grad = -dy * y*y`, where `y = 1/x`, and `dy` -// is the corresponding input gradient. -func ReciprocalGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ReciprocalGrad", - Input: []tf.Input{ - y, dy, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. -// -// See [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) -// ](http://arxiv.org/abs/1511.07289) -func Elu(scope *Scope, features tf.Output) (activations tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Elu", - Input: []tf.Input{ - features, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// VariableShapeAttr is an optional argument to VariableShape. -type VariableShapeAttr func(optionalAttr) - -// VariableShapeOutType sets the optional out_type attribute to value. -// If not specified, defaults to DT_INT32 -func VariableShapeOutType(value tf.DataType) VariableShapeAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// Returns the shape of the variable pointed to by `resource`. -// -// This operation returns a 1-D integer tensor representing the shape of `input`. -// -// For example: -// -// ``` -// # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] -// shape(t) ==> [2, 2, 3] -// ``` -func VariableShape(scope *Scope, input tf.Output, optional ...VariableShapeAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "VariableShape", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceSparseApplyAdagradAttr is an optional argument to ResourceSparseApplyAdagrad. -type ResourceSparseApplyAdagradAttr func(optionalAttr) - -// ResourceSparseApplyAdagradUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var and accum tensors will be protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceSparseApplyAdagradUseLocking(value bool) ResourceSparseApplyAdagradAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// ResourceSparseApplyAdagradUpdateSlots sets the optional update_slots attribute to value. -// If not specified, defaults to true -func ResourceSparseApplyAdagradUpdateSlots(value bool) ResourceSparseApplyAdagradAttr { - return func(m optionalAttr) { - m["update_slots"] = value - } -} - -// Update relevant entries in '*var' and '*accum' according to the adagrad scheme. -// -// That is for rows we have grad for, we update var and accum as follows: -// accum += grad * grad -// var -= lr * grad * (1 / sqrt(accum)) -// -// Arguments: -// var_: Should be from a Variable(). -// accum: Should be from a Variable(). -// lr: Learning rate. Must be a scalar. -// grad: The gradient. -// indices: A vector of indices into the first dimension of var and accum. -// -// Returns the created operation. -func ResourceSparseApplyAdagrad(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyAdagradAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceSparseApplyAdagrad", - Input: []tf.Input{ - var_, accum, lr, grad, indices, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// ResourceApplyPowerSignAttr is an optional argument to ResourceApplyPowerSign. -type ResourceApplyPowerSignAttr func(optionalAttr) - -// ResourceApplyPowerSignUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var and m tensors is -// protected by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceApplyPowerSignUseLocking(value bool) ResourceApplyPowerSignAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the AddSign update. -// -// m_t <- beta1 * m_{t-1} + (1 - beta1) * g -// update <- exp(logbase * sign_decay * sign(g) * sign(m_t)) * g -// variable <- variable - lr_t * update -// -// Arguments: -// var_: Should be from a Variable(). -// m: Should be from a Variable(). -// lr: Scaling factor. Must be a scalar. -// logbase: Must be a scalar. -// sign_decay: Must be a scalar. -// beta: Must be a scalar. -// grad: The gradient. -// -// Returns the created operation. -func ResourceApplyPowerSign(scope *Scope, var_ tf.Output, m tf.Output, lr tf.Output, logbase tf.Output, sign_decay tf.Output, beta tf.Output, grad tf.Output, optional ...ResourceApplyPowerSignAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyPowerSign", - Input: []tf.Input{ - var_, m, lr, logbase, sign_decay, beta, grad, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// TensorArrayConcatV3Attr is an optional argument to TensorArrayConcatV3. -type TensorArrayConcatV3Attr func(optionalAttr) - -// TensorArrayConcatV3ElementShapeExcept0 sets the optional element_shape_except0 attribute to value. -// -// value: The expected shape of an element, if known, -// excluding the first dimension. Used to validate the shapes of -// TensorArray elements. If this shape is not fully specified, concatenating -// zero-size TensorArrays is an error. -// If not specified, defaults to -func TensorArrayConcatV3ElementShapeExcept0(value tf.Shape) TensorArrayConcatV3Attr { - return func(m optionalAttr) { - m["element_shape_except0"] = value - } -} - -// Concat the elements from the TensorArray into value `value`. -// -// Takes `T` elements of shapes -// -// ``` -// (n0 x d0 x d1 x ...), (n1 x d0 x d1 x ...), ..., (n(T-1) x d0 x d1 x ...) -// ``` -// -// and concatenates them into a Tensor of shape: -// -// ```(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)``` -// -// All elements must have the same shape (excepting the first dimension). -// -// Arguments: -// handle: The handle to a TensorArray. -// flow_in: A float scalar that enforces proper chaining of operations. -// dtype: The type of the elem that is returned. -// -// Returns All of the elements in the TensorArray, concatenated along the first -// axis.A vector of the row sizes of the original T elements in the -// value output. In the example above, this would be the values: -// `(n1, n2, ..., n(T-1))`. -func TensorArrayConcatV3(scope *Scope, handle tf.Output, flow_in tf.Output, dtype tf.DataType, optional ...TensorArrayConcatV3Attr) (value tf.Output, lengths tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "TensorArrayConcatV3", - Input: []tf.Input{ - handle, flow_in, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// Computes the gradient for the rsqrt of `x` wrt its input. -// -// Specifically, `grad = dy * -0.5 * y^3`, where `y = rsqrt(x)`, and `dy` -// is the corresponding input gradient. -func RsqrtGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RsqrtGrad", - Input: []tf.Input{ - y, dy, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingRMSPropParametersGradAccumDebug. -type LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr func(optionalAttr) - -// LoadTPUEmbeddingRMSPropParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingRMSPropParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingRMSPropParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingRMSPropParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load RMSProp embedding parameters with debug support. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the RMSProp optimization algorithm. -// ms: Value of ms used in the RMSProp optimization algorithm. -// mom: Value of mom used in the RMSProp optimization algorithm. -// gradient_accumulators: Value of gradient_accumulators used in the RMSProp optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingRMSPropParametersGradAccumDebug(scope *Scope, parameters tf.Output, ms tf.Output, mom tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingRMSPropParametersGradAccumDebugAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingRMSPropParametersGradAccumDebug", - Input: []tf.Input{ - parameters, ms, mom, gradient_accumulators, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Sets the index-th position of the list to contain the given tensor. -// -// input_handle: the list -// index: the position in the list to which the tensor will be assigned -// item: the element to be assigned to that position -// output_handle: the new list, with the element in the proper position -// -func TensorListSetItem(scope *Scope, input_handle tf.Output, index tf.Output, item tf.Output) (output_handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorListSetItem", - Input: []tf.Input{ - input_handle, index, item, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Output a fact about factorials. -func Fact(scope *Scope) (fact tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Fact", - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingMomentumParametersAttr is an optional argument to LoadTPUEmbeddingMomentumParameters. -type LoadTPUEmbeddingMomentumParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingMomentumParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingMomentumParametersTableId(value int64) LoadTPUEmbeddingMomentumParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingMomentumParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingMomentumParametersTableName(value string) LoadTPUEmbeddingMomentumParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load Momentum embedding parameters. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the Momentum optimization algorithm. -// momenta: Value of momenta used in the Momentum optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingMomentumParameters(scope *Scope, parameters tf.Output, momenta tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingMomentumParametersAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingMomentumParameters", - Input: []tf.Input{ - parameters, momenta, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// FakeQuantWithMinMaxVarsPerChannelGradientAttr is an optional argument to FakeQuantWithMinMaxVarsPerChannelGradient. -type FakeQuantWithMinMaxVarsPerChannelGradientAttr func(optionalAttr) - -// FakeQuantWithMinMaxVarsPerChannelGradientNumBits sets the optional num_bits attribute to value. -// -// value: The bitwidth of the quantization; between 2 and 16, inclusive. -// If not specified, defaults to 8 -func FakeQuantWithMinMaxVarsPerChannelGradientNumBits(value int64) FakeQuantWithMinMaxVarsPerChannelGradientAttr { - return func(m optionalAttr) { - m["num_bits"] = value - } -} - -// FakeQuantWithMinMaxVarsPerChannelGradientNarrowRange sets the optional narrow_range attribute to value. -// -// value: Whether to quantize into 2^num_bits - 1 distinct values. -// If not specified, defaults to false -func FakeQuantWithMinMaxVarsPerChannelGradientNarrowRange(value bool) FakeQuantWithMinMaxVarsPerChannelGradientAttr { - return func(m optionalAttr) { - m["narrow_range"] = value - } -} - -// Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation. -// -// Arguments: -// gradients: Backpropagated gradients above the FakeQuantWithMinMaxVars operation, -// shape one of: `[d]`, `[b, d]`, `[b, h, w, d]`. -// inputs: Values passed as inputs to the FakeQuantWithMinMaxVars operation, shape -// same as `gradients`. -// min, max: Quantization interval, floats of shape `[d]`. -// -// -// -// Returns Backpropagated gradients w.r.t. inputs, shape same as -// `inputs`: -// `gradients * (inputs >= min && inputs <= max)`.Backpropagated gradients w.r.t. min parameter, shape `[d]`: -// `sum_per_d(gradients * (inputs < min))`.Backpropagated gradients w.r.t. max parameter, shape `[d]`: -// `sum_per_d(gradients * (inputs > max))`. -func FakeQuantWithMinMaxVarsPerChannelGradient(scope *Scope, gradients tf.Output, inputs tf.Output, min tf.Output, max tf.Output, optional ...FakeQuantWithMinMaxVarsPerChannelGradientAttr) (backprops_wrt_input tf.Output, backprop_wrt_min tf.Output, backprop_wrt_max tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "FakeQuantWithMinMaxVarsPerChannelGradient", - Input: []tf.Input{ - gradients, inputs, min, max, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// ResourceApplyFtrlV2Attr is an optional argument to ResourceApplyFtrlV2. -type ResourceApplyFtrlV2Attr func(optionalAttr) - -// ResourceApplyFtrlV2UseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var and accum tensors will be protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceApplyFtrlV2UseLocking(value bool) ResourceApplyFtrlV2Attr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the Ftrl-proximal scheme. -// -// grad_with_shrinkage = grad + 2 * l2_shrinkage * var -// accum_new = accum + grad_with_shrinkage * grad_with_shrinkage -// linear += grad_with_shrinkage + -// (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var -// quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 -// var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 -// accum = accum_new -// -// Arguments: -// var_: Should be from a Variable(). -// accum: Should be from a Variable(). -// linear: Should be from a Variable(). -// grad: The gradient. -// lr: Scaling factor. Must be a scalar. -// l1: L1 regulariation. Must be a scalar. -// l2: L2 shrinkage regulariation. Must be a scalar. -// -// lr_power: Scaling factor. Must be a scalar. -// -// Returns the created operation. -func ResourceApplyFtrlV2(scope *Scope, var_ tf.Output, accum tf.Output, linear tf.Output, grad tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, l2_shrinkage tf.Output, lr_power tf.Output, optional ...ResourceApplyFtrlV2Attr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyFtrlV2", - Input: []tf.Input{ - var_, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// IdentityReaderV2Attr is an optional argument to IdentityReaderV2. -type IdentityReaderV2Attr func(optionalAttr) - -// IdentityReaderV2Container sets the optional container attribute to value. -// -// value: If non-empty, this reader is placed in the given container. -// Otherwise, a default container is used. -// If not specified, defaults to "" -func IdentityReaderV2Container(value string) IdentityReaderV2Attr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// IdentityReaderV2SharedName sets the optional shared_name attribute to value. -// -// value: If non-empty, this reader is named in the given bucket -// with this shared_name. Otherwise, the node name is used instead. -// If not specified, defaults to "" -func IdentityReaderV2SharedName(value string) IdentityReaderV2Attr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// A Reader that outputs the queued work as both the key and value. -// -// To use, enqueue strings in a Queue. ReaderRead will take the front -// work string and output (work, work). -// -// Returns The handle to reference the Reader. -func IdentityReaderV2(scope *Scope, optional ...IdentityReaderV2Attr) (reader_handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "IdentityReaderV2", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates and returns an empty tensor list. -// -// All list elements must be tensors of dtype element_dtype and shape compatible -// with element_shape. -// -// handle: an empty tensor list. -// element_dtype: the type of elements in the list. -// element_shape: a shape compatible with that of elements in the list. -func EmptyTensorList(scope *Scope, element_shape tf.Output, max_num_elements tf.Output, element_dtype tf.DataType) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"element_dtype": element_dtype} - opspec := tf.OpSpec{ - Type: "EmptyTensorList", - Input: []tf.Input{ - element_shape, max_num_elements, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingMomentumParametersGradAccumDebug. -type LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr func(optionalAttr) - -// LoadTPUEmbeddingMomentumParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingMomentumParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingMomentumParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingMomentumParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load Momentum embedding parameters with debug support. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the Momentum optimization algorithm. -// momenta: Value of momenta used in the Momentum optimization algorithm. -// gradient_accumulators: Value of gradient_accumulators used in the Momentum optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingMomentumParametersGradAccumDebug(scope *Scope, parameters tf.Output, momenta tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingMomentumParametersGradAccumDebugAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingMomentumParametersGradAccumDebug", - Input: []tf.Input{ - parameters, momenta, gradient_accumulators, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// StatefulTruncatedNormalAttr is an optional argument to StatefulTruncatedNormal. -type StatefulTruncatedNormalAttr func(optionalAttr) - -// StatefulTruncatedNormalDtype sets the optional dtype attribute to value. -// -// value: The type of the output. -// If not specified, defaults to DT_FLOAT -func StatefulTruncatedNormalDtype(value tf.DataType) StatefulTruncatedNormalAttr { - return func(m optionalAttr) { - m["dtype"] = value - } -} - -// Outputs random values from a truncated normal distribution. -// -// The generated values follow a normal distribution with mean 0 and standard -// deviation 1, except that values whose magnitude is more than 2 standard -// deviations from the mean are dropped and re-picked. -// -// Arguments: -// resource: The handle of the resource variable that stores the state of the RNG. -// algorithm: The RNG algorithm. -// shape: The shape of the output tensor. -// -// Returns Random values with specified shape. -func StatefulTruncatedNormal(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, optional ...StatefulTruncatedNormalAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StatefulTruncatedNormal", - Input: []tf.Input{ - resource, algorithm, shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a tree ensemble model and returns a handle to it. -// -// Arguments: -// tree_ensemble_handle: Handle to the tree ensemble resource to be created. -// stamp_token: Token to use as the initial value of the resource stamp. -// tree_ensemble_serialized: Serialized proto of the tree ensemble. -// -// Returns the created operation. -func BoostedTreesCreateEnsemble(scope *Scope, tree_ensemble_handle tf.Output, stamp_token tf.Output, tree_ensemble_serialized tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BoostedTreesCreateEnsemble", - Input: []tf.Input{ - tree_ensemble_handle, stamp_token, tree_ensemble_serialized, - }, - } - return scope.AddOperation(opspec) -} - -// PaddedBatchDatasetV2Attr is an optional argument to PaddedBatchDatasetV2. -type PaddedBatchDatasetV2Attr func(optionalAttr) - -// PaddedBatchDatasetV2ParallelCopy sets the optional parallel_copy attribute to value. -// If not specified, defaults to false -func PaddedBatchDatasetV2ParallelCopy(value bool) PaddedBatchDatasetV2Attr { - return func(m optionalAttr) { - m["parallel_copy"] = value - } -} - -// Creates a dataset that batches and pads `batch_size` elements from the input. -// -// Arguments: -// -// batch_size: A scalar representing the number of elements to accumulate in a -// batch. -// padded_shapes: A list of int64 tensors representing the desired padded shapes -// of the corresponding output components. These shapes may be partially -// specified, using `-1` to indicate that a particular dimension should be -// padded to the maximum size of all batch elements. -// padding_values: A list of scalars containing the padding value to use for -// each of the outputs. -// drop_remainder: A scalar representing whether the last batch should be dropped in case its size -// is smaller than desired. -// -func PaddedBatchDatasetV2(scope *Scope, input_dataset tf.Output, batch_size tf.Output, padded_shapes []tf.Output, padding_values []tf.Output, drop_remainder tf.Output, output_shapes []tf.Shape, optional ...PaddedBatchDatasetV2Attr) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_shapes": output_shapes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "PaddedBatchDatasetV2", - Input: []tf.Input{ - input_dataset, batch_size, tf.OutputList(padded_shapes), tf.OutputList(padding_values), drop_remainder, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the gradient of morphological 2-D dilation with respect to the input. -// -// Arguments: -// input: 4-D with shape `[batch, in_height, in_width, depth]`. -// filter: 3-D with shape `[filter_height, filter_width, depth]`. -// out_backprop: 4-D with shape `[batch, out_height, out_width, depth]`. -// strides: 1-D of length 4. The stride of the sliding window for each dimension of -// the input tensor. Must be: `[1, stride_height, stride_width, 1]`. -// rates: 1-D of length 4. The input stride for atrous morphological dilation. -// Must be: `[1, rate_height, rate_width, 1]`. -// padding: The type of padding algorithm to use. -// -// Returns 4-D with shape `[batch, in_height, in_width, depth]`. -func Dilation2DBackpropInput(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, rates []int64, padding string) (in_backprop tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"strides": strides, "rates": rates, "padding": padding} - opspec := tf.OpSpec{ - Type: "Dilation2DBackpropInput", - Input: []tf.Input{ - input, filter, out_backprop, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceSparseApplyAdagradDAAttr is an optional argument to ResourceSparseApplyAdagradDA. -type ResourceSparseApplyAdagradDAAttr func(optionalAttr) - -// ResourceSparseApplyAdagradDAUseLocking sets the optional use_locking attribute to value. -// -// value: If True, updating of the var and accum tensors will be protected by -// a lock; otherwise the behavior is undefined, but may exhibit less contention. -// If not specified, defaults to false -func ResourceSparseApplyAdagradDAUseLocking(value bool) ResourceSparseApplyAdagradDAAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update entries in '*var' and '*accum' according to the proximal adagrad scheme. -// -// Arguments: -// var_: Should be from a Variable(). -// gradient_accumulator: Should be from a Variable(). -// gradient_squared_accumulator: Should be from a Variable(). -// grad: The gradient. -// indices: A vector of indices into the first dimension of var and accum. -// lr: Learning rate. Must be a scalar. -// l1: L1 regularization. Must be a scalar. -// l2: L2 regularization. Must be a scalar. -// global_step: Training step number. Must be a scalar. -// -// Returns the created operation. -func ResourceSparseApplyAdagradDA(scope *Scope, var_ tf.Output, gradient_accumulator tf.Output, gradient_squared_accumulator tf.Output, grad tf.Output, indices tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, global_step tf.Output, optional ...ResourceSparseApplyAdagradDAAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceSparseApplyAdagradDA", - Input: []tf.Input{ - var_, gradient_accumulator, gradient_squared_accumulator, grad, indices, lr, l1, l2, global_step, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Get the current size of the TensorArray. -// -// Arguments: -// handle: The handle to a TensorArray (output of TensorArray or TensorArrayGrad). -// flow_in: A float scalar that enforces proper chaining of operations. -// -// Returns The current size of the TensorArray. -func TensorArraySizeV3(scope *Scope, handle tf.Output, flow_in tf.Output) (size tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorArraySizeV3", - Input: []tf.Input{ - handle, flow_in, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Worker heartbeat op. -// -// Heartbeats may be sent periodically to indicate the coordinator is still active, -// to retrieve the current worker status and to expedite shutdown when necessary. -// -// Arguments: -// request: A string tensor containing a serialized WorkerHeartbeatRequest -// -// Returns A string tensor containing a serialized WorkerHeartbeatResponse -func WorkerHeartbeat(scope *Scope, request tf.Output) (response tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "WorkerHeartbeat", - Input: []tf.Input{ - request, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Set a summary_writer_interface to record statistics using given stats_aggregator. -// -// Returns the created operation. -func StatsAggregatorSetSummaryWriter(scope *Scope, stats_aggregator tf.Output, summary tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "StatsAggregatorSetSummaryWriter", - Input: []tf.Input{ - stats_aggregator, summary, - }, - } - return scope.AddOperation(opspec) -} - -// MapClearAttr is an optional argument to MapClear. -type MapClearAttr func(optionalAttr) - -// MapClearCapacity sets the optional capacity attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func MapClearCapacity(value int64) MapClearAttr { - return func(m optionalAttr) { - m["capacity"] = value - } -} - -// MapClearMemoryLimit sets the optional memory_limit attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func MapClearMemoryLimit(value int64) MapClearAttr { - return func(m optionalAttr) { - m["memory_limit"] = value - } -} - -// MapClearContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func MapClearContainer(value string) MapClearAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// MapClearSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func MapClearSharedName(value string) MapClearAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Op removes all elements in the underlying container. -// -// Returns the created operation. -func MapClear(scope *Scope, dtypes []tf.DataType, optional ...MapClearAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtypes": dtypes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MapClear", - - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// ResourceSparseApplyCenteredRMSPropAttr is an optional argument to ResourceSparseApplyCenteredRMSProp. -type ResourceSparseApplyCenteredRMSPropAttr func(optionalAttr) - -// ResourceSparseApplyCenteredRMSPropUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var, mg, ms, and mom tensors is -// protected by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceSparseApplyCenteredRMSPropUseLocking(value bool) ResourceSparseApplyCenteredRMSPropAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the centered RMSProp algorithm. -// -// The centered RMSProp algorithm uses an estimate of the centered second moment -// (i.e., the variance) for normalization, as opposed to regular RMSProp, which -// uses the (uncentered) second moment. This often helps with training, but is -// slightly more expensive in terms of computation and memory. -// -// Note that in dense implementation of this algorithm, mg, ms, and mom will -// update even if the grad is zero, but in this sparse implementation, mg, ms, -// and mom will not update in iterations during which the grad is zero. -// -// mean_square = decay * mean_square + (1-decay) * gradient ** 2 -// mean_grad = decay * mean_grad + (1-decay) * gradient -// Delta = learning_rate * gradient / sqrt(mean_square + epsilon - mean_grad ** 2) -// -// ms <- rho * ms_{t-1} + (1-rho) * grad * grad -// mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) -// var <- var - mom -// -// Arguments: -// var_: Should be from a Variable(). -// mg: Should be from a Variable(). -// ms: Should be from a Variable(). -// mom: Should be from a Variable(). -// lr: Scaling factor. Must be a scalar. -// rho: Decay rate. Must be a scalar. -// -// epsilon: Ridge term. Must be a scalar. -// grad: The gradient. -// indices: A vector of indices into the first dimension of var, ms and mom. -// -// Returns the created operation. -func ResourceSparseApplyCenteredRMSProp(scope *Scope, var_ tf.Output, mg tf.Output, ms tf.Output, mom tf.Output, lr tf.Output, rho tf.Output, momentum tf.Output, epsilon tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyCenteredRMSPropAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceSparseApplyCenteredRMSProp", - Input: []tf.Input{ - var_, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Returns element-wise remainder of division. When `x < 0` xor `y < 0` is -// -// true, this follows Python semantics in that the result here is consistent -// with a flooring divide. E.g. `floor(x / y) * y + mod(x, y) = x`. -// -// *NOTE*: `FloorMod` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func FloorMod(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "FloorMod", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceSparseApplyRMSPropAttr is an optional argument to ResourceSparseApplyRMSProp. -type ResourceSparseApplyRMSPropAttr func(optionalAttr) - -// ResourceSparseApplyRMSPropUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var, ms, and mom tensors is protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceSparseApplyRMSPropUseLocking(value bool) ResourceSparseApplyRMSPropAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the RMSProp algorithm. -// -// Note that in dense implementation of this algorithm, ms and mom will -// update even if the grad is zero, but in this sparse implementation, ms -// and mom will not update in iterations during which the grad is zero. -// -// mean_square = decay * mean_square + (1-decay) * gradient ** 2 -// Delta = learning_rate * gradient / sqrt(mean_square + epsilon) -// -// ms <- rho * ms_{t-1} + (1-rho) * grad * grad -// mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) -// var <- var - mom -// -// Arguments: -// var_: Should be from a Variable(). -// ms: Should be from a Variable(). -// mom: Should be from a Variable(). -// lr: Scaling factor. Must be a scalar. -// rho: Decay rate. Must be a scalar. -// -// epsilon: Ridge term. Must be a scalar. -// grad: The gradient. -// indices: A vector of indices into the first dimension of var, ms and mom. -// -// Returns the created operation. -func ResourceSparseApplyRMSProp(scope *Scope, var_ tf.Output, ms tf.Output, mom tf.Output, lr tf.Output, rho tf.Output, momentum tf.Output, epsilon tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyRMSPropAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceSparseApplyRMSProp", - Input: []tf.Input{ - var_, ms, mom, lr, rho, momentum, epsilon, grad, indices, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Computes element-wise population count (a.k.a. popcount, bitsum, bitcount). -// -// For each entry in `x`, calculates the number of `1` (on) bits in the binary -// representation of that entry. -// -// **NOTE**: It is more efficient to first `tf.bitcast` your tensors into -// `int32` or `int64` and perform the bitcount on the result, than to feed in -// 8- or 16-bit inputs and then aggregate the resulting counts. -func PopulationCount(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "PopulationCount", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RandomUniformIntAttr is an optional argument to RandomUniformInt. -type RandomUniformIntAttr func(optionalAttr) - -// RandomUniformIntSeed sets the optional seed attribute to value. -// -// value: If either `seed` or `seed2` are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func RandomUniformIntSeed(value int64) RandomUniformIntAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// RandomUniformIntSeed2 sets the optional seed2 attribute to value. -// -// value: A second seed to avoid seed collision. -// If not specified, defaults to 0 -func RandomUniformIntSeed2(value int64) RandomUniformIntAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Outputs random integers from a uniform distribution. -// -// The generated values are uniform integers in the range `[minval, maxval)`. -// The lower bound `minval` is included in the range, while the upper bound -// `maxval` is excluded. -// -// The random integers are slightly biased unless `maxval - minval` is an exact -// power of two. The bias is small for values of `maxval - minval` significantly -// smaller than the range of the output (either `2^32` or `2^64`). -// -// Arguments: -// shape: The shape of the output tensor. -// minval: 0-D. Inclusive lower bound on the generated integers. -// maxval: 0-D. Exclusive upper bound on the generated integers. -// -// Returns A tensor of the specified shape filled with uniform random integers. -func RandomUniformInt(scope *Scope, shape tf.Output, minval tf.Output, maxval tf.Output, optional ...RandomUniformIntAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RandomUniformInt", - Input: []tf.Input{ - shape, minval, maxval, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// FusedBatchNormGradV2Attr is an optional argument to FusedBatchNormGradV2. -type FusedBatchNormGradV2Attr func(optionalAttr) - -// FusedBatchNormGradV2Epsilon sets the optional epsilon attribute to value. -// -// value: A small float number added to the variance of x. -// If not specified, defaults to 0.0001 -func FusedBatchNormGradV2Epsilon(value float32) FusedBatchNormGradV2Attr { - return func(m optionalAttr) { - m["epsilon"] = value - } -} - -// FusedBatchNormGradV2DataFormat sets the optional data_format attribute to value. -// -// value: The data format for y_backprop, x, x_backprop. -// Either "NHWC" (default) or "NCHW". -// If not specified, defaults to "NHWC" -func FusedBatchNormGradV2DataFormat(value string) FusedBatchNormGradV2Attr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// FusedBatchNormGradV2IsTraining sets the optional is_training attribute to value. -// -// value: A bool value to indicate the operation is for training (default) -// or inference. -// If not specified, defaults to true -func FusedBatchNormGradV2IsTraining(value bool) FusedBatchNormGradV2Attr { - return func(m optionalAttr) { - m["is_training"] = value - } -} - -// Gradient for batch normalization. -// -// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". -// The size of 1D Tensors matches the dimension C of the 4D Tensors. -// -// Arguments: -// y_backprop: A 4D Tensor for the gradient with respect to y. -// x: A 4D Tensor for input data. -// scale: A 1D Tensor for scaling factor, to scale the normalized x. -// reserve_space_1: When is_training is True, a 1D Tensor for the computed batch -// mean to be reused in gradient computation. When is_training is -// False, a 1D Tensor for the population mean to be reused in both -// 1st and 2nd order gradient computation. -// reserve_space_2: When is_training is True, a 1D Tensor for the computed batch -// variance (inverted variance in the cuDNN case) to be reused in -// gradient computation. When is_training is False, a 1D Tensor -// for the population variance to be reused in both 1st and 2nd -// order gradient computation. -// -// Returns A 4D Tensor for the gradient with respect to x.A 1D Tensor for the gradient with respect to scale.A 1D Tensor for the gradient with respect to offset.Unused placeholder to match the mean input in FusedBatchNorm.Unused placeholder to match the variance input -// in FusedBatchNorm. -func FusedBatchNormGradV2(scope *Scope, y_backprop tf.Output, x tf.Output, scale tf.Output, reserve_space_1 tf.Output, reserve_space_2 tf.Output, optional ...FusedBatchNormGradV2Attr) (x_backprop tf.Output, scale_backprop tf.Output, offset_backprop tf.Output, reserve_space_3 tf.Output, reserve_space_4 tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "FusedBatchNormGradV2", - Input: []tf.Input{ - y_backprop, x, scale, reserve_space_1, reserve_space_2, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) -} - -// Computes natural logarithm of (1 + x) element-wise. -// -// I.e., \\(y = \log_e (1 + x)\\). -func Log1p(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Log1p", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Generates values in an interval. -// -// A sequence of `num` evenly-spaced values are generated beginning at `start`. -// If `num > 1`, the values in the sequence increase by `stop - start / num - 1`, -// so that the last one is exactly `stop`. -// -// For example: -// -// ``` -// tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0 11.0 12.0] -// ``` -// -// Arguments: -// start: 0-D tensor. First entry in the range. -// stop: 0-D tensor. Last entry in the range. -// num: 0-D tensor. Number of values to generate. -// -// Returns 1-D. The generated values. -func LinSpace(scope *Scope, start tf.Output, stop tf.Output, num tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "LinSpace", - Input: []tf.Input{ - start, stop, num, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Fills empty rows in the input 2-D `SparseTensor` with a default value. -// -// The input `SparseTensor` is represented via the tuple of inputs -// (`indices`, `values`, `dense_shape`). The output `SparseTensor` has the -// same `dense_shape` but with indices `output_indices` and values -// `output_values`. -// -// This op inserts a single entry for every row that doesn't have any values. -// The index is created as `[row, 0, ..., 0]` and the inserted value -// is `default_value`. -// -// For example, suppose `sp_input` has shape `[5, 6]` and non-empty values: -// -// [0, 1]: a -// [0, 3]: b -// [2, 0]: c -// [3, 1]: d -// -// Rows 1 and 4 are empty, so the output will be of shape `[5, 6]` with values: -// -// [0, 1]: a -// [0, 3]: b -// [1, 0]: default_value -// [2, 0]: c -// [3, 1]: d -// [4, 0]: default_value -// -// The output `SparseTensor` will be in row-major order and will have the -// same shape as the input. -// -// This op also returns an indicator vector shaped `[dense_shape[0]]` such that -// -// empty_row_indicator[i] = True iff row i was an empty row. -// -// And a reverse index map vector shaped `[indices.shape[0]]` that is used during -// backpropagation, -// -// reverse_index_map[j] = out_j s.t. indices[j, :] == output_indices[out_j, :] -// -// Arguments: -// indices: 2-D. the indices of the sparse tensor. -// values: 1-D. the values of the sparse tensor. -// dense_shape: 1-D. the shape of the sparse tensor. -// default_value: 0-D. default value to insert into location `[row, 0, ..., 0]` -// for rows missing from the input sparse tensor. -// output indices: 2-D. the indices of the filled sparse tensor. -// -// Returns 1-D. the values of the filled sparse tensor.1-D. whether the dense row was missing in the -// input sparse tensor.1-D. a map from the input indices to the output indices. -func SparseFillEmptyRows(scope *Scope, indices tf.Output, values tf.Output, dense_shape tf.Output, default_value tf.Output) (output_indices tf.Output, output_values tf.Output, empty_row_indicator tf.Output, reverse_index_map tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseFillEmptyRows", - Input: []tf.Input{ - indices, values, dense_shape, default_value, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3) -} - -// ResourceSparseApplyFtrlV2Attr is an optional argument to ResourceSparseApplyFtrlV2. -type ResourceSparseApplyFtrlV2Attr func(optionalAttr) - -// ResourceSparseApplyFtrlV2UseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var and accum tensors will be protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceSparseApplyFtrlV2UseLocking(value bool) ResourceSparseApplyFtrlV2Attr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update relevant entries in '*var' according to the Ftrl-proximal scheme. -// -// That is for rows we have grad for, we update var, accum and linear as follows: -// grad_with_shrinkage = grad + 2 * l2_shrinkage * var -// accum_new = accum + grad_with_shrinkage * grad_with_shrinkage -// linear += grad_with_shrinkage + -// (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var -// quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 -// var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 -// accum = accum_new -// -// Arguments: -// var_: Should be from a Variable(). -// accum: Should be from a Variable(). -// linear: Should be from a Variable(). -// grad: The gradient. -// indices: A vector of indices into the first dimension of var and accum. -// lr: Scaling factor. Must be a scalar. -// l1: L1 regularization. Must be a scalar. -// l2: L2 shrinkage regulariation. Must be a scalar. -// -// lr_power: Scaling factor. Must be a scalar. -// -// Returns the created operation. -func ResourceSparseApplyFtrlV2(scope *Scope, var_ tf.Output, accum tf.Output, linear tf.Output, grad tf.Output, indices tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, l2_shrinkage tf.Output, lr_power tf.Output, optional ...ResourceSparseApplyFtrlV2Attr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceSparseApplyFtrlV2", - Input: []tf.Input{ - var_, accum, linear, grad, indices, lr, l1, l2, l2_shrinkage, lr_power, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// SqueezeAttr is an optional argument to Squeeze. -type SqueezeAttr func(optionalAttr) - -// SqueezeAxis sets the optional axis attribute to value. -// -// value: If specified, only squeezes the dimensions listed. The dimension -// index starts at 0. It is an error to squeeze a dimension that is not 1. Must -// be in the range `[-rank(input), rank(input))`. -// If not specified, defaults to <> -// -// REQUIRES: len(value) >= 0 -func SqueezeAxis(value []int64) SqueezeAttr { - return func(m optionalAttr) { - m["squeeze_dims"] = value - } -} - -// Removes dimensions of size 1 from the shape of a tensor. -// -// Given a tensor `input`, this operation returns a tensor of the same type with -// all dimensions of size 1 removed. If you don't want to remove all size 1 -// dimensions, you can remove specific size 1 dimensions by specifying -// `axis`. -// -// For example: -// -// ``` -// # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] -// shape(squeeze(t)) ==> [2, 3] -// ``` -// -// Or, to remove specific size 1 dimensions: -// -// ``` -// # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] -// shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1] -// ``` -// -// Arguments: -// input: The `input` to squeeze. -// -// Returns Contains the same data as `input`, but has one or more dimensions of -// size 1 removed. -func Squeeze(scope *Scope, input tf.Output, optional ...SqueezeAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Squeeze", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RetrieveTPUEmbeddingAdadeltaParametersAttr is an optional argument to RetrieveTPUEmbeddingAdadeltaParameters. -type RetrieveTPUEmbeddingAdadeltaParametersAttr func(optionalAttr) - -// RetrieveTPUEmbeddingAdadeltaParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingAdadeltaParametersTableId(value int64) RetrieveTPUEmbeddingAdadeltaParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// RetrieveTPUEmbeddingAdadeltaParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingAdadeltaParametersTableName(value string) RetrieveTPUEmbeddingAdadeltaParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Retrieve Adadelta embedding parameters. -// -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. -// -// Returns Parameter parameters updated by the Adadelta optimization algorithm.Parameter accumulators updated by the Adadelta optimization algorithm.Parameter updates updated by the Adadelta optimization algorithm. -func RetrieveTPUEmbeddingAdadeltaParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingAdadeltaParametersAttr) (parameters tf.Output, accumulators tf.Output, updates tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingAdadeltaParameters", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Clips tensor values to a specified min and max. -// -// Given a tensor `t`, this operation returns a tensor of the same type and -// shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`. -// Any values less than `clip_value_min` are set to `clip_value_min`. Any values -// greater than `clip_value_max` are set to `clip_value_max`. -// -// Arguments: -// t: A `Tensor`. -// clip_value_min: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape -// as `t`. The minimum value to clip by. -// clip_value_max: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape -// as `t`. The maximum value to clip by. -// -// Returns A clipped `Tensor` with the same shape as input 't'. -func ClipByValue(scope *Scope, t tf.Output, clip_value_min tf.Output, clip_value_max tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ClipByValue", - Input: []tf.Input{ - t, clip_value_min, clip_value_max, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Shuts down a running distributed TPU system. -// -// The op returns an error if no system is running. -// -// Returns the created operation. -func ShutdownDistributedTPU(scope *Scope) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ShutdownDistributedTPU", - } - return scope.AddOperation(opspec) -} - // ResourceApplyFtrlAttr is an optional argument to ResourceApplyFtrl. type ResourceApplyFtrlAttr func(optionalAttr) @@ -23250,6 +24482,146 @@ func ResourceApplyFtrl(scope *Scope, var_ tf.Output, accum tf.Output, linear tf. return scope.AddOperation(opspec) } +// Computes sigmoid of `x` element-wise. +// +// Specifically, `y = 1 / (1 + exp(-x))`. +func Sigmoid(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Sigmoid", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// RetrieveTPUEmbeddingCenteredRMSPropParametersAttr is an optional argument to RetrieveTPUEmbeddingCenteredRMSPropParameters. +type RetrieveTPUEmbeddingCenteredRMSPropParametersAttr func(optionalAttr) + +// RetrieveTPUEmbeddingCenteredRMSPropParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingCenteredRMSPropParametersTableId(value int64) RetrieveTPUEmbeddingCenteredRMSPropParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// RetrieveTPUEmbeddingCenteredRMSPropParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingCenteredRMSPropParametersTableName(value string) RetrieveTPUEmbeddingCenteredRMSPropParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Retrieve centered RMSProp embedding parameters. +// +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. +// +// Returns Parameter parameters updated by the centered RMSProp optimization algorithm.Parameter ms updated by the centered RMSProp optimization algorithm.Parameter mom updated by the centered RMSProp optimization algorithm.Parameter mg updated by the centered RMSProp optimization algorithm. +func RetrieveTPUEmbeddingCenteredRMSPropParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingCenteredRMSPropParametersAttr) (parameters tf.Output, ms tf.Output, mom tf.Output, mg tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RetrieveTPUEmbeddingCenteredRMSPropParameters", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3) +} + +// RandomUniformAttr is an optional argument to RandomUniform. +type RandomUniformAttr func(optionalAttr) + +// RandomUniformSeed sets the optional seed attribute to value. +// +// value: If either `seed` or `seed2` are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func RandomUniformSeed(value int64) RandomUniformAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// RandomUniformSeed2 sets the optional seed2 attribute to value. +// +// value: A second seed to avoid seed collision. +// If not specified, defaults to 0 +func RandomUniformSeed2(value int64) RandomUniformAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Outputs random values from a uniform distribution. +// +// The generated values follow a uniform distribution in the range `[0, 1)`. The +// lower bound 0 is included in the range, while the upper bound 1 is excluded. +// +// Arguments: +// shape: The shape of the output tensor. +// dtype: The type of the output. +// +// Returns A tensor of the specified shape filled with uniform random values. +func RandomUniform(scope *Scope, shape tf.Output, dtype tf.DataType, optional ...RandomUniformAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RandomUniform", + Input: []tf.Input{ + shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns the next representable value of `x1` in the direction of `x2`, element-wise. +// +// This operation returns the same result as the C++ std::nextafter function. +// +// It can also return a subnormal number. +// +// @compatibility(cpp) +// Equivalent to C++ std::nextafter function. +// @end_compatibility +func NextAfter(scope *Scope, x1 tf.Output, x2 tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "NextAfter", + Input: []tf.Input{ + x1, x2, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // ResourceGatherAttr is an optional argument to ResourceGather. type ResourceGatherAttr func(optionalAttr) @@ -23349,265 +24721,70 @@ func RetrieveTPUEmbeddingMomentumParameters(scope *Scope, num_shards int64, shar return op.Output(0), op.Output(1) } -// SkipgramAttr is an optional argument to Skipgram. -type SkipgramAttr func(optionalAttr) - -// SkipgramWindowSize sets the optional window_size attribute to value. -// -// value: The number of words to predict to the left and right of the target. -// If not specified, defaults to 5 -func SkipgramWindowSize(value int64) SkipgramAttr { - return func(m optionalAttr) { - m["window_size"] = value - } -} - -// SkipgramMinCount sets the optional min_count attribute to value. -// -// value: The minimum number of word occurrences for it to be included in the -// vocabulary. -// If not specified, defaults to 5 -func SkipgramMinCount(value int64) SkipgramAttr { - return func(m optionalAttr) { - m["min_count"] = value - } -} - -// SkipgramSubsample sets the optional subsample attribute to value. -// -// value: Threshold for word occurrence. Words that appear with higher -// frequency will be randomly down-sampled. Set to 0 to disable. -// If not specified, defaults to 0.001 -func SkipgramSubsample(value float32) SkipgramAttr { - return func(m optionalAttr) { - m["subsample"] = value - } -} - -// Parses a text file and creates a batch of examples. -// -// DEPRECATED at GraphDef version 19: Moving word2vec into tensorflow_models/tutorials and deprecating its ops here as a result +// Creates a dataset that emits the lines of one or more text files. // // Arguments: -// filename: The corpus's text file name. -// batch_size: The size of produced batch. -// -// Returns A vector of words in the corpus.Frequencies of words. Sorted in the non-ascending order.Number of words per epoch in the data file.The current epoch number.The total number of words processed so far.A vector of word ids.A vector of word ids. -func Skipgram(scope *Scope, filename string, batch_size int64, optional ...SkipgramAttr) (vocab_word tf.Output, vocab_freq tf.Output, words_per_epoch tf.Output, current_epoch tf.Output, total_words_processed tf.Output, examples tf.Output, labels tf.Output) { +// filenames: A scalar or a vector containing the name(s) of the file(s) to be +// read. +// compression_type: A scalar containing either (i) the empty string (no +// compression), (ii) "ZLIB", or (iii) "GZIP". +// buffer_size: A scalar containing the number of bytes to buffer. +func TextLineDataset(scope *Scope, filenames tf.Output, compression_type tf.Output, buffer_size tf.Output) (handle tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"filename": filename, "batch_size": batch_size} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "Skipgram", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4), op.Output(5), op.Output(6) -} - -// Converts each string in the input Tensor to its hash mod by a number of buckets. -// -// The hash function is deterministic on the content of the string within the -// process. The hash function is a keyed hash function, where attribute `key` -// defines the key of the hash function. `key` is an array of 2 elements. -// -// A strong hash is important when inputs may be malicious, e.g. URLs with -// additional components. Adversaries could try to make their inputs hash to the -// same bucket for a denial-of-service attack or to skew the results. A strong -// hash prevents this by making it difficult, if not infeasible, to compute inputs -// that hash to the same bucket. This comes at a cost of roughly 4x higher compute -// time than `tf.string_to_hash_bucket_fast`. -// -// Arguments: -// input: The strings to assign a hash bucket. -// num_buckets: The number of buckets. -// key: The key for the keyed hash function passed as a list of two uint64 -// elements. -// -// Returns A Tensor of the same shape as the input `string_tensor`. -func StringToHashBucketStrong(scope *Scope, input tf.Output, num_buckets int64, key []int64) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_buckets": num_buckets, "key": key} - opspec := tf.OpSpec{ - Type: "StringToHashBucketStrong", + Type: "TextLineDataset", Input: []tf.Input{ - input, + filenames, compression_type, buffer_size, }, - Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } -// BatchMatMulAttr is an optional argument to BatchMatMul. -type BatchMatMulAttr func(optionalAttr) +// RandomCropAttr is an optional argument to RandomCrop. +type RandomCropAttr func(optionalAttr) -// BatchMatMulAdjX sets the optional adj_x attribute to value. -// -// value: If `True`, adjoint the slices of `x`. Defaults to `False`. -// If not specified, defaults to false -func BatchMatMulAdjX(value bool) BatchMatMulAttr { - return func(m optionalAttr) { - m["adj_x"] = value - } -} - -// BatchMatMulAdjY sets the optional adj_y attribute to value. -// -// value: If `True`, adjoint the slices of `y`. Defaults to `False`. -// If not specified, defaults to false -func BatchMatMulAdjY(value bool) BatchMatMulAttr { - return func(m optionalAttr) { - m["adj_y"] = value - } -} - -// Multiplies slices of two tensors in batches. -// -// Multiplies all slices of `Tensor` `x` and `y` (each slice can be -// viewed as an element of a batch), and arranges the individual results -// in a single output tensor of the same batch size. Each of the -// individual slices can optionally be adjointed (to adjoint a matrix -// means to transpose and conjugate it) before multiplication by setting -// the `adj_x` or `adj_y` flag to `True`, which are by default `False`. -// -// The input tensors `x` and `y` are 2-D or higher with shape `[..., r_x, c_x]` -// and `[..., r_y, c_y]`. -// -// The output tensor is 2-D or higher with shape `[..., r_o, c_o]`, where: -// -// r_o = c_x if adj_x else r_x -// c_o = r_y if adj_y else c_y -// -// It is computed as: -// -// output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :]) -// -// Arguments: -// x: 2-D or higher with shape `[..., r_x, c_x]`. -// y: 2-D or higher with shape `[..., r_y, c_y]`. -// -// Returns 3-D or higher with shape `[..., r_o, c_o]` -func BatchMatMul(scope *Scope, x tf.Output, y tf.Output, optional ...BatchMatMulAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "BatchMatMul", - Input: []tf.Input{ - x, y, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LearnedUnigramCandidateSamplerAttr is an optional argument to LearnedUnigramCandidateSampler. -type LearnedUnigramCandidateSamplerAttr func(optionalAttr) - -// LearnedUnigramCandidateSamplerSeed sets the optional seed attribute to value. +// RandomCropSeed sets the optional seed attribute to value. // // value: If either seed or seed2 are set to be non-zero, the random number // generator is seeded by the given seed. Otherwise, it is seeded by a // random seed. // If not specified, defaults to 0 -func LearnedUnigramCandidateSamplerSeed(value int64) LearnedUnigramCandidateSamplerAttr { +func RandomCropSeed(value int64) RandomCropAttr { return func(m optionalAttr) { m["seed"] = value } } -// LearnedUnigramCandidateSamplerSeed2 sets the optional seed2 attribute to value. +// RandomCropSeed2 sets the optional seed2 attribute to value. // // value: An second seed to avoid seed collision. // If not specified, defaults to 0 -func LearnedUnigramCandidateSamplerSeed2(value int64) LearnedUnigramCandidateSamplerAttr { +func RandomCropSeed2(value int64) RandomCropAttr { return func(m optionalAttr) { m["seed2"] = value } } -// Generates labels for candidate sampling with a learned unigram distribution. +// Randomly crop `image`. // -// See explanations of candidate sampling and the data formats at -// go/candidate-sampling. +// DEPRECATED at GraphDef version 8: Random crop is now pure Python // -// For each batch, this op picks a single set of sampled candidate labels. +// `size` is a 1-D int64 tensor with 2 elements representing the crop height and +// width. The values must be non negative. // -// The advantages of sampling candidates per-batch are simplicity and the -// possibility of efficient dense matrix multiplication. The disadvantage is that -// the sampled candidates must be chosen independently of the context and of the -// true labels. +// This Op picks a random location in `image` and crops a `height` by `width` +// rectangle from that location. The random location is picked so the cropped +// area will fit inside the original image. // // Arguments: -// true_classes: A batch_size * num_true matrix, in which each row contains the -// IDs of the num_true target_classes in the corresponding original label. -// num_true: Number of true labels per context. -// num_sampled: Number of candidates to randomly sample. -// unique: If unique is true, we sample with rejection, so that all sampled -// candidates in a batch are unique. This requires some approximation to -// estimate the post-rejection sampling probabilities. -// range_max: The sampler will sample integers from the interval [0, range_max). +// image: 3-D of shape `[height, width, channels]`. +// size: 1-D of length 2 containing: `crop_height`, `crop_width`.. // -// Returns A vector of length num_sampled, in which each element is -// the ID of a sampled candidate.A batch_size * num_true matrix, representing -// the number of times each candidate is expected to occur in a batch -// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled -// candidate representing the number of times the candidate is expected -// to occur in a batch of sampled candidates. If unique=true, then this is a -// probability. -func LearnedUnigramCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, range_max int64, optional ...LearnedUnigramCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique, "range_max": range_max} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LearnedUnigramCandidateSampler", - Input: []tf.Input{ - true_classes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// BoostedTreesQuantileStreamResourceHandleOpAttr is an optional argument to BoostedTreesQuantileStreamResourceHandleOp. -type BoostedTreesQuantileStreamResourceHandleOpAttr func(optionalAttr) - -// BoostedTreesQuantileStreamResourceHandleOpContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func BoostedTreesQuantileStreamResourceHandleOpContainer(value string) BoostedTreesQuantileStreamResourceHandleOpAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// BoostedTreesQuantileStreamResourceHandleOpSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func BoostedTreesQuantileStreamResourceHandleOpSharedName(value string) BoostedTreesQuantileStreamResourceHandleOpAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Creates a handle to a BoostedTreesQuantileStreamResource. -func BoostedTreesQuantileStreamResourceHandleOp(scope *Scope, optional ...BoostedTreesQuantileStreamResourceHandleOpAttr) (resource tf.Output) { +// Returns 3-D of shape `[crop_height, crop_width, channels].` +func RandomCrop(scope *Scope, image tf.Output, size tf.Output, optional ...RandomCropAttr) (output tf.Output) { if scope.Err() != nil { return } @@ -23616,8 +24793,10 @@ func BoostedTreesQuantileStreamResourceHandleOp(scope *Scope, optional ...Booste a(attrs) } opspec := tf.OpSpec{ - Type: "BoostedTreesQuantileStreamResourceHandleOp", - + Type: "RandomCrop", + Input: []tf.Input{ + image, size, + }, Attrs: attrs, } op := scope.AddOperation(opspec) @@ -23658,663 +24837,177 @@ func Range(scope *Scope, start tf.Output, limit tf.Output, delta tf.Output) (out return op.Output(0) } -// Reorders a SparseTensor into the canonical, row-major ordering. +// An Op to sum inputs across replicated TPU instances. // -// Note that by convention, all sparse ops preserve the canonical ordering along -// increasing dimension number. The only time ordering can be violated is during -// manual manipulation of the indices and values vectors to add entries. +// Each instance supplies its own input. // -// Reordering does not affect the shape of the SparseTensor. -// -// If the tensor has rank `R` and `N` non-empty values, `input_indices` has -// shape `[N, R]`, input_values has length `N`, and input_shape has length `R`. -// -// Arguments: -// input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a -// SparseTensor, possibly not in canonical ordering. -// input_values: 1-D. `N` non-empty values corresponding to `input_indices`. -// input_shape: 1-D. Shape of the input SparseTensor. -// -// Returns 2-D. `N x R` matrix with the same indices as input_indices, but -// in canonical row-major ordering.1-D. `N` non-empty values corresponding to `output_indices`. -func SparseReorder(scope *Scope, input_indices tf.Output, input_values tf.Output, input_shape tf.Output) (output_indices tf.Output, output_values tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseReorder", - Input: []tf.Input{ - input_indices, input_values, input_shape, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// ResourceApplyKerasMomentumAttr is an optional argument to ResourceApplyKerasMomentum. -type ResourceApplyKerasMomentumAttr func(optionalAttr) - -// ResourceApplyKerasMomentumUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var and accum tensors will be protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceApplyKerasMomentumUseLocking(value bool) ResourceApplyKerasMomentumAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// ResourceApplyKerasMomentumUseNesterov sets the optional use_nesterov attribute to value. -// -// value: If `True`, the tensor passed to compute grad will be -// var + momentum * accum, so in the end, the var you get is actually -// var + momentum * accum. -// If not specified, defaults to false -func ResourceApplyKerasMomentumUseNesterov(value bool) ResourceApplyKerasMomentumAttr { - return func(m optionalAttr) { - m["use_nesterov"] = value - } -} - -// Update '*var' according to the momentum scheme. Set use_nesterov = True if you -// -// want to use Nesterov momentum. -// -// accum = accum * momentum - lr * grad -// var += accum -// -// Arguments: -// var_: Should be from a Variable(). -// accum: Should be from a Variable(). -// lr: Scaling factor. Must be a scalar. -// grad: The gradient. -// momentum: Momentum. Must be a scalar. -// -// Returns the created operation. -func ResourceApplyKerasMomentum(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, grad tf.Output, momentum tf.Output, optional ...ResourceApplyKerasMomentumAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyKerasMomentum", - Input: []tf.Input{ - var_, accum, lr, grad, momentum, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingADAMParametersGradAccumDebug. -type RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr func(optionalAttr) - -// RetrieveTPUEmbeddingADAMParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingADAMParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// RetrieveTPUEmbeddingADAMParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingADAMParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Retrieve ADAM embedding parameters with debug support. -// -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. -// -// Returns Parameter parameters updated by the ADAM optimization algorithm.Parameter momenta updated by the ADAM optimization algorithm.Parameter velocities updated by the ADAM optimization algorithm.Parameter gradient_accumulators updated by the ADAM optimization algorithm. -func RetrieveTPUEmbeddingADAMParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingADAMParametersGradAccumDebugAttr) (parameters tf.Output, momenta tf.Output, velocities tf.Output, gradient_accumulators tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingADAMParametersGradAccumDebug", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3) -} - -// Component-wise multiplies a SparseTensor by a dense Tensor. -// -// The output locations corresponding to the implicitly zero elements in the sparse -// tensor will be zero (i.e., will not take up storage space), regardless of the -// contents of the dense tensor (even if it's +/-INF and that INF*0 == NaN). -// -// *Limitation*: this Op only broadcasts the dense side to the sparse side, but not -// the other direction. -// -// Arguments: -// sp_indices: 2-D. `N x R` matrix with the indices of non-empty values in a -// SparseTensor, possibly not in canonical ordering. -// sp_values: 1-D. `N` non-empty values corresponding to `sp_indices`. -// sp_shape: 1-D. Shape of the input SparseTensor. -// dense: `R`-D. The dense Tensor operand. -// -// Returns 1-D. The `N` values that are operated on. -func SparseDenseCwiseMul(scope *Scope, sp_indices tf.Output, sp_values tf.Output, sp_shape tf.Output, dense tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseDenseCwiseMul", - Input: []tf.Input{ - sp_indices, sp_values, sp_shape, dense, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// CudnnRNNCanonicalToParamsAttr is an optional argument to CudnnRNNCanonicalToParams. -type CudnnRNNCanonicalToParamsAttr func(optionalAttr) - -// CudnnRNNCanonicalToParamsRnnMode sets the optional rnn_mode attribute to value. -// If not specified, defaults to "lstm" -func CudnnRNNCanonicalToParamsRnnMode(value string) CudnnRNNCanonicalToParamsAttr { - return func(m optionalAttr) { - m["rnn_mode"] = value - } -} - -// CudnnRNNCanonicalToParamsInputMode sets the optional input_mode attribute to value. -// If not specified, defaults to "linear_input" -func CudnnRNNCanonicalToParamsInputMode(value string) CudnnRNNCanonicalToParamsAttr { - return func(m optionalAttr) { - m["input_mode"] = value - } -} - -// CudnnRNNCanonicalToParamsDirection sets the optional direction attribute to value. -// If not specified, defaults to "unidirectional" -func CudnnRNNCanonicalToParamsDirection(value string) CudnnRNNCanonicalToParamsAttr { - return func(m optionalAttr) { - m["direction"] = value - } -} - -// CudnnRNNCanonicalToParamsDropout sets the optional dropout attribute to value. -// If not specified, defaults to 0 -func CudnnRNNCanonicalToParamsDropout(value float32) CudnnRNNCanonicalToParamsAttr { - return func(m optionalAttr) { - m["dropout"] = value - } -} - -// CudnnRNNCanonicalToParamsSeed sets the optional seed attribute to value. -// If not specified, defaults to 0 -func CudnnRNNCanonicalToParamsSeed(value int64) CudnnRNNCanonicalToParamsAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// CudnnRNNCanonicalToParamsSeed2 sets the optional seed2 attribute to value. -// If not specified, defaults to 0 -func CudnnRNNCanonicalToParamsSeed2(value int64) CudnnRNNCanonicalToParamsAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Converts CudnnRNN params from canonical form to usable form. -// -// Writes a set of weights into the opaque params buffer so they can be used in -// upcoming training or inferences. -// -// Note that the params buffer may not be compatible across different GPUs. So any -// save and restoration should be converted to and from the canonical weights and -// biases. -// -// num_layers: Specifies the number of layers in the RNN model. -// num_units: Specifies the size of the hidden state. -// input_size: Specifies the size of the input state. -// weights: the canonical form of weights that can be used for saving -// and restoration. They are more likely to be compatible across different -// generations. -// biases: the canonical form of biases that can be used for saving -// and restoration. They are more likely to be compatible across different -// generations. -// num_params: number of parameter sets for all layers. -// Each layer may contain multiple parameter sets, with each set consisting of -// a weight matrix and a bias vector. -// rnn_mode: Indicates the type of the RNN model. -// input_mode: Indicate whether there is a linear projection between the input and -// The actual computation before the first layer. 'skip_input' is only allowed -// when input_size == num_units; 'auto_select' implies 'skip_input' when -// input_size == num_units; otherwise, it implies 'linear_input'. -// direction: Indicates whether a bidirectional model will be used. -// dir = (direction == bidirectional) ? 2 : 1 -// dropout: dropout probability. When set to 0., dropout is disabled. -// seed: the 1st part of a seed to initialize dropout. -// seed2: the 2nd part of a seed to initialize dropout. -func CudnnRNNCanonicalToParams(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, weights []tf.Output, biases []tf.Output, optional ...CudnnRNNCanonicalToParamsAttr) (params tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "CudnnRNNCanonicalToParams", - Input: []tf.Input{ - num_layers, num_units, input_size, tf.OutputList(weights), tf.OutputList(biases), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceApplyAdaMaxAttr is an optional argument to ResourceApplyAdaMax. -type ResourceApplyAdaMaxAttr func(optionalAttr) - -// ResourceApplyAdaMaxUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var, m, and v tensors will be protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceApplyAdaMaxUseLocking(value bool) ResourceApplyAdaMaxAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the AdaMax algorithm. -// -// m_t <- beta1 * m_{t-1} + (1 - beta1) * g -// v_t <- max(beta2 * v_{t-1}, abs(g)) -// variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon) -// -// Arguments: -// var_: Should be from a Variable(). -// m: Should be from a Variable(). -// v: Should be from a Variable(). -// beta1_power: Must be a scalar. -// lr: Scaling factor. Must be a scalar. -// beta1: Momentum factor. Must be a scalar. -// beta2: Momentum factor. Must be a scalar. -// epsilon: Ridge term. Must be a scalar. -// grad: The gradient. -// -// Returns the created operation. -func ResourceApplyAdaMax(scope *Scope, var_ tf.Output, m tf.Output, v tf.Output, beta1_power tf.Output, lr tf.Output, beta1 tf.Output, beta2 tf.Output, epsilon tf.Output, grad tf.Output, optional ...ResourceApplyAdaMaxAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyAdaMax", - Input: []tf.Input{ - var_, m, v, beta1_power, lr, beta1, beta2, epsilon, grad, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// An Op to exchange data across TPU replicas. -// -// On each replica, the input is split into `split_count` blocks along -// `split_dimension` and send to the other replicas given group_assignment. After -// receiving `split_count` - 1 blocks from other replicas, we concatenate the -// blocks along `concat_dimension` as the output. -// -// For example, suppose there are 2 TPU replicas: -// replica 0 receives input: `[[A, B]]` -// replica 1 receives input: `[[C, D]]` -// -// group_assignment=`[[0, 1]]` -// concat_dimension=0 -// split_dimension=1 -// split_count=2 -// -// replica 0's output: `[[A], [C]]` -// replica 1's output: `[[B], [D]]` +// For example, suppose there are 8 TPU instances: `[A, B, C, D, E, F, G, H]`. +// Passing group_assignment=`[[0,2,4,6],[1,3,5,7]]` sets `A, C, E, G` as group 0, +// and `B, D, F, H` as group 1. Thus we get the outputs: +// `[A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H]`. // // Arguments: // input: The local input to the sum. // group_assignment: An int32 tensor with shape // [num_groups, num_replicas_per_group]. `group_assignment[i]` represents the // replica ids in the ith subgroup. -// concat_dimension: The dimension number to concatenate. -// split_dimension: The dimension number to split. -// split_count: The number of splits, this number must equal to the sub-group -// size(group_assignment.get_shape()[1]) // -// Returns The exchanged result. -func AllToAll(scope *Scope, input tf.Output, group_assignment tf.Output, concat_dimension int64, split_dimension int64, split_count int64) (output tf.Output) { +// Returns The sum of all the distributed inputs. +func CrossReplicaSum(scope *Scope, input tf.Output, group_assignment tf.Output) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"concat_dimension": concat_dimension, "split_dimension": split_dimension, "split_count": split_count} opspec := tf.OpSpec{ - Type: "AllToAll", + Type: "CrossReplicaSum", Input: []tf.Input{ input, group_assignment, }, - Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } -// Bucketize each feature based on bucket boundaries. -// -// An op that returns a list of float tensors, where each tensor represents the -// bucketized values for a single feature. +// Extract `patches` from `input` and put them in the "depth" output dimension. 3D extension of `extract_image_patches`. // // Arguments: -// float_values: float; List of Rank 1 Tensor each containing float values for a single feature. -// bucket_boundaries: float; List of Rank 1 Tensors each containing the bucket boundaries for a single -// feature. +// input: 5-D Tensor with shape `[batch, in_planes, in_rows, in_cols, depth]`. +// ksizes: The size of the sliding window for each dimension of `input`. +// strides: 1-D of length 5. How far the centers of two consecutive patches are in +// `input`. Must be: `[1, stride_planes, stride_rows, stride_cols, 1]`. +// padding: The type of padding algorithm to use. // -// Returns int; List of Rank 1 Tensors each containing the bucketized values for a single feature. -func BoostedTreesBucketize(scope *Scope, float_values []tf.Output, bucket_boundaries []tf.Output) (buckets []tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BoostedTreesBucketize", - Input: []tf.Input{ - tf.OutputList(float_values), tf.OutputList(bucket_boundaries), - }, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if buckets, idx, err = makeOutputList(op, idx, "buckets"); err != nil { - scope.UpdateErr("BoostedTreesBucketize", err) - return - } - return buckets -} - -// Assigns a new value to a variable. -// -// Any ReadVariableOp with a control dependency on this op is guaranteed to return -// this value or a subsequent newer value of the variable. -// -// Arguments: -// resource: handle to the resource in which to store the variable. -// value: the value to set the new tensor to use. -// -// Returns the created operation. -func AssignVariableOp(scope *Scope, resource tf.Output, value tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "AssignVariableOp", - Input: []tf.Input{ - resource, value, - }, - } - return scope.AddOperation(opspec) -} - -// AudioSummaryV2Attr is an optional argument to AudioSummaryV2. -type AudioSummaryV2Attr func(optionalAttr) - -// AudioSummaryV2MaxOutputs sets the optional max_outputs attribute to value. -// -// value: Max number of batch elements to generate audio for. -// If not specified, defaults to 3 -// -// REQUIRES: value >= 1 -func AudioSummaryV2MaxOutputs(value int64) AudioSummaryV2Attr { - return func(m optionalAttr) { - m["max_outputs"] = value - } -} - -// Outputs a `Summary` protocol buffer with audio. -// -// The summary has up to `max_outputs` summary values containing audio. The -// audio is built from `tensor` which must be 3-D with shape `[batch_size, -// frames, channels]` or 2-D with shape `[batch_size, frames]`. The values are -// assumed to be in the range of `[-1.0, 1.0]` with a sample rate of `sample_rate`. -// -// The `tag` argument is a scalar `Tensor` of type `string`. It is used to -// build the `tag` of the summary values: -// -// * If `max_outputs` is 1, the summary value tag is '*tag*/audio'. -// * If `max_outputs` is greater than 1, the summary value tags are -// generated sequentially as '*tag*/audio/0', '*tag*/audio/1', etc. -// -// Arguments: -// tag: Scalar. Used to build the `tag` attribute of the summary values. -// tensor: 2-D of shape `[batch_size, frames]`. -// sample_rate: The sample rate of the signal in hertz. -// -// Returns Scalar. Serialized `Summary` protocol buffer. -func AudioSummaryV2(scope *Scope, tag tf.Output, tensor tf.Output, sample_rate tf.Output, optional ...AudioSummaryV2Attr) (summary tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AudioSummaryV2", - Input: []tf.Input{ - tag, tensor, sample_rate, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// List of the given size with empty elements. -// -// element_shape: the shape of the future elements of the list -// num_elements: the number of elements to reserve -// handle: the output list -// element_dtype: the desired type of elements in the list. -func TensorListReserve(scope *Scope, element_shape tf.Output, num_elements tf.Output, element_dtype tf.DataType) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"element_dtype": element_dtype} - opspec := tf.OpSpec{ - Type: "TensorListReserve", - Input: []tf.Input{ - element_shape, num_elements, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceApplyCenteredRMSPropAttr is an optional argument to ResourceApplyCenteredRMSProp. -type ResourceApplyCenteredRMSPropAttr func(optionalAttr) - -// ResourceApplyCenteredRMSPropUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var, mg, ms, and mom tensors is -// protected by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceApplyCenteredRMSPropUseLocking(value bool) ResourceApplyCenteredRMSPropAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the centered RMSProp algorithm. -// -// The centered RMSProp algorithm uses an estimate of the centered second moment -// (i.e., the variance) for normalization, as opposed to regular RMSProp, which -// uses the (uncentered) second moment. This often helps with training, but is -// slightly more expensive in terms of computation and memory. -// -// Note that in dense implementation of this algorithm, mg, ms, and mom will -// update even if the grad is zero, but in this sparse implementation, mg, ms, -// and mom will not update in iterations during which the grad is zero. -// -// mean_square = decay * mean_square + (1-decay) * gradient ** 2 -// mean_grad = decay * mean_grad + (1-decay) * gradient -// -// Delta = learning_rate * gradient / sqrt(mean_square + epsilon - mean_grad ** 2) -// -// mg <- rho * mg_{t-1} + (1-rho) * grad -// ms <- rho * ms_{t-1} + (1-rho) * grad * grad -// mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon) -// var <- var - mom -// -// Arguments: -// var_: Should be from a Variable(). -// mg: Should be from a Variable(). -// ms: Should be from a Variable(). -// mom: Should be from a Variable(). -// lr: Scaling factor. Must be a scalar. -// rho: Decay rate. Must be a scalar. -// -// epsilon: Ridge term. Must be a scalar. -// grad: The gradient. -// -// Returns the created operation. -func ResourceApplyCenteredRMSProp(scope *Scope, var_ tf.Output, mg tf.Output, ms tf.Output, mom tf.Output, lr tf.Output, rho tf.Output, momentum tf.Output, epsilon tf.Output, grad tf.Output, optional ...ResourceApplyCenteredRMSPropAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyCenteredRMSProp", - Input: []tf.Input{ - var_, mg, ms, mom, lr, rho, momentum, epsilon, grad, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Returns the complex conjugate of a complex number. -// -// Given a tensor `input` of complex numbers, this operation returns a tensor of -// complex numbers that are the complex conjugate of each element in `input`. The -// complex numbers in `input` must be of the form \\(a + bj\\), where *a* is the -// real part and *b* is the imaginary part. -// -// The complex conjugate returned by this operation is of the form \\(a - bj\\). -// -// For example: +// We specify the size-related attributes as: // +// ```python +// ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1] +// strides = [1, stride_planes, strides_rows, strides_cols, 1] // ``` -// # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] -// tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j] -// ``` -func Conj(scope *Scope, input tf.Output) (output tf.Output) { +// +// Returns 5-D Tensor with shape `[batch, out_planes, out_rows, out_cols, +// ksize_planes * ksize_rows * ksize_cols * depth]` containing patches +// with size `ksize_planes x ksize_rows x ksize_cols x depth` vectorized +// in the "depth" dimension. Note `out_planes`, `out_rows` and `out_cols` +// are the dimensions of the output patches. +func ExtractVolumePatches(scope *Scope, input tf.Output, ksizes []int64, strides []int64, padding string) (patches tf.Output) { if scope.Err() != nil { return } + attrs := map[string]interface{}{"ksizes": ksizes, "strides": strides, "padding": padding} opspec := tf.OpSpec{ - Type: "Conj", + Type: "ExtractVolumePatches", Input: []tf.Input{ input, }, + Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } -// Computes softplus: `log(exp(features) + 1)`. -func Softplus(scope *Scope, features tf.Output) (activations tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Softplus", - Input: []tf.Input{ - features, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} +// TryRpcAttr is an optional argument to TryRpc. +type TryRpcAttr func(optionalAttr) -// ResourceSparseApplyMomentumAttr is an optional argument to ResourceSparseApplyMomentum. -type ResourceSparseApplyMomentumAttr func(optionalAttr) - -// ResourceSparseApplyMomentumUseLocking sets the optional use_locking attribute to value. +// TryRpcProtocol sets the optional protocol attribute to value. // -// value: If `True`, updating of the var and accum tensors will be protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceSparseApplyMomentumUseLocking(value bool) ResourceSparseApplyMomentumAttr { +// value: RPC protocol to use. Empty string means use the default protocol. +// Options include 'grpc'. +// If not specified, defaults to "" +func TryRpcProtocol(value string) TryRpcAttr { return func(m optionalAttr) { - m["use_locking"] = value + m["protocol"] = value } } -// ResourceSparseApplyMomentumUseNesterov sets the optional use_nesterov attribute to value. +// TryRpcFailFast sets the optional fail_fast attribute to value. // -// value: If `True`, the tensor passed to compute grad will be -// var - lr * momentum * accum, so in the end, the var you get is actually -// var - lr * momentum * accum. -// If not specified, defaults to false -func ResourceSparseApplyMomentumUseNesterov(value bool) ResourceSparseApplyMomentumAttr { +// value: `boolean`. If `true` (default), then failures to connect +// (i.e., the server does not immediately respond) cause an RPC failure. +// If not specified, defaults to true +func TryRpcFailFast(value bool) TryRpcAttr { return func(m optionalAttr) { - m["use_nesterov"] = value + m["fail_fast"] = value } } -// Update relevant entries in '*var' and '*accum' according to the momentum scheme. +// TryRpcTimeoutInMs sets the optional timeout_in_ms attribute to value. // -// Set use_nesterov = True if you want to use Nesterov momentum. +// value: `int`. If `0` (default), then the kernel will run the RPC +// request and only time out if the RPC deadline passes or the session times out. +// If this value is greater than `0`, then the op will raise an exception if +// the RPC takes longer than `timeout_in_ms`. +// If not specified, defaults to 0 +func TryRpcTimeoutInMs(value int64) TryRpcAttr { + return func(m optionalAttr) { + m["timeout_in_ms"] = value + } +} + +// Perform batches of RPC requests. // -// That is for rows we have grad for, we update var and accum as follows: +// This op asynchronously performs either a single RPC request, or a batch +// of requests. RPC requests are defined by three main parameters: // -// accum = accum * momentum + grad -// var -= lr * accum +// - `address` (the host+port or BNS address of the request) +// - `method` (the method name for the request) +// - `request` (the serialized proto string, or vector of strings, +// of the RPC request argument). +// +// For example, if you have an RPC service running on port localhost:2345, +// and its interface is configured with the following proto declaration: +// +// ``` +// service MyService { +// rpc MyMethod(MyRequestProto) returns (MyResponseProto) { +// } +// }; +// ``` +// +// then call this op with arguments: +// +// ``` +// address = "localhost:2345" +// method = "MyService/MyMethod" +// ``` +// +// The `request` tensor is a string tensor representing serialized `MyRequestProto` +// strings; and the output string tensor `response` will have the same shape +// and contain (upon successful completion) corresponding serialized +// `MyResponseProto` strings. +// +// For example, to send a single, empty, `MyRequestProto`, call +// this op with `request = ""`. To send 5 **parallel** empty requests, +// call this op with `request = ["", "", "", "", ""]`. +// +// More generally, one can create a batch of `MyRequestProto` serialized protos +// from regular batched tensors using the `encode_proto` op, and convert +// the response `MyResponseProto` serialized protos to batched tensors +// using the `decode_proto` op. +// +// **NOTE** Working with serialized proto strings is faster than instantiating +// actual proto objects in memory, so no performance degradation is expected +// compared to writing custom kernels for this workflow. +// +// Unlike the standard `Rpc` op, if the connection fails or the remote worker +// returns an error status, this op does **not** reraise the exception. +// Instead, the `status_code` and `status_message` entry for the corresponding RPC +// call is set with the error returned from the RPC call. The `response` tensor +// will contain valid response values for those minibatch entries whose RPCs did +// not fail; the rest of the entries will have empty strings. // // Arguments: -// var_: Should be from a Variable(). -// accum: Should be from a Variable(). -// lr: Learning rate. Must be a scalar. -// grad: The gradient. -// indices: A vector of indices into the first dimension of var and accum. -// momentum: Momentum. Must be a scalar. +// address: `0-D` or `1-D`. The address (i.e. host_name:port) of the RPC server. +// If this tensor has more than 1 element, then multiple parallel rpc requests +// are sent. This argument broadcasts with `method` and `request`. +// method: `0-D` or `1-D`. The method address on the RPC server. +// If this tensor has more than 1 element, then multiple parallel rpc requests +// are sent. This argument broadcasts with `address` and `request`. +// request: `0-D` or `1-D`. Serialized proto strings: the rpc request argument. +// If this tensor has more than 1 element, then multiple parallel rpc requests +// are sent. This argument broadcasts with `address` and `method`. // -// Returns the created operation. -func ResourceSparseApplyMomentum(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, grad tf.Output, indices tf.Output, momentum tf.Output, optional ...ResourceSparseApplyMomentumAttr) (o *tf.Operation) { +// Returns Same shape as `request`. Serialized proto strings: the rpc responses.Same shape as `request`. Values correspond to tensorflow Status enum codes.Same shape as `request`. Values correspond to Status messages +// returned from the RPC calls. +func TryRpc(scope *Scope, address tf.Output, method tf.Output, request tf.Output, optional ...TryRpcAttr) (response tf.Output, status_code tf.Output, status_message tf.Output) { if scope.Err() != nil { return } @@ -24323,27 +25016,23 @@ func ResourceSparseApplyMomentum(scope *Scope, var_ tf.Output, accum tf.Output, a(attrs) } opspec := tf.OpSpec{ - Type: "ResourceSparseApplyMomentum", + Type: "TryRpc", Input: []tf.Input{ - var_, accum, lr, grad, indices, momentum, + address, method, request, }, Attrs: attrs, } - return scope.AddOperation(opspec) + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) } -// Computes the Bessel i0e function of `x` element-wise. -// -// Exponentially scaled modified Bessel function of order 0 defined as -// `bessel_i0e(x) = exp(-abs(x)) bessel_i0(x)`. -// -// This function is faster and numerically stabler than `bessel_i0(x)`. -func BesselI0e(scope *Scope, x tf.Output) (y tf.Output) { +// Computes acos of x element-wise. +func Acos(scope *Scope, x tf.Output) (y tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "BesselI0e", + Type: "Acos", Input: []tf.Input{ x, }, @@ -24352,79 +25041,36 @@ func BesselI0e(scope *Scope, x tf.Output) (y tf.Output) { return op.Output(0) } -// DecodeRawAttr is an optional argument to DecodeRaw. -type DecodeRawAttr func(optionalAttr) +// RetrieveTPUEmbeddingFTRLParametersAttr is an optional argument to RetrieveTPUEmbeddingFTRLParameters. +type RetrieveTPUEmbeddingFTRLParametersAttr func(optionalAttr) -// DecodeRawLittleEndian sets the optional little_endian attribute to value. -// -// value: Whether the input `bytes` are in little-endian order. -// Ignored for `out_type` values that are stored in a single byte like -// `uint8`. -// If not specified, defaults to true -func DecodeRawLittleEndian(value bool) DecodeRawAttr { - return func(m optionalAttr) { - m["little_endian"] = value - } -} - -// Reinterpret the bytes of a string as a vector of numbers. -// -// Arguments: -// bytes: All the elements must have the same length. -// -// -// Returns A Tensor with one more dimension than the input `bytes`. The -// added dimension will have size equal to the length of the elements -// of `bytes` divided by the number of bytes to represent `out_type`. -func DecodeRaw(scope *Scope, bytes tf.Output, out_type tf.DataType, optional ...DecodeRawAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"out_type": out_type} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "DecodeRaw", - Input: []tf.Input{ - bytes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingMomentumParametersGradAccumDebug. -type RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr func(optionalAttr) - -// RetrieveTPUEmbeddingMomentumParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// RetrieveTPUEmbeddingFTRLParametersTableId sets the optional table_id attribute to value. // If not specified, defaults to -1 // // REQUIRES: value >= -1 -func RetrieveTPUEmbeddingMomentumParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr { +func RetrieveTPUEmbeddingFTRLParametersTableId(value int64) RetrieveTPUEmbeddingFTRLParametersAttr { return func(m optionalAttr) { m["table_id"] = value } } -// RetrieveTPUEmbeddingMomentumParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// RetrieveTPUEmbeddingFTRLParametersTableName sets the optional table_name attribute to value. // If not specified, defaults to "" -func RetrieveTPUEmbeddingMomentumParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr { +func RetrieveTPUEmbeddingFTRLParametersTableName(value string) RetrieveTPUEmbeddingFTRLParametersAttr { return func(m optionalAttr) { m["table_name"] = value } } -// Retrieve Momentum embedding parameters with debug support. +// Retrieve FTRL embedding parameters. // // An op that retrieves optimization parameters from embedding to host // memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up // the correct embedding table configuration. For example, this op is // used to retrieve updated parameters before saving a checkpoint. // -// Returns Parameter parameters updated by the Momentum optimization algorithm.Parameter momenta updated by the Momentum optimization algorithm.Parameter gradient_accumulators updated by the Momentum optimization algorithm. -func RetrieveTPUEmbeddingMomentumParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingMomentumParametersGradAccumDebugAttr) (parameters tf.Output, momenta tf.Output, gradient_accumulators tf.Output) { +// Returns Parameter parameters updated by the FTRL optimization algorithm.Parameter accumulators updated by the FTRL optimization algorithm.Parameter linears updated by the FTRL optimization algorithm. +func RetrieveTPUEmbeddingFTRLParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingFTRLParametersAttr) (parameters tf.Output, accumulators tf.Output, linears tf.Output) { if scope.Err() != nil { return } @@ -24433,7 +25079,7 @@ func RetrieveTPUEmbeddingMomentumParametersGradAccumDebug(scope *Scope, num_shar a(attrs) } opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingMomentumParametersGradAccumDebug", + Type: "RetrieveTPUEmbeddingFTRLParameters", Attrs: attrs, } @@ -24441,246 +25087,66 @@ func RetrieveTPUEmbeddingMomentumParametersGradAccumDebug(scope *Scope, num_shar return op.Output(0), op.Output(1), op.Output(2) } -// LRNAttr is an optional argument to LRN. -type LRNAttr func(optionalAttr) - -// LRNDepthRadius sets the optional depth_radius attribute to value. +// Returns true if queue is closed. // -// value: 0-D. Half-width of the 1-D normalization window. -// If not specified, defaults to 5 -func LRNDepthRadius(value int64) LRNAttr { - return func(m optionalAttr) { - m["depth_radius"] = value - } -} - -// LRNBias sets the optional bias attribute to value. -// -// value: An offset (usually positive to avoid dividing by 0). -// If not specified, defaults to 1 -func LRNBias(value float32) LRNAttr { - return func(m optionalAttr) { - m["bias"] = value - } -} - -// LRNAlpha sets the optional alpha attribute to value. -// -// value: A scale factor, usually positive. -// If not specified, defaults to 1 -func LRNAlpha(value float32) LRNAttr { - return func(m optionalAttr) { - m["alpha"] = value - } -} - -// LRNBeta sets the optional beta attribute to value. -// -// value: An exponent. -// If not specified, defaults to 0.5 -func LRNBeta(value float32) LRNAttr { - return func(m optionalAttr) { - m["beta"] = value - } -} - -// Local Response Normalization. -// -// The 4-D `input` tensor is treated as a 3-D array of 1-D vectors (along the last -// dimension), and each vector is normalized independently. Within a given vector, -// each component is divided by the weighted, squared sum of inputs within -// `depth_radius`. In detail, -// -// sqr_sum[a, b, c, d] = -// sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2) -// output = input / (bias + alpha * sqr_sum) ** beta -// -// For details, see [Krizhevsky et al., ImageNet classification with deep -// convolutional neural networks (NIPS 2012)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks). +// This operation returns true if the queue is closed and false if the queue +// is open. // // Arguments: -// input: 4-D. -func LRN(scope *Scope, input tf.Output, optional ...LRNAttr) (output tf.Output) { +// handle: The handle to a queue. +func QueueIsClosedV2(scope *Scope, handle tf.Output) (is_closed tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "LRN", + Type: "QueueIsClosedV2", Input: []tf.Input{ - input, + handle, }, - Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } -// CudnnRNNBackpropV2Attr is an optional argument to CudnnRNNBackpropV2. -type CudnnRNNBackpropV2Attr func(optionalAttr) - -// CudnnRNNBackpropV2RnnMode sets the optional rnn_mode attribute to value. -// If not specified, defaults to "lstm" -func CudnnRNNBackpropV2RnnMode(value string) CudnnRNNBackpropV2Attr { - return func(m optionalAttr) { - m["rnn_mode"] = value - } -} - -// CudnnRNNBackpropV2InputMode sets the optional input_mode attribute to value. -// If not specified, defaults to "linear_input" -func CudnnRNNBackpropV2InputMode(value string) CudnnRNNBackpropV2Attr { - return func(m optionalAttr) { - m["input_mode"] = value - } -} - -// CudnnRNNBackpropV2Direction sets the optional direction attribute to value. -// If not specified, defaults to "unidirectional" -func CudnnRNNBackpropV2Direction(value string) CudnnRNNBackpropV2Attr { - return func(m optionalAttr) { - m["direction"] = value - } -} - -// CudnnRNNBackpropV2Dropout sets the optional dropout attribute to value. -// If not specified, defaults to 0 -func CudnnRNNBackpropV2Dropout(value float32) CudnnRNNBackpropV2Attr { - return func(m optionalAttr) { - m["dropout"] = value - } -} - -// CudnnRNNBackpropV2Seed sets the optional seed attribute to value. -// If not specified, defaults to 0 -func CudnnRNNBackpropV2Seed(value int64) CudnnRNNBackpropV2Attr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// CudnnRNNBackpropV2Seed2 sets the optional seed2 attribute to value. -// If not specified, defaults to 0 -func CudnnRNNBackpropV2Seed2(value int64) CudnnRNNBackpropV2Attr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Backprop step of CudnnRNN. +// Shuts down a running distributed TPU system. // -// Compute the backprop of both data and weights in a RNN. Takes an extra -// "host_reserved" inupt than CudnnRNNBackprop, which is used to determine RNN -// cudnnRNNAlgo_t and cudnnMathType_t. +// The op returns an error if no system is running. // -// rnn_mode: Indicates the type of the RNN model. -// input_mode: Indicates whether there is a linear projection between the input and -// the actual computation before the first layer. 'skip_input' is only allowed -// when input_size == num_units; 'auto_select' implies 'skip_input' when -// input_size == num_units; otherwise, it implies 'linear_input'. -// direction: Indicates whether a bidirectional model will be used. Should be -// "unidirectional" or "bidirectional". -// dropout: Dropout probability. When set to 0., dropout is disabled. -// seed: The 1st part of a seed to initialize dropout. -// seed2: The 2nd part of a seed to initialize dropout. -// input: A 3-D tensor with the shape of [seq_length, batch_size, input_size]. -// input_h: A 3-D tensor with the shape of [num_layer * dir, batch_size, -// num_units]. -// input_c: For LSTM, a 3-D tensor with the shape of -// [num_layer * dir, batch, num_units]. For other models, it is ignored. -// params: A 1-D tensor that contains the weights and biases in an opaque layout. -// The size must be created through CudnnRNNParamsSize, and initialized -// separately. Note that they might not be compatible across different -// generations. So it is a good idea to save and restore -// output: A 3-D tensor with the shape of [seq_length, batch_size, -// dir * num_units]. -// output_h: The same shape has input_h. -// output_c: The same shape as input_c for LSTM. An empty tensor for other models. -// output_backprop: A 3-D tensor with the same shape as output in the forward pass. -// output_h_backprop: A 3-D tensor with the same shape as output_h in the forward -// pass. -// output_c_backprop: A 3-D tensor with the same shape as output_c in the forward -// pass. -// reserve_space: The same reserve_space produced in the forward operation. -// host_reserved: The same host_reserved produced in the forward operation. -// input_backprop: The backprop to input in the forward pass. Has the same shape -// as input. -// input_h_backprop: The backprop to input_h in the forward pass. Has the same -// shape as input_h. -// input_c_backprop: The backprop to input_c in the forward pass. Has the same -// shape as input_c. -// params_backprop: The backprop to the params buffer in the forward pass. Has the -// same shape as params. -func CudnnRNNBackpropV2(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, params tf.Output, output tf.Output, output_h tf.Output, output_c tf.Output, output_backprop tf.Output, output_h_backprop tf.Output, output_c_backprop tf.Output, reserve_space tf.Output, host_reserved tf.Output, optional ...CudnnRNNBackpropV2Attr) (input_backprop tf.Output, input_h_backprop tf.Output, input_c_backprop tf.Output, params_backprop tf.Output) { +// Returns the created operation. +func ShutdownDistributedTPU(scope *Scope) (o *tf.Operation) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "CudnnRNNBackpropV2", - Input: []tf.Input{ - input, input_h, input_c, params, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space, host_reserved, - }, - Attrs: attrs, + Type: "ShutdownDistributedTPU", } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3) + return scope.AddOperation(opspec) } -// DenseToDenseSetOperationAttr is an optional argument to DenseToDenseSetOperation. -type DenseToDenseSetOperationAttr func(optionalAttr) - -// DenseToDenseSetOperationValidateIndices sets the optional validate_indices attribute to value. -// If not specified, defaults to true -func DenseToDenseSetOperationValidateIndices(value bool) DenseToDenseSetOperationAttr { - return func(m optionalAttr) { - m["validate_indices"] = value - } -} - -// Applies set operation along last dimension of 2 `Tensor` inputs. +// Advance the counter of a counter-based RNG. // -// See SetOperationOp::SetOperationFromContext for values of `set_operation`. -// -// Output `result` is a `SparseTensor` represented by `result_indices`, -// `result_values`, and `result_shape`. For `set1` and `set2` ranked `n`, this -// has rank `n` and the same 1st `n-1` dimensions as `set1` and `set2`. The `nth` -// dimension contains the result of `set_operation` applied to the corresponding -// `[0...n-1]` dimension of `set`. +// The state of the RNG after +// `rng_skip(n)` will be the same as that after `stateful_uniform([n])` +// (or any other distribution). The actual increment added to the +// counter is an unspecified implementation detail. // // Arguments: -// set1: `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set2`. -// Dimension `n` contains values in a set, duplicates are allowed but ignored. -// set2: `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set1`. -// Dimension `n` contains values in a set, duplicates are allowed but ignored. +// resource: The handle of the resource variable that stores the state of the RNG. +// algorithm: The RNG algorithm. +// delta: The amount of advancement. // -// -// Returns 2D indices of a `SparseTensor`.1D values of a `SparseTensor`.1D `Tensor` shape of a `SparseTensor`. `result_shape[0...n-1]` is -// the same as the 1st `n-1` dimensions of `set1` and `set2`, `result_shape[n]` -// is the max result set size across all `0...n-1` dimensions. -func DenseToDenseSetOperation(scope *Scope, set1 tf.Output, set2 tf.Output, set_operation string, optional ...DenseToDenseSetOperationAttr) (result_indices tf.Output, result_values tf.Output, result_shape tf.Output) { +// Returns the created operation. +func RngSkip(scope *Scope, resource tf.Output, algorithm tf.Output, delta tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"set_operation": set_operation} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "DenseToDenseSetOperation", + Type: "RngSkip", Input: []tf.Input{ - set1, set2, + resource, algorithm, delta, }, - Attrs: attrs, } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) + return scope.AddOperation(opspec) } // RetrieveTPUEmbeddingMDLAdagradLightParametersAttr is an optional argument to RetrieveTPUEmbeddingMDLAdagradLightParameters. @@ -24826,95 +25292,6 @@ func RetrieveTPUEmbeddingProximalAdagradParameters(scope *Scope, num_shards int6 return op.Output(0), op.Output(1) } -// Reduces `input` from `num_devices` using `reduction` to a single device. -// -// Reduces `input` from `num_devices` using `reduction` to a single device. -// -// The graph should be constructed so that all inputs have a valid device -// assignment, and the op itself is assigned one of these devices. -// -// input: The input to the reduction. -// data: the value of the reduction across all `num_devices` devices. -// reduction: the reduction operation to perform. -func NcclReduce(scope *Scope, input []tf.Output, reduction string) (data tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"reduction": reduction} - opspec := tf.OpSpec{ - Type: "NcclReduce", - Input: []tf.Input{ - tf.OutputList(input), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Splits a tensor into `num_split` tensors along one dimension. -// -// Arguments: -// value: The tensor to split. -// size_splits: list containing the sizes of each output tensor along the split -// dimension. Must sum to the dimension of value along split_dim. -// Can contain one -1 indicating that dimension is to be inferred. -// axis: 0-D. The dimension along which to split. Must be in the range -// `[-rank(value), rank(value))`. -// -// -// Returns Tensors whose shape matches that of `value` -// except along `axis`, where their sizes are -// `size_splits[i]`. -func SplitV(scope *Scope, value tf.Output, size_splits tf.Output, axis tf.Output, num_split int64) (output []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_split": num_split} - opspec := tf.OpSpec{ - Type: "SplitV", - Input: []tf.Input{ - value, size_splits, axis, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if output, idx, err = makeOutputList(op, idx, "output"); err != nil { - scope.UpdateErr("SplitV", err) - return - } - return output -} - -// Creates a dataset that asynchronously prefetches elements from `input_dataset`. -// -// Arguments: -// -// buffer_size: The maximum number of elements to buffer in an iterator over -// this dataset. -// -// -func PrefetchDataset(scope *Scope, input_dataset tf.Output, buffer_size tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "PrefetchDataset", - Input: []tf.Input{ - input_dataset, buffer_size, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // LRNGradAttr is an optional argument to LRNGrad. type LRNGradAttr func(optionalAttr) @@ -25078,135 +25455,358 @@ func StaticRegexFullMatch(scope *Scope, input tf.Output, pattern string) (output return op.Output(0) } -// Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. +// DenseToDenseSetOperationAttr is an optional argument to DenseToDenseSetOperation. +type DenseToDenseSetOperationAttr func(optionalAttr) + +// DenseToDenseSetOperationValidateIndices sets the optional validate_indices attribute to value. +// If not specified, defaults to true +func DenseToDenseSetOperationValidateIndices(value bool) DenseToDenseSetOperationAttr { + return func(m optionalAttr) { + m["validate_indices"] = value + } +} + +// Applies set operation along last dimension of 2 `Tensor` inputs. // -// The `input` tensor has shape `[batch, in_height, in_width, depth]` and the -// `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each -// input channel is processed independently of the others with its own structuring -// function. The `output` tensor has shape -// `[batch, out_height, out_width, depth]`. The spatial dimensions of the output -// tensor depend on the `padding` algorithm. We currently only support the default -// "NHWC" `data_format`. +// See SetOperationOp::SetOperationFromContext for values of `set_operation`. // -// In detail, the grayscale morphological 2-D dilation is the max-sum correlation -// (for consistency with `conv2d`, we use unmirrored filters): -// -// output[b, y, x, c] = -// max_{dy, dx} input[b, -// strides[1] * y + rates[1] * dy, -// strides[2] * x + rates[2] * dx, -// c] + -// filter[dy, dx, c] -// -// Max-pooling is a special case when the filter has size equal to the pooling -// kernel size and contains all zeros. -// -// Note on duality: The dilation of `input` by the `filter` is equal to the -// negation of the erosion of `-input` by the reflected `filter`. +// Output `result` is a `SparseTensor` represented by `result_indices`, +// `result_values`, and `result_shape`. For `set1` and `set2` ranked `n`, this +// has rank `n` and the same 1st `n-1` dimensions as `set1` and `set2`. The `nth` +// dimension contains the result of `set_operation` applied to the corresponding +// `[0...n-1]` dimension of `set`. // // Arguments: -// input: 4-D with shape `[batch, in_height, in_width, depth]`. -// filter: 3-D with shape `[filter_height, filter_width, depth]`. -// strides: The stride of the sliding window for each dimension of the input -// tensor. Must be: `[1, stride_height, stride_width, 1]`. -// rates: The input stride for atrous morphological dilation. Must be: -// `[1, rate_height, rate_width, 1]`. -// padding: The type of padding algorithm to use. +// set1: `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set2`. +// Dimension `n` contains values in a set, duplicates are allowed but ignored. +// set2: `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set1`. +// Dimension `n` contains values in a set, duplicates are allowed but ignored. // -// Returns 4-D with shape `[batch, out_height, out_width, depth]`. -func Dilation2D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, rates []int64, padding string) (output tf.Output) { +// +// Returns 2D indices of a `SparseTensor`.1D values of a `SparseTensor`.1D `Tensor` shape of a `SparseTensor`. `result_shape[0...n-1]` is +// the same as the 1st `n-1` dimensions of `set1` and `set2`, `result_shape[n]` +// is the max result set size across all `0...n-1` dimensions. +func DenseToDenseSetOperation(scope *Scope, set1 tf.Output, set2 tf.Output, set_operation string, optional ...DenseToDenseSetOperationAttr) (result_indices tf.Output, result_values tf.Output, result_shape tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"strides": strides, "rates": rates, "padding": padding} - opspec := tf.OpSpec{ - Type: "Dilation2D", - Input: []tf.Input{ - input, filter, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Adjust the contrast of one or more images. -// -// `images` is a tensor of at least 3 dimensions. The last 3 dimensions are -// interpreted as `[height, width, channels]`. The other dimensions only -// represent a collection of images, such as `[batch, height, width, channels].` -// -// Contrast is adjusted independently for each channel of each image. -// -// For each channel, the Op first computes the mean of the image pixels in the -// channel and then adjusts each component of each pixel to -// `(x - mean) * contrast_factor + mean`. -// -// Arguments: -// images: Images to adjust. At least 3-D. -// contrast_factor: A float multiplier for adjusting contrast. -// -// Returns The contrast-adjusted image or images. -func AdjustContrastv2(scope *Scope, images tf.Output, contrast_factor tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "AdjustContrastv2", - Input: []tf.Input{ - images, contrast_factor, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug. -type RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr func(optionalAttr) - -// RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Retrieve proximal Adagrad embedding parameters with debug support. -// -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. -// -// Returns Parameter parameters updated by the proximal Adagrad optimization algorithm.Parameter accumulators updated by the proximal Adagrad optimization algorithm.Parameter gradient_accumulators updated by the proximal Adagrad optimization algorithm. -func RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr) (parameters tf.Output, accumulators tf.Output, gradient_accumulators tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + attrs := map[string]interface{}{"set_operation": set_operation} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug", - + Type: "DenseToDenseSetOperation", + Input: []tf.Input{ + set1, set2, + }, Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0), op.Output(1), op.Output(2) } +// StringJoinAttr is an optional argument to StringJoin. +type StringJoinAttr func(optionalAttr) + +// StringJoinSeparator sets the optional separator attribute to value. +// +// value: string, an optional join separator. +// If not specified, defaults to "" +func StringJoinSeparator(value string) StringJoinAttr { + return func(m optionalAttr) { + m["separator"] = value + } +} + +// Joins the strings in the given list of string tensors into one tensor; +// +// with the given separator (default is an empty separator). +// +// Arguments: +// inputs: A list of string tensors. The tensors must all have the same shape, +// or be scalars. Scalars may be mixed in; these will be broadcast to the shape +// of non-scalar inputs. +func StringJoin(scope *Scope, inputs []tf.Output, optional ...StringJoinAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StringJoin", + Input: []tf.Input{ + tf.OutputList(inputs), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// StackV2Attr is an optional argument to StackV2. +type StackV2Attr func(optionalAttr) + +// StackV2StackName sets the optional stack_name attribute to value. +// +// value: Overrides the name used for the temporary stack resource. Default +// value is the name of the 'Stack' op (which is guaranteed unique). +// If not specified, defaults to "" +func StackV2StackName(value string) StackV2Attr { + return func(m optionalAttr) { + m["stack_name"] = value + } +} + +// A stack that produces elements in first-in last-out order. +// +// Arguments: +// max_size: The maximum size of the stack if non-negative. If negative, the stack +// size is unlimited. +// elem_type: The type of the elements on the stack. +// +// Returns The handle to the stack. +func StackV2(scope *Scope, max_size tf.Output, elem_type tf.DataType, optional ...StackV2Attr) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"elem_type": elem_type} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StackV2", + Input: []tf.Input{ + max_size, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// QuantizedReluAttr is an optional argument to QuantizedRelu. +type QuantizedReluAttr func(optionalAttr) + +// QuantizedReluOutType sets the optional out_type attribute to value. +// If not specified, defaults to DT_QUINT8 +func QuantizedReluOutType(value tf.DataType) QuantizedReluAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// Computes Quantized Rectified Linear: `max(features, 0)` +// +// Arguments: +// +// min_features: The float value that the lowest quantized value represents. +// max_features: The float value that the highest quantized value represents. +// +// Returns Has the same output shape as "features".The float value that the lowest quantized value represents.The float value that the highest quantized value represents. +func QuantizedRelu(scope *Scope, features tf.Output, min_features tf.Output, max_features tf.Output, optional ...QuantizedReluAttr) (activations tf.Output, min_activations tf.Output, max_activations tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "QuantizedRelu", + Input: []tf.Input{ + features, min_features, max_features, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// CudnnRNNCanonicalToParamsAttr is an optional argument to CudnnRNNCanonicalToParams. +type CudnnRNNCanonicalToParamsAttr func(optionalAttr) + +// CudnnRNNCanonicalToParamsRnnMode sets the optional rnn_mode attribute to value. +// If not specified, defaults to "lstm" +func CudnnRNNCanonicalToParamsRnnMode(value string) CudnnRNNCanonicalToParamsAttr { + return func(m optionalAttr) { + m["rnn_mode"] = value + } +} + +// CudnnRNNCanonicalToParamsInputMode sets the optional input_mode attribute to value. +// If not specified, defaults to "linear_input" +func CudnnRNNCanonicalToParamsInputMode(value string) CudnnRNNCanonicalToParamsAttr { + return func(m optionalAttr) { + m["input_mode"] = value + } +} + +// CudnnRNNCanonicalToParamsDirection sets the optional direction attribute to value. +// If not specified, defaults to "unidirectional" +func CudnnRNNCanonicalToParamsDirection(value string) CudnnRNNCanonicalToParamsAttr { + return func(m optionalAttr) { + m["direction"] = value + } +} + +// CudnnRNNCanonicalToParamsDropout sets the optional dropout attribute to value. +// If not specified, defaults to 0 +func CudnnRNNCanonicalToParamsDropout(value float32) CudnnRNNCanonicalToParamsAttr { + return func(m optionalAttr) { + m["dropout"] = value + } +} + +// CudnnRNNCanonicalToParamsSeed sets the optional seed attribute to value. +// If not specified, defaults to 0 +func CudnnRNNCanonicalToParamsSeed(value int64) CudnnRNNCanonicalToParamsAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// CudnnRNNCanonicalToParamsSeed2 sets the optional seed2 attribute to value. +// If not specified, defaults to 0 +func CudnnRNNCanonicalToParamsSeed2(value int64) CudnnRNNCanonicalToParamsAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Converts CudnnRNN params from canonical form to usable form. +// +// Writes a set of weights into the opaque params buffer so they can be used in +// upcoming training or inferences. +// +// Note that the params buffer may not be compatible across different GPUs. So any +// save and restoration should be converted to and from the canonical weights and +// biases. +// +// num_layers: Specifies the number of layers in the RNN model. +// num_units: Specifies the size of the hidden state. +// input_size: Specifies the size of the input state. +// weights: the canonical form of weights that can be used for saving +// and restoration. They are more likely to be compatible across different +// generations. +// biases: the canonical form of biases that can be used for saving +// and restoration. They are more likely to be compatible across different +// generations. +// num_params: number of parameter sets for all layers. +// Each layer may contain multiple parameter sets, with each set consisting of +// a weight matrix and a bias vector. +// rnn_mode: Indicates the type of the RNN model. +// input_mode: Indicate whether there is a linear projection between the input and +// The actual computation before the first layer. 'skip_input' is only allowed +// when input_size == num_units; 'auto_select' implies 'skip_input' when +// input_size == num_units; otherwise, it implies 'linear_input'. +// direction: Indicates whether a bidirectional model will be used. +// dir = (direction == bidirectional) ? 2 : 1 +// dropout: dropout probability. When set to 0., dropout is disabled. +// seed: the 1st part of a seed to initialize dropout. +// seed2: the 2nd part of a seed to initialize dropout. +func CudnnRNNCanonicalToParams(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, weights []tf.Output, biases []tf.Output, optional ...CudnnRNNCanonicalToParamsAttr) (params tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CudnnRNNCanonicalToParams", + Input: []tf.Input{ + num_layers, num_units, input_size, tf.OutputList(weights), tf.OutputList(biases), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ResourceApplyAdaMaxAttr is an optional argument to ResourceApplyAdaMax. +type ResourceApplyAdaMaxAttr func(optionalAttr) + +// ResourceApplyAdaMaxUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var, m, and v tensors will be protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceApplyAdaMaxUseLocking(value bool) ResourceApplyAdaMaxAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' according to the AdaMax algorithm. +// +// m_t <- beta1 * m_{t-1} + (1 - beta1) * g +// v_t <- max(beta2 * v_{t-1}, abs(g)) +// variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon) +// +// Arguments: +// var_: Should be from a Variable(). +// m: Should be from a Variable(). +// v: Should be from a Variable(). +// beta1_power: Must be a scalar. +// lr: Scaling factor. Must be a scalar. +// beta1: Momentum factor. Must be a scalar. +// beta2: Momentum factor. Must be a scalar. +// epsilon: Ridge term. Must be a scalar. +// grad: The gradient. +// +// Returns the created operation. +func ResourceApplyAdaMax(scope *Scope, var_ tf.Output, m tf.Output, v tf.Output, beta1_power tf.Output, lr tf.Output, beta1 tf.Output, beta2 tf.Output, epsilon tf.Output, grad tf.Output, optional ...ResourceApplyAdaMaxAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceApplyAdaMax", + Input: []tf.Input{ + var_, m, v, beta1_power, lr, beta1, beta2, epsilon, grad, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Component-wise multiplies a SparseTensor by a dense Tensor. +// +// The output locations corresponding to the implicitly zero elements in the sparse +// tensor will be zero (i.e., will not take up storage space), regardless of the +// contents of the dense tensor (even if it's +/-INF and that INF*0 == NaN). +// +// *Limitation*: this Op only broadcasts the dense side to the sparse side, but not +// the other direction. +// +// Arguments: +// sp_indices: 2-D. `N x R` matrix with the indices of non-empty values in a +// SparseTensor, possibly not in canonical ordering. +// sp_values: 1-D. `N` non-empty values corresponding to `sp_indices`. +// sp_shape: 1-D. Shape of the input SparseTensor. +// dense: `R`-D. The dense Tensor operand. +// +// Returns 1-D. The `N` values that are operated on. +func SparseDenseCwiseMul(scope *Scope, sp_indices tf.Output, sp_values tf.Output, sp_shape tf.Output, dense tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseDenseCwiseMul", + Input: []tf.Input{ + sp_indices, sp_values, sp_shape, dense, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // EnqueueTPUEmbeddingIntegerBatchAttr is an optional argument to EnqueueTPUEmbeddingIntegerBatch. type EnqueueTPUEmbeddingIntegerBatchAttr func(optionalAttr) @@ -25250,103 +25850,6 @@ func EnqueueTPUEmbeddingIntegerBatch(scope *Scope, batch []tf.Output, mode_overr return scope.AddOperation(opspec) } -// Pop the element at the top of the stack. -// -// Arguments: -// handle: The handle to a stack. -// elem_type: The type of the elem that is popped. -// -// Returns The tensor that is popped from the top of the stack. -func StackPopV2(scope *Scope, handle tf.Output, elem_type tf.DataType) (elem tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"elem_type": elem_type} - opspec := tf.OpSpec{ - Type: "StackPopV2", - Input: []tf.Input{ - handle, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// EnqueueTPUEmbeddingSparseBatchAttr is an optional argument to EnqueueTPUEmbeddingSparseBatch. -type EnqueueTPUEmbeddingSparseBatchAttr func(optionalAttr) - -// EnqueueTPUEmbeddingSparseBatchDeviceOrdinal sets the optional device_ordinal attribute to value. -// -// value: The TPU device to use. Should be >= 0 and less than the number -// of TPU cores in the task on which the node is placed. -// If not specified, defaults to -1 -func EnqueueTPUEmbeddingSparseBatchDeviceOrdinal(value int64) EnqueueTPUEmbeddingSparseBatchAttr { - return func(m optionalAttr) { - m["device_ordinal"] = value - } -} - -// EnqueueTPUEmbeddingSparseBatchCombiners sets the optional combiners attribute to value. -// -// value: A list of string scalars, one for each embedding table that specify -// how to normalize the embedding activations after weighted summation. -// Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have -// the sum of the weights be 0 for 'mean' or the sum of the squared weights be -// 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for -// all tables. -// If not specified, defaults to <> -func EnqueueTPUEmbeddingSparseBatchCombiners(value []string) EnqueueTPUEmbeddingSparseBatchAttr { - return func(m optionalAttr) { - m["combiners"] = value - } -} - -// An op that enqueues TPUEmbedding input indices from a SparseTensor. -// -// This Op eases the porting of code that uses embedding_lookup_sparse(), -// although some Python preprocessing of the SparseTensor arguments to -// embedding_lookup_sparse() is required to produce the arguments to this Op, -// since only a single EnqueueTPUEmbeddingSparseBatch Op is allowed per training -// step. -// -// The tensors at corresponding positions in the three input lists -// must have the same shape, i.e. rank 1 with dim_size() equal to the total -// number of lookups into the table described by the corresponding table_id. -// -// Arguments: -// sample_indices: A list of rank 1 Tensors specifying the training example and -// feature to which the corresponding embedding_indices and aggregation_weights -// values belong. sample_indices[i] must equal b * nf + f, where nf is the -// number of features from the corresponding table, f is in [0, nf), and -// b is in [0, batch size). -// embedding_indices: A list of rank 1 Tensors, indices into the embedding tables. -// aggregation_weights: A list of rank 1 Tensors containing per sample -- i.e. per -// (training example, feature) -- aggregation weights. -// mode_override: A string input that overrides the mode specified in the -// TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', -// 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set -// in TPUEmbeddingConfiguration is used, otherwise mode_override is used. -// -// Returns the created operation. -func EnqueueTPUEmbeddingSparseBatch(scope *Scope, sample_indices []tf.Output, embedding_indices []tf.Output, aggregation_weights []tf.Output, mode_override tf.Output, optional ...EnqueueTPUEmbeddingSparseBatchAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "EnqueueTPUEmbeddingSparseBatch", - Input: []tf.Input{ - tf.OutputList(sample_indices), tf.OutputList(embedding_indices), tf.OutputList(aggregation_weights), mode_override, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - // Computes gradients for the scaled exponential linear (Selu) operation. // // Arguments: @@ -25536,573 +26039,375 @@ func Substr(scope *Scope, input tf.Output, pos tf.Output, len tf.Output, optiona return op.Output(0) } -// EnqueueTPUEmbeddingSparseTensorBatchAttr is an optional argument to EnqueueTPUEmbeddingSparseTensorBatch. -type EnqueueTPUEmbeddingSparseTensorBatchAttr func(optionalAttr) +// StatefulStandardNormalV2Attr is an optional argument to StatefulStandardNormalV2. +type StatefulStandardNormalV2Attr func(optionalAttr) -// EnqueueTPUEmbeddingSparseTensorBatchDeviceOrdinal sets the optional device_ordinal attribute to value. +// StatefulStandardNormalV2Dtype sets the optional dtype attribute to value. // -// value: The TPU device to use. Should be >= 0 and less than the number -// of TPU cores in the task on which the node is placed. -// If not specified, defaults to -1 -func EnqueueTPUEmbeddingSparseTensorBatchDeviceOrdinal(value int64) EnqueueTPUEmbeddingSparseTensorBatchAttr { +// value: The type of the output. +// If not specified, defaults to DT_FLOAT +func StatefulStandardNormalV2Dtype(value tf.DataType) StatefulStandardNormalV2Attr { return func(m optionalAttr) { - m["device_ordinal"] = value + m["dtype"] = value } } -// EnqueueTPUEmbeddingSparseTensorBatchCombiners sets the optional combiners attribute to value. +// Outputs random values from a normal distribution. // -// value: A list of string scalars, one for each embedding table that specify -// how to normalize the embedding activations after weighted summation. -// Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have -// the sum of the weights be 0 for 'mean' or the sum of the squared weights be -// 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for -// all tables. -// If not specified, defaults to <> -func EnqueueTPUEmbeddingSparseTensorBatchCombiners(value []string) EnqueueTPUEmbeddingSparseTensorBatchAttr { - return func(m optionalAttr) { - m["combiners"] = value - } -} - -// EnqueueTPUEmbeddingSparseTensorBatchMaxSequenceLengths sets the optional max_sequence_lengths attribute to value. -// If not specified, defaults to <> -func EnqueueTPUEmbeddingSparseTensorBatchMaxSequenceLengths(value []int64) EnqueueTPUEmbeddingSparseTensorBatchAttr { - return func(m optionalAttr) { - m["max_sequence_lengths"] = value - } -} - -// Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). -// -// sample_indices[i], embedding_indices[i] and aggregation_weights[i] correspond -// to the ith feature. table_ids[i] indicates which embedding table to look up ith -// feature. -// -// The tensors at corresponding positions in the three input lists (sample_indices, -// embedding_indices and aggregation_weights) must have the same shape, i.e. rank 1 -// with dim_size() equal to the total number of lookups into the table described by -// the corresponding feature. +// The generated values will have mean 0 and standard deviation 1. // // Arguments: -// sample_indices: A list of rank 1 Tensors specifying the training example to -// which the corresponding embedding_indices and aggregation_weights values -// belong. It corresponds to sp_ids.indices[:,0] in embedding_lookup_sparse(). -// embedding_indices: A list of rank 1 Tensors, indices into the embedding tables. -// It corresponds to sp_ids.values in embedding_lookup_sparse(). -// aggregation_weights: A list of rank 1 Tensors containing per training example -// aggregation weights. It corresponds to sp_weights.values in -// embedding_lookup_sparse(). -// mode_override: A string input that overrides the mode specified in the -// TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', -// 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set -// in TPUEmbeddingConfiguration is used, otherwise mode_override is used. -// table_ids: A list of integers specifying the identifier of the embedding table -// (offset of TableDescriptor in the TPUEmbeddingConfiguration) to lookup the -// corresponding input. The ith input is looked up using table_ids[i]. The size -// of the table_ids list must be equal to that of sample_indices, -// embedding_indices and aggregation_weights. +// resource: The handle of the resource variable that stores the state of the RNG. +// algorithm: The RNG algorithm. +// shape: The shape of the output tensor. // -// Returns the created operation. -func EnqueueTPUEmbeddingSparseTensorBatch(scope *Scope, sample_indices []tf.Output, embedding_indices []tf.Output, aggregation_weights []tf.Output, mode_override tf.Output, table_ids []int64, optional ...EnqueueTPUEmbeddingSparseTensorBatchAttr) (o *tf.Operation) { +// Returns A tensor of the specified shape filled with random normal values. +func StatefulStandardNormalV2(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, optional ...StatefulStandardNormalV2Attr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"table_ids": table_ids} + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "EnqueueTPUEmbeddingSparseTensorBatch", + Type: "StatefulStandardNormalV2", Input: []tf.Input{ - tf.OutputList(sample_indices), tf.OutputList(embedding_indices), tf.OutputList(aggregation_weights), mode_override, + resource, algorithm, shape, }, Attrs: attrs, } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Table initializer that takes two tensors for keys and values respectively. +// +// Arguments: +// table_handle: Handle to a table which will be initialized. +// keys: Keys of type Tkey. +// values: Values of type Tval. +// +// Returns the created operation. +func InitializeTableV2(scope *Scope, table_handle tf.Output, keys tf.Output, values tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "InitializeTableV2", + Input: []tf.Input{ + table_handle, keys, values, + }, + } return scope.AddOperation(opspec) } -// An Op to sum inputs across replicated TPU instances. +// TruncatedNormalAttr is an optional argument to TruncatedNormal. +type TruncatedNormalAttr func(optionalAttr) + +// TruncatedNormalSeed sets the optional seed attribute to value. // -// Each instance supplies its own input. +// value: If either `seed` or `seed2` are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func TruncatedNormalSeed(value int64) TruncatedNormalAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// TruncatedNormalSeed2 sets the optional seed2 attribute to value. // -// For example, suppose there are 8 TPU instances: `[A, B, C, D, E, F, G, H]`. -// Passing group_assignment=`[[0,2,4,6],[1,3,5,7]]` sets `A, C, E, G` as group 0, -// and `B, D, F, H` as group 1. Thus we get the outputs: -// `[A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H]`. +// value: A second seed to avoid seed collision. +// If not specified, defaults to 0 +func TruncatedNormalSeed2(value int64) TruncatedNormalAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Outputs random values from a truncated normal distribution. +// +// The generated values follow a normal distribution with mean 0 and standard +// deviation 1, except that values whose magnitude is more than 2 standard +// deviations from the mean are dropped and re-picked. +// +// Arguments: +// shape: The shape of the output tensor. +// dtype: The type of the output. +// +// Returns A tensor of the specified shape filled with random truncated normal +// values. +func TruncatedNormal(scope *Scope, shape tf.Output, dtype tf.DataType, optional ...TruncatedNormalAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TruncatedNormal", + Input: []tf.Input{ + shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// An Op to exchange data across TPU replicas. +// +// On each replica, the input is split into `split_count` blocks along +// `split_dimension` and send to the other replicas given group_assignment. After +// receiving `split_count` - 1 blocks from other replicas, we concatenate the +// blocks along `concat_dimension` as the output. +// +// For example, suppose there are 2 TPU replicas: +// replica 0 receives input: `[[A, B]]` +// replica 1 receives input: `[[C, D]]` +// +// group_assignment=`[[0, 1]]` +// concat_dimension=0 +// split_dimension=1 +// split_count=2 +// +// replica 0's output: `[[A], [C]]` +// replica 1's output: `[[B], [D]]` // // Arguments: // input: The local input to the sum. // group_assignment: An int32 tensor with shape // [num_groups, num_replicas_per_group]. `group_assignment[i]` represents the // replica ids in the ith subgroup. +// concat_dimension: The dimension number to concatenate. +// split_dimension: The dimension number to split. +// split_count: The number of splits, this number must equal to the sub-group +// size(group_assignment.get_shape()[1]) // -// Returns The sum of all the distributed inputs. -func CrossReplicaSum(scope *Scope, input tf.Output, group_assignment tf.Output) (output tf.Output) { +// Returns The exchanged result. +func AllToAll(scope *Scope, input tf.Output, group_assignment tf.Output, concat_dimension int64, split_dimension int64, split_count int64) (output tf.Output) { if scope.Err() != nil { return } + attrs := map[string]interface{}{"concat_dimension": concat_dimension, "split_dimension": split_dimension, "split_count": split_count} opspec := tf.OpSpec{ - Type: "CrossReplicaSum", + Type: "AllToAll", Input: []tf.Input{ input, group_assignment, }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RegexReplaceAttr is an optional argument to RegexReplace. -type RegexReplaceAttr func(optionalAttr) - -// RegexReplaceReplaceGlobal sets the optional replace_global attribute to value. -// -// value: If True, the replacement is global (that is, all matches of the `pattern` regular -// expression in each input string are rewritten), otherwise the `rewrite` -// substitution is only made for the first `pattern` match. -// If not specified, defaults to true -func RegexReplaceReplaceGlobal(value bool) RegexReplaceAttr { - return func(m optionalAttr) { - m["replace_global"] = value - } -} - -// Replaces matches of the `pattern` regular expression in `input` with the -// replacement string provided in `rewrite`. -// -// It follows the re2 syntax (https://github.com/google/re2/wiki/Syntax) -// -// Arguments: -// input: The text to be processed. -// pattern: The regular expression to be matched in the `input` strings. -// rewrite: The rewrite string to be substituted for the `pattern` expression where it is -// matched in the `input` strings. -// -// Returns The text after applying pattern match and rewrite substitution. -func RegexReplace(scope *Scope, input tf.Output, pattern tf.Output, rewrite tf.Output, optional ...RegexReplaceAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RegexReplace", - Input: []tf.Input{ - input, pattern, rewrite, - }, Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } -// Returns a copy of the input tensor. -func Snapshot(scope *Scope, input tf.Output) (output tf.Output) { +// Updates the table to associates keys with values. +// +// The tensor `keys` must be of the same type as the keys of the table. +// The tensor `values` must be of the type of the table values. +// +// Arguments: +// table_handle: Handle to the table. +// keys: Any shape. Keys to look up. +// values: Values to associate with keys. +// +// Returns the created operation. +func LookupTableInsertV2(scope *Scope, table_handle tf.Output, keys tf.Output, values tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Snapshot", + Type: "LookupTableInsertV2", Input: []tf.Input{ - input, + table_handle, keys, values, + }, + } + return scope.AddOperation(opspec) +} + +// 2D real-valued fast Fourier transform. +// +// Computes the 2-dimensional discrete Fourier transform of a real-valued signal +// over the inner-most 2 dimensions of `input`. +// +// Since the DFT of a real signal is Hermitian-symmetric, `RFFT2D` only returns the +// `fft_length / 2 + 1` unique components of the FFT for the inner-most dimension +// of `output`: the zero-frequency term, followed by the `fft_length / 2` +// positive-frequency terms. +// +// Along each axis `RFFT2D` is computed on, if `fft_length` is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// +// Arguments: +// input: A float32 tensor. +// fft_length: An int32 tensor of shape [2]. The FFT length for each dimension. +// +// Returns A complex64 tensor of the same rank as `input`. The inner-most 2 +// dimensions of `input` are replaced with their 2D Fourier transform. The +// inner-most dimension contains `fft_length / 2 + 1` unique frequency +// components. +// +// @compatibility(numpy) +// Equivalent to np.fft.rfft2 +// @end_compatibility +func RFFT2D(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "RFFT2D", + Input: []tf.Input{ + input, fft_length, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// Adds Tensor 'bias' to Tensor 'input' for Quantized types. +// An Op to permute tensors across replicated TPU instances. // -// Broadcasts the values of bias on dimensions 0..N-2 of 'input'. +// Each instance supplies its own input. +// +// For example, suppose there are 4 TPU instances: `[A, B, C, D]`. Passing +// source_target_pairs=`[[0,1],[1,2],[2,3],[3,0]]` gets the outputs: +// `[D, A, B, C]`. // // Arguments: +// input: The local input to be permuted. Currently only supports float and +// bfloat16. +// source_target_pairs: A tensor with shape [num_pairs, 2]. // -// bias: A 1D bias Tensor with size matching the last dimension of 'input'. -// min_input: The float value that the lowest quantized input value represents. -// max_input: The float value that the highest quantized input value represents. -// min_bias: The float value that the lowest quantized bias value represents. -// max_bias: The float value that the highest quantized bias value represents. -// -// -// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. -func QuantizedBiasAdd(scope *Scope, input tf.Output, bias tf.Output, min_input tf.Output, max_input tf.Output, min_bias tf.Output, max_bias tf.Output, out_type tf.DataType) (output tf.Output, min_out tf.Output, max_out tf.Output) { +// Returns The permuted input. +func CollectivePermute(scope *Scope, input tf.Output, source_target_pairs tf.Output) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"out_type": out_type} opspec := tf.OpSpec{ - Type: "QuantizedBiasAdd", + Type: "CollectivePermute", Input: []tf.Input{ - input, bias, min_input, max_input, min_bias, max_bias, + input, source_target_pairs, }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes hyperbolic sine of x element-wise. +func Sinh(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Sinh", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Compute the pairwise cross product. +// +// `a` and `b` must be the same shape; they can either be simple 3-element vectors, +// or any shape where the innermost dimension is 3. In the latter case, each pair +// of corresponding 3-element vectors is cross-multiplied independently. +// +// Arguments: +// a: A tensor containing 3-element vectors. +// b: Another tensor, of same type and shape as `a`. +// +// Returns Pairwise cross product of the vectors in `a` and `b`. +func Cross(scope *Scope, a tf.Output, b tf.Output) (product tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Cross", + Input: []tf.Input{ + a, b, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Increments variable pointed to by 'resource' until it reaches 'limit'. +// +// Arguments: +// resource: Should be from a scalar `Variable` node. +// limit: If incrementing ref would bring it above limit, instead generates an +// 'OutOfRange' error. +// +// +// Returns A copy of the input before increment. If nothing else modifies the +// input, the values produced will all be distinct. +func ResourceCountUpTo(scope *Scope, resource tf.Output, limit int64, T tf.DataType) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"limit": limit, "T": T} + opspec := tf.OpSpec{ + Type: "ResourceCountUpTo", + Input: []tf.Input{ + resource, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug. +type RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr func(optionalAttr) + +// RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Retrieve proximal Adagrad embedding parameters with debug support. +// +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. +// +// Returns Parameter parameters updated by the proximal Adagrad optimization algorithm.Parameter accumulators updated by the proximal Adagrad optimization algorithm.Parameter gradient_accumulators updated by the proximal Adagrad optimization algorithm. +func RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr) (parameters tf.Output, accumulators tf.Output, gradient_accumulators tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug", + Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0), op.Output(1), op.Output(2) } -// AvgPool3DAttr is an optional argument to AvgPool3D. -type AvgPool3DAttr func(optionalAttr) - -// AvgPool3DDataFormat sets the optional data_format attribute to value. -// -// value: The data format of the input and output data. With the -// default format "NDHWC", the data is stored in the order of: -// [batch, in_depth, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCDHW", the data storage order is: -// [batch, in_channels, in_depth, in_height, in_width]. -// If not specified, defaults to "NDHWC" -func AvgPool3DDataFormat(value string) AvgPool3DAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Performs 3D average pooling on the input. -// -// Arguments: -// input: Shape `[batch, depth, rows, cols, channels]` tensor to pool over. -// ksize: 1-D tensor of length 5. The size of the window for each dimension of -// the input tensor. Must have `ksize[0] = ksize[4] = 1`. -// strides: 1-D tensor of length 5. The stride of the sliding window for each -// dimension of `input`. Must have `strides[0] = strides[4] = 1`. -// padding: The type of padding algorithm to use. -// -// Returns The average pooled output tensor. -func AvgPool3D(scope *Scope, input tf.Output, ksize []int64, strides []int64, padding string, optional ...AvgPool3DAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AvgPool3D", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Decodes a `variant` Tensor into a `RaggedTensor`. -// -// Decodes the given `variant` Tensor and returns a `RaggedTensor`. The input -// could be a scalar, meaning it encodes a single `RaggedTensor` with ragged_rank -// `input_ragged_rank`. It could also have an arbitrary rank, in which case each -// element is decoded into a `RaggedTensor` with ragged_rank `input_ragged_rank` -// and these are then stacked according to the input shape to output a single -// `RaggedTensor` with ragged_rank `output_ragged_rank`. Each `variant` element in -// the input Tensor is decoded by retrieving from the element a 1-D `variant` -// Tensor with `input_ragged_rank + 1` Tensors, corresponding to the splits and -// values of the decoded `RaggedTensor`. See `RaggedTensorToVariant` for the -// corresponding encoding logic. -// -// -// Arguments: -// encoded_ragged: A `variant` Tensor containing encoded `RaggedTensor`s. -// input_ragged_rank: The ragged rank of each encoded `RaggedTensor` component in the input. -// output_ragged_rank: The expected ragged rank of the output `RaggedTensor`. The following must hold: -// `rank(encoded_ragged) = output_ragged_rank - input_ragged_rank`. -// -// -// -// Returns A list of one or more Tensors representing the splits of the output -// `RaggedTensor`.A Tensor representing the values of the output `RaggedTensor`. -func RaggedTensorFromVariant(scope *Scope, encoded_ragged tf.Output, input_ragged_rank int64, output_ragged_rank int64, Tvalues tf.DataType, Tsplits tf.DataType) (output_nested_splits []tf.Output, output_dense_values tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"input_ragged_rank": input_ragged_rank, "output_ragged_rank": output_ragged_rank, "Tvalues": Tvalues, "Tsplits": Tsplits} - opspec := tf.OpSpec{ - Type: "RaggedTensorFromVariant", - Input: []tf.Input{ - encoded_ragged, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if output_nested_splits, idx, err = makeOutputList(op, idx, "output_nested_splits"); err != nil { - scope.UpdateErr("RaggedTensorFromVariant", err) - return - } - output_dense_values = op.Output(idx) - return output_nested_splits, output_dense_values -} - -// StringToNumberAttr is an optional argument to StringToNumber. -type StringToNumberAttr func(optionalAttr) - -// StringToNumberOutType sets the optional out_type attribute to value. -// -// value: The numeric type to interpret each string in `string_tensor` as. -// If not specified, defaults to DT_FLOAT -func StringToNumberOutType(value tf.DataType) StringToNumberAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// Converts each string in the input Tensor to the specified numeric type. -// -// (Note that int32 overflow results in an error while float overflow -// results in a rounded value.) -// -// Returns A Tensor of the same shape as the input `string_tensor`. -func StringToNumber(scope *Scope, string_tensor tf.Output, optional ...StringToNumberAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StringToNumber", - Input: []tf.Input{ - string_tensor, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// DataFormatDimMapAttr is an optional argument to DataFormatDimMap. -type DataFormatDimMapAttr func(optionalAttr) - -// DataFormatDimMapSrcFormat sets the optional src_format attribute to value. -// -// value: source data format. -// If not specified, defaults to "NHWC" -func DataFormatDimMapSrcFormat(value string) DataFormatDimMapAttr { - return func(m optionalAttr) { - m["src_format"] = value - } -} - -// DataFormatDimMapDstFormat sets the optional dst_format attribute to value. -// -// value: destination data format. -// If not specified, defaults to "NCHW" -func DataFormatDimMapDstFormat(value string) DataFormatDimMapAttr { - return func(m optionalAttr) { - m["dst_format"] = value - } -} - -// Returns the dimension index in the destination data format given the one in -// -// the source data format. -// -// Arguments: -// x: A Tensor with each element as a dimension index in source data format. -// Must be in the range [-4, 4). -// -// Returns A Tensor with each element as a dimension index in destination data format. -func DataFormatDimMap(scope *Scope, x tf.Output, optional ...DataFormatDimMapAttr) (y tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "DataFormatDimMap", - Input: []tf.Input{ - x, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Interleave the values from the `data` tensors into a single tensor. -// -// Builds a merged tensor such that -// -// ```python -// merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...] -// ``` -// -// For example, if each `indices[m]` is scalar or vector, we have -// -// ```python -// # Scalar indices: -// merged[indices[m], ...] = data[m][...] -// -// # Vector indices: -// merged[indices[m][i], ...] = data[m][i, ...] -// ``` -// -// Each `data[i].shape` must start with the corresponding `indices[i].shape`, -// and the rest of `data[i].shape` must be constant w.r.t. `i`. That is, we -// must have `data[i].shape = indices[i].shape + constant`. In terms of this -// `constant`, the output shape is -// -// merged.shape = [max(indices)] + constant -// -// Values are merged in order, so if an index appears in both `indices[m][i]` and -// `indices[n][j]` for `(m,i) < (n,j)` the slice `data[n][j]` will appear in the -// merged result. If you do not need this guarantee, ParallelDynamicStitch might -// perform better on some devices. -// -// For example: -// -// ```python -// indices[0] = 6 -// indices[1] = [4, 1] -// indices[2] = [[5, 2], [0, 3]] -// data[0] = [61, 62] -// data[1] = [[41, 42], [11, 12]] -// data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]] -// merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42], -// [51, 52], [61, 62]] -// ``` -// -// This method can be used to merge partitions created by `dynamic_partition` -// as illustrated on the following example: -// -// ```python -// # Apply function (increments x_i) on elements for which a certain condition -// # apply (x_i != -1 in this example). -// x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4]) -// condition_mask=tf.not_equal(x,tf.constant(-1.)) -// partitioned_data = tf.dynamic_partition( -// x, tf.cast(condition_mask, tf.int32) , 2) -// partitioned_data[1] = partitioned_data[1] + 1.0 -// condition_indices = tf.dynamic_partition( -// tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2) -// x = tf.dynamic_stitch(condition_indices, partitioned_data) -// # Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain -// # unchanged. -// ``` -// -//
-// -//
-func DynamicStitch(scope *Scope, indices []tf.Output, data []tf.Output) (merged tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "DynamicStitch", - Input: []tf.Input{ - tf.OutputList(indices), tf.OutputList(data), - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ArgMaxAttr is an optional argument to ArgMax. -type ArgMaxAttr func(optionalAttr) - -// ArgMaxOutputType sets the optional output_type attribute to value. -// If not specified, defaults to DT_INT64 -func ArgMaxOutputType(value tf.DataType) ArgMaxAttr { - return func(m optionalAttr) { - m["output_type"] = value - } -} - -// Returns the index with the largest value across dimensions of a tensor. -// -// Note that in case of ties the identity of the return value is not guaranteed. -// -// Usage: -// ```python -// import tensorflow as tf -// a = [1, 10, 26.9, 2.8, 166.32, 62.3] -// b = tf.math.argmax(input = a) -// c = tf.keras.backend.eval(b) -// # c = 4 -// # here a[4] = 166.32 which is the largest element of a across axis 0 -// ``` -// -// Arguments: -// -// dimension: int32 or int64, must be in the range `[-rank(input), rank(input))`. -// Describes which dimension of the input Tensor to reduce across. For vectors, -// use dimension = 0. -func ArgMax(scope *Scope, input tf.Output, dimension tf.Output, optional ...ArgMaxAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ArgMax", - Input: []tf.Input{ - input, dimension, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceSparseApplyProximalGradientDescentAttr is an optional argument to ResourceSparseApplyProximalGradientDescent. -type ResourceSparseApplyProximalGradientDescentAttr func(optionalAttr) - -// ResourceSparseApplyProximalGradientDescentUseLocking sets the optional use_locking attribute to value. -// -// value: If True, the subtraction will be protected by a lock; -// otherwise the behavior is undefined, but may exhibit less contention. -// If not specified, defaults to false -func ResourceSparseApplyProximalGradientDescentUseLocking(value bool) ResourceSparseApplyProximalGradientDescentAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Sparse update '*var' as FOBOS algorithm with fixed learning rate. -// -// That is for rows we have grad for, we update var as follows: -// prox_v = var - alpha * grad -// var = sign(prox_v)/(1+alpha*l2) * max{|prox_v|-alpha*l1,0} -// -// Arguments: -// var_: Should be from a Variable(). -// alpha: Scaling factor. Must be a scalar. -// l1: L1 regularization. Must be a scalar. -// l2: L2 regularization. Must be a scalar. -// grad: The gradient. -// indices: A vector of indices into the first dimension of var and accum. -// -// Returns the created operation. -func ResourceSparseApplyProximalGradientDescent(scope *Scope, var_ tf.Output, alpha tf.Output, l1 tf.Output, l2 tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyProximalGradientDescentAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceSparseApplyProximalGradientDescent", - Input: []tf.Input{ - var_, alpha, l1, l2, grad, indices, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - // ReduceJoinAttr is an optional argument to ReduceJoin. type ReduceJoinAttr func(optionalAttr) @@ -26179,152 +26484,71 @@ func ReduceJoin(scope *Scope, inputs tf.Output, reduction_indices tf.Output, opt return op.Output(0) } -// A container for an iterator resource. +// Computes square root of x element-wise. // -// Returns A handle to the iterator that can be passed to a "MakeIterator" -// or "IteratorGetNext" op. -func Iterator(scope *Scope, shared_name string, container string, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { +// I.e., \\(y = \sqrt{x} = x^{1/2}\\). +func Sqrt(scope *Scope, x tf.Output) (y tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"shared_name": shared_name, "container": container, "output_types": output_types, "output_shapes": output_shapes} opspec := tf.OpSpec{ - Type: "Iterator", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Increments variable pointed to by 'resource' until it reaches 'limit'. -// -// Arguments: -// resource: Should be from a scalar `Variable` node. -// limit: If incrementing ref would bring it above limit, instead generates an -// 'OutOfRange' error. -// -// -// Returns A copy of the input before increment. If nothing else modifies the -// input, the values produced will all be distinct. -func ResourceCountUpTo(scope *Scope, resource tf.Output, limit int64, T tf.DataType) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"limit": limit, "T": T} - opspec := tf.OpSpec{ - Type: "ResourceCountUpTo", + Type: "Sqrt", Input: []tf.Input{ - resource, + x, }, - Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } -// Replaces the contents of the table with the specified keys and values. +// ResourceSparseApplyCenteredRMSPropAttr is an optional argument to ResourceSparseApplyCenteredRMSProp. +type ResourceSparseApplyCenteredRMSPropAttr func(optionalAttr) + +// ResourceSparseApplyCenteredRMSPropUseLocking sets the optional use_locking attribute to value. // -// The tensor `keys` must be of the same type as the keys of the table. -// The tensor `values` must be of the type of the table values. +// value: If `True`, updating of the var, mg, ms, and mom tensors is +// protected by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceSparseApplyCenteredRMSPropUseLocking(value bool) ResourceSparseApplyCenteredRMSPropAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' according to the centered RMSProp algorithm. +// +// The centered RMSProp algorithm uses an estimate of the centered second moment +// (i.e., the variance) for normalization, as opposed to regular RMSProp, which +// uses the (uncentered) second moment. This often helps with training, but is +// slightly more expensive in terms of computation and memory. +// +// Note that in dense implementation of this algorithm, mg, ms, and mom will +// update even if the grad is zero, but in this sparse implementation, mg, ms, +// and mom will not update in iterations during which the grad is zero. +// +// mean_square = decay * mean_square + (1-decay) * gradient ** 2 +// mean_grad = decay * mean_grad + (1-decay) * gradient +// Delta = learning_rate * gradient / sqrt(mean_square + epsilon - mean_grad ** 2) +// +// ms <- rho * ms_{t-1} + (1-rho) * grad * grad +// mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) +// var <- var - mom // // Arguments: -// table_handle: Handle to the table. -// keys: Any shape. Keys to look up. -// values: Values to associate with keys. +// var_: Should be from a Variable(). +// mg: Should be from a Variable(). +// ms: Should be from a Variable(). +// mom: Should be from a Variable(). +// lr: Scaling factor. Must be a scalar. +// rho: Decay rate. Must be a scalar. +// +// epsilon: Ridge term. Must be a scalar. +// grad: The gradient. +// indices: A vector of indices into the first dimension of var, ms and mom. // // Returns the created operation. -func LookupTableImportV2(scope *Scope, table_handle tf.Output, keys tf.Output, values tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "LookupTableImportV2", - Input: []tf.Input{ - table_handle, keys, values, - }, - } - return scope.AddOperation(opspec) -} - -// An Op to permute tensors across replicated TPU instances. -// -// Each instance supplies its own input. -// -// For example, suppose there are 4 TPU instances: `[A, B, C, D]`. Passing -// source_target_pairs=`[[0,1],[1,2],[2,3],[3,0]]` gets the outputs: -// `[D, A, B, C]`. -// -// Arguments: -// input: The local input to be permuted. Currently only supports float and -// bfloat16. -// source_target_pairs: A tensor with shape [num_pairs, 2]. -// -// Returns The permuted input. -func CollectivePermute(scope *Scope, input tf.Output, source_target_pairs tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "CollectivePermute", - Input: []tf.Input{ - input, source_target_pairs, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns the element-wise min of two SparseTensors. -// -// Assumes the two SparseTensors have the same shape, i.e., no broadcasting. -// -// Arguments: -// a_indices: 2-D. `N x R` matrix with the indices of non-empty values in a -// SparseTensor, in the canonical lexicographic ordering. -// a_values: 1-D. `N` non-empty values corresponding to `a_indices`. -// a_shape: 1-D. Shape of the input SparseTensor. -// b_indices: counterpart to `a_indices` for the other operand. -// b_values: counterpart to `a_values` for the other operand; must be of the same dtype. -// b_shape: counterpart to `a_shape` for the other operand; the two shapes must be equal. -// -// Returns 2-D. The indices of the output SparseTensor.1-D. The values of the output SparseTensor. -func SparseSparseMinimum(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b_indices tf.Output, b_values tf.Output, b_shape tf.Output) (output_indices tf.Output, output_values tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSparseMinimum", - Input: []tf.Input{ - a_indices, a_values, a_shape, b_indices, b_values, b_shape, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// StringJoinAttr is an optional argument to StringJoin. -type StringJoinAttr func(optionalAttr) - -// StringJoinSeparator sets the optional separator attribute to value. -// -// value: string, an optional join separator. -// If not specified, defaults to "" -func StringJoinSeparator(value string) StringJoinAttr { - return func(m optionalAttr) { - m["separator"] = value - } -} - -// Joins the strings in the given list of string tensors into one tensor; -// -// with the given separator (default is an empty separator). -// -// Arguments: -// inputs: A list of string tensors. The tensors must all have the same shape, -// or be scalars. Scalars may be mixed in; these will be broadcast to the shape -// of non-scalar inputs. -func StringJoin(scope *Scope, inputs []tf.Output, optional ...StringJoinAttr) (output tf.Output) { +func ResourceSparseApplyCenteredRMSProp(scope *Scope, var_ tf.Output, mg tf.Output, ms tf.Output, mom tf.Output, lr tf.Output, rho tf.Output, momentum tf.Output, epsilon tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyCenteredRMSPropAttr) (o *tf.Operation) { if scope.Err() != nil { return } @@ -26333,7 +26557,416 @@ func StringJoin(scope *Scope, inputs []tf.Output, optional ...StringJoinAttr) (o a(attrs) } opspec := tf.OpSpec{ - Type: "StringJoin", + Type: "ResourceSparseApplyCenteredRMSProp", + Input: []tf.Input{ + var_, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// ResourceApplyAddSignAttr is an optional argument to ResourceApplyAddSign. +type ResourceApplyAddSignAttr func(optionalAttr) + +// ResourceApplyAddSignUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var and m tensors is +// protected by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceApplyAddSignUseLocking(value bool) ResourceApplyAddSignAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' according to the AddSign update. +// +// m_t <- beta1 * m_{t-1} + (1 - beta1) * g +// update <- (alpha + sign_decay * sign(g) *sign(m)) * g +// variable <- variable - lr_t * update +// +// Arguments: +// var_: Should be from a Variable(). +// m: Should be from a Variable(). +// lr: Scaling factor. Must be a scalar. +// alpha: Must be a scalar. +// sign_decay: Must be a scalar. +// beta: Must be a scalar. +// grad: The gradient. +// +// Returns the created operation. +func ResourceApplyAddSign(scope *Scope, var_ tf.Output, m tf.Output, lr tf.Output, alpha tf.Output, sign_decay tf.Output, beta tf.Output, grad tf.Output, optional ...ResourceApplyAddSignAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceApplyAddSign", + Input: []tf.Input{ + var_, m, lr, alpha, sign_decay, beta, grad, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// LoadTPUEmbeddingMDLAdagradLightParametersAttr is an optional argument to LoadTPUEmbeddingMDLAdagradLightParameters. +type LoadTPUEmbeddingMDLAdagradLightParametersAttr func(optionalAttr) + +// LoadTPUEmbeddingMDLAdagradLightParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingMDLAdagradLightParametersTableId(value int64) LoadTPUEmbeddingMDLAdagradLightParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingMDLAdagradLightParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingMDLAdagradLightParametersTableName(value string) LoadTPUEmbeddingMDLAdagradLightParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load MDL Adagrad Light embedding parameters. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the MDL Adagrad Light optimization algorithm. +// accumulators: Value of accumulators used in the MDL Adagrad Light optimization algorithm. +// weights: Value of weights used in the MDL Adagrad Light optimization algorithm. +// benefits: Value of benefits used in the MDL Adagrad Light optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingMDLAdagradLightParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, weights tf.Output, benefits tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingMDLAdagradLightParametersAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingMDLAdagradLightParameters", + Input: []tf.Input{ + parameters, accumulators, weights, benefits, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// RegexReplaceAttr is an optional argument to RegexReplace. +type RegexReplaceAttr func(optionalAttr) + +// RegexReplaceReplaceGlobal sets the optional replace_global attribute to value. +// +// value: If True, the replacement is global (that is, all matches of the `pattern` regular +// expression in each input string are rewritten), otherwise the `rewrite` +// substitution is only made for the first `pattern` match. +// If not specified, defaults to true +func RegexReplaceReplaceGlobal(value bool) RegexReplaceAttr { + return func(m optionalAttr) { + m["replace_global"] = value + } +} + +// Replaces matches of the `pattern` regular expression in `input` with the +// replacement string provided in `rewrite`. +// +// It follows the re2 syntax (https://github.com/google/re2/wiki/Syntax) +// +// Arguments: +// input: The text to be processed. +// pattern: The regular expression to be matched in the `input` strings. +// rewrite: The rewrite string to be substituted for the `pattern` expression where it is +// matched in the `input` strings. +// +// Returns The text after applying pattern match and rewrite substitution. +func RegexReplace(scope *Scope, input tf.Output, pattern tf.Output, rewrite tf.Output, optional ...RegexReplaceAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RegexReplace", + Input: []tf.Input{ + input, pattern, rewrite, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// StringToNumberAttr is an optional argument to StringToNumber. +type StringToNumberAttr func(optionalAttr) + +// StringToNumberOutType sets the optional out_type attribute to value. +// +// value: The numeric type to interpret each string in `string_tensor` as. +// If not specified, defaults to DT_FLOAT +func StringToNumberOutType(value tf.DataType) StringToNumberAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// Converts each string in the input Tensor to the specified numeric type. +// +// (Note that int32 overflow results in an error while float overflow +// results in a rounded value.) +// +// Returns A Tensor of the same shape as the input `string_tensor`. +func StringToNumber(scope *Scope, string_tensor tf.Output, optional ...StringToNumberAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StringToNumber", + Input: []tf.Input{ + string_tensor, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ResourceApplyAdamWithAmsgradAttr is an optional argument to ResourceApplyAdamWithAmsgrad. +type ResourceApplyAdamWithAmsgradAttr func(optionalAttr) + +// ResourceApplyAdamWithAmsgradUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var, m, and v tensors will be protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceApplyAdamWithAmsgradUseLocking(value bool) ResourceApplyAdamWithAmsgradAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' according to the Adam algorithm. +// +// $$lr_t := \text{learning\_rate} * \sqrt{1 - beta_2^t} / (1 - beta_1^t)$$ +// $$m_t := beta_1 * m_{t-1} + (1 - beta_1) * g$$ +// $$v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g$$ +// $$vhat_t := max{vhat_{t-1}, v_t}$$ +// $$variable := variable - lr_t * m_t / (\sqrt{vhat_t} + \epsilon)$$ +// +// Arguments: +// var_: Should be from a Variable(). +// m: Should be from a Variable(). +// v: Should be from a Variable(). +// vhat: Should be from a Variable(). +// beta1_power: Must be a scalar. +// beta2_power: Must be a scalar. +// lr: Scaling factor. Must be a scalar. +// beta1: Momentum factor. Must be a scalar. +// beta2: Momentum factor. Must be a scalar. +// epsilon: Ridge term. Must be a scalar. +// grad: The gradient. +// +// Returns the created operation. +func ResourceApplyAdamWithAmsgrad(scope *Scope, var_ tf.Output, m tf.Output, v tf.Output, vhat tf.Output, beta1_power tf.Output, beta2_power tf.Output, lr tf.Output, beta1 tf.Output, beta2 tf.Output, epsilon tf.Output, grad tf.Output, optional ...ResourceApplyAdamWithAmsgradAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceApplyAdamWithAmsgrad", + Input: []tf.Input{ + var_, m, v, vhat, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// 3D real-valued fast Fourier transform. +// +// Computes the 3-dimensional discrete Fourier transform of a real-valued signal +// over the inner-most 3 dimensions of `input`. +// +// Since the DFT of a real signal is Hermitian-symmetric, `RFFT3D` only returns the +// `fft_length / 2 + 1` unique components of the FFT for the inner-most dimension +// of `output`: the zero-frequency term, followed by the `fft_length / 2` +// positive-frequency terms. +// +// Along each axis `RFFT3D` is computed on, if `fft_length` is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// +// Arguments: +// input: A float32 tensor. +// fft_length: An int32 tensor of shape [3]. The FFT length for each dimension. +// +// Returns A complex64 tensor of the same rank as `input`. The inner-most 3 +// dimensions of `input` are replaced with the their 3D Fourier transform. The +// inner-most dimension contains `fft_length / 2 + 1` unique frequency +// components. +// +// @compatibility(numpy) +// Equivalent to np.fft.rfftn with 3 dimensions. +// @end_compatibility +func RFFT3D(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "RFFT3D", + Input: []tf.Input{ + input, fft_length, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// DecodeCompressedAttr is an optional argument to DecodeCompressed. +type DecodeCompressedAttr func(optionalAttr) + +// DecodeCompressedCompressionType sets the optional compression_type attribute to value. +// +// value: A scalar containing either (i) the empty string (no +// compression), (ii) "ZLIB", or (iii) "GZIP". +// If not specified, defaults to "" +func DecodeCompressedCompressionType(value string) DecodeCompressedAttr { + return func(m optionalAttr) { + m["compression_type"] = value + } +} + +// Decompress strings. +// +// This op decompresses each element of the `bytes` input `Tensor`, which +// is assumed to be compressed using the given `compression_type`. +// +// The `output` is a string `Tensor` of the same shape as `bytes`, +// each element containing the decompressed data from the corresponding +// element in `bytes`. +// +// Arguments: +// bytes: A Tensor of string which is compressed. +// +// Returns A Tensor with the same shape as input `bytes`, uncompressed +// from bytes. +func DecodeCompressed(scope *Scope, bytes tf.Output, optional ...DecodeCompressedAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DecodeCompressed", + Input: []tf.Input{ + bytes, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Identity op for gradient debugging. +// +// This op is hidden from public in Python. It is used by TensorFlow Debugger to +// register gradient tensors for gradient debugging. +// This op operates on non-reference-type tensors. +func DebugGradientIdentity(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "DebugGradientIdentity", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// StringFormatAttr is an optional argument to StringFormat. +type StringFormatAttr func(optionalAttr) + +// StringFormatTemplate sets the optional template attribute to value. +// +// value: A string, the template to format tensor summaries into. +// If not specified, defaults to "%s" +func StringFormatTemplate(value string) StringFormatAttr { + return func(m optionalAttr) { + m["template"] = value + } +} + +// StringFormatPlaceholder sets the optional placeholder attribute to value. +// +// value: A string, at each placeholder in the template a subsequent tensor summary will be inserted. +// If not specified, defaults to "%s" +func StringFormatPlaceholder(value string) StringFormatAttr { + return func(m optionalAttr) { + m["placeholder"] = value + } +} + +// StringFormatSummarize sets the optional summarize attribute to value. +// +// value: When formatting the tensor summaries print the first and last summarize entries of each tensor dimension. +// If not specified, defaults to 3 +func StringFormatSummarize(value int64) StringFormatAttr { + return func(m optionalAttr) { + m["summarize"] = value + } +} + +// Formats a string template using a list of tensors. +// +// Formats a string template using a list of tensors, pretty-printing tensor summaries. +// +// Arguments: +// inputs: The list of tensors to format into the placeholder string. +// +// Returns = The resulting string scalar. +func StringFormat(scope *Scope, inputs []tf.Output, optional ...StringFormatAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StringFormat", Input: []tf.Input{ tf.OutputList(inputs), }, @@ -26343,124 +26976,271 @@ func StringJoin(scope *Scope, inputs []tf.Output, optional ...StringJoinAttr) (o return op.Output(0) } -// Returns 0 if the denominator is zero. +// A placeholder op for a value that will be fed into the computation. // +// DEPRECATED at GraphDef version 23: Placeholder now behaves the same as PlaceholderV2. // -// *NOTE*: `DivNoNan` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func DivNoNan(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { +// N.B. This operation will fail with an error if it is executed. It is +// intended as a way to represent a value that will always be fed, and to +// provide attrs that enable the fed value to be checked at runtime. +// +// Arguments: +// dtype: The type of elements in the tensor. +// shape: The shape of the tensor. The shape can be any partially-specified +// shape. To be unconstrained, pass in a shape with unknown rank. +// +// Returns A placeholder tensor that must be replaced using the feed mechanism. +func PlaceholderV2(scope *Scope, dtype tf.DataType, shape tf.Shape) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype, "shape": shape} + opspec := tf.OpSpec{ + Type: "PlaceholderV2", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// PlaceholderAttr is an optional argument to Placeholder. +type PlaceholderAttr func(optionalAttr) + +// PlaceholderShape sets the optional shape attribute to value. +// +// value: (Optional) The shape of the tensor. If the shape has 0 dimensions, the +// shape is unconstrained. +// If not specified, defaults to +func PlaceholderShape(value tf.Shape) PlaceholderAttr { + return func(m optionalAttr) { + m["shape"] = value + } +} + +// A placeholder op for a value that will be fed into the computation. +// +// N.B. This operation will fail with an error if it is executed. It is +// intended as a way to represent a value that will always be fed, and to +// provide attrs that enable the fed value to be checked at runtime. +// +// Arguments: +// dtype: The type of elements in the tensor. +// +// Returns A placeholder tensor that must be replaced using the feed mechanism. +func Placeholder(scope *Scope, dtype tf.DataType, optional ...PlaceholderAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Placeholder", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Bucketizes 'input' based on 'boundaries'. +// +// For example, if the inputs are +// boundaries = [0, 10, 100] +// input = [[-5, 10000] +// [150, 10] +// [5, 100]] +// +// then the output will be +// output = [[0, 3] +// [3, 2] +// [1, 3]] +// +// Arguments: +// input: Any shape of Tensor contains with int or float type. +// boundaries: A sorted list of floats gives the boundary of the buckets. +// +// Returns Same shape with 'input', each value of input replaced with bucket index. +// +// @compatibility(numpy) +// Equivalent to np.digitize. +// @end_compatibility +func Bucketize(scope *Scope, input tf.Output, boundaries []float32) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"boundaries": boundaries} + opspec := tf.OpSpec{ + Type: "Bucketize", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// The gradient operator for the SparseSlice op. +// +// This op takes in the upstream gradient w.r.t. non-empty values of +// the sliced `SparseTensor`, and outputs the gradients w.r.t. +// the non-empty values of input `SparseTensor`. +// +// Arguments: +// backprop_val_grad: 1-D. The gradient with respect to +// the non-empty values of the sliced `SparseTensor`. +// input_indices: 2-D. The `indices` of the input `SparseTensor`. +// input_start: 1-D. tensor represents the start of the slice. +// output_indices: 2-D. The `indices` of the sliced `SparseTensor`. +// +// Returns 1-D. The gradient with respect to the non-empty values of input `SparseTensor`. +func SparseSliceGrad(scope *Scope, backprop_val_grad tf.Output, input_indices tf.Output, input_start tf.Output, output_indices tf.Output) (val_grad tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "DivNoNan", + Type: "SparseSliceGrad", Input: []tf.Input{ - x, y, + backprop_val_grad, input_indices, input_start, output_indices, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// ExtractGlimpseAttr is an optional argument to ExtractGlimpse. -type ExtractGlimpseAttr func(optionalAttr) - -// ExtractGlimpseCentered sets the optional centered attribute to value. +// A TPU core selector Op. // -// value: indicates if the offset coordinates are centered relative to -// the image, in which case the (0, 0) offset is relative to the center -// of the input images. If false, the (0,0) offset corresponds to the -// upper left corner of the input images. -// If not specified, defaults to true -func ExtractGlimpseCentered(value bool) ExtractGlimpseAttr { - return func(m optionalAttr) { - m["centered"] = value - } -} - -// ExtractGlimpseNormalized sets the optional normalized attribute to value. +// This Op produces a set of TPU cores (for warm-up) or a single TPU core +// (for regular inference) to execute the TPU program on. The output is +// consumed by TPUPartitionedCall. // -// value: indicates if the offset coordinates are normalized. -// If not specified, defaults to true -func ExtractGlimpseNormalized(value bool) ExtractGlimpseAttr { - return func(m optionalAttr) { - m["normalized"] = value - } -} - -// ExtractGlimpseUniformNoise sets the optional uniform_noise attribute to value. -// -// value: indicates if the noise should be generated using a -// uniform distribution or a Gaussian distribution. -// If not specified, defaults to true -func ExtractGlimpseUniformNoise(value bool) ExtractGlimpseAttr { - return func(m optionalAttr) { - m["uniform_noise"] = value - } -} - -// ExtractGlimpseNoise sets the optional noise attribute to value. -// -// value: indicates if the noise should `uniform`, `gaussian`, or -// `zero`. The default is `uniform` which means the the noise type -// will be decided by `uniform_noise`. -// If not specified, defaults to "uniform" -func ExtractGlimpseNoise(value string) ExtractGlimpseAttr { - return func(m optionalAttr) { - m["noise"] = value - } -} - -// Extracts a glimpse from the input tensor. -// -// Returns a set of windows called glimpses extracted at location -// `offsets` from the input tensor. If the windows only partially -// overlaps the inputs, the non overlapping areas will be filled with -// random noise. -// -// The result is a 4-D tensor of shape `[batch_size, glimpse_height, -// glimpse_width, channels]`. The channels and batch dimensions are the -// same as that of the input tensor. The height and width of the output -// windows are specified in the `size` parameter. -// -// The argument `normalized` and `centered` controls how the windows are built: -// -// * If the coordinates are normalized but not centered, 0.0 and 1.0 -// correspond to the minimum and maximum of each height and width -// dimension. -// * If the coordinates are both normalized and centered, they range from -// -1.0 to 1.0. The coordinates (-1.0, -1.0) correspond to the upper -// left corner, the lower right corner is located at (1.0, 1.0) and the -// center is at (0, 0). -// * If the coordinates are not normalized they are interpreted as -// numbers of pixels. -// -// Arguments: -// input: A 4-D float tensor of shape `[batch_size, height, width, channels]`. -// size: A 1-D tensor of 2 elements containing the size of the glimpses -// to extract. The glimpse height must be specified first, following -// by the glimpse width. -// offsets: A 2-D integer tensor of shape `[batch_size, 2]` containing -// the y, x locations of the center of each window. -// -// Returns A tensor representing the glimpses `[batch_size, -// glimpse_height, glimpse_width, channels]`. -func ExtractGlimpse(scope *Scope, input tf.Output, size tf.Output, offsets tf.Output, optional ...ExtractGlimpseAttr) (glimpse tf.Output) { +// Returns A vector 1 or more TPU cores. +func TPUOrdinalSelector(scope *Scope) (device_ordinals tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + opspec := tf.OpSpec{ + Type: "TPUOrdinalSelector", + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Makes the summary of accumulated stats for the batch. +// +// The summary stats contains gradients and hessians accumulated into the corresponding node and bucket for each example. +// +// Arguments: +// node_ids: int32 Rank 1 Tensor containing node ids, which each example falls into for the requested layer. +// gradients: float32; Rank 2 Tensor (shape=[#examples, 1]) for gradients. +// hessians: float32; Rank 2 Tensor (shape=[#examples, 1]) for hessians. +// bucketized_features_list: int32 list of Rank 1 Tensors, each containing the bucketized feature (for each feature column). +// max_splits: int; the maximum number of splits possible in the whole tree. +// num_buckets: int; equals to the maximum possible value of bucketized feature. +// +// Returns output Rank 4 Tensor (shape=[#features, #splits, #buckets, 2]) containing accumulated stats put into the corresponding node and bucket. The first index of 4th dimension refers to gradients, and the second to hessians. +func BoostedTreesMakeStatsSummary(scope *Scope, node_ids tf.Output, gradients tf.Output, hessians tf.Output, bucketized_features_list []tf.Output, max_splits int64, num_buckets int64) (stats_summary tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"max_splits": max_splits, "num_buckets": num_buckets} + opspec := tf.OpSpec{ + Type: "BoostedTreesMakeStatsSummary", + Input: []tf.Input{ + node_ids, gradients, hessians, tf.OutputList(bucketized_features_list), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug. +type RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr func(optionalAttr) + +// RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Retrieve RMSProp embedding parameters with debug support. +// +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. +// +// Returns Parameter parameters updated by the RMSProp optimization algorithm.Parameter ms updated by the RMSProp optimization algorithm.Parameter mom updated by the RMSProp optimization algorithm.Parameter gradient_accumulators updated by the RMSProp optimization algorithm. +func RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr) (parameters tf.Output, ms tf.Output, mom tf.Output, gradient_accumulators tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "ExtractGlimpse", - Input: []tf.Input{ - input, size, offsets, - }, + Type: "RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug", + Attrs: attrs, } op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3) +} + +// Returns which elements of x are NaN. +// +// @compatibility(numpy) +// Equivalent to np.isnan +// @end_compatibility +func IsNan(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "IsNan", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes arctangent of `y/x` element-wise, respecting signs of the arguments. +// +// This is the angle \( \theta \in [-\pi, \pi] \) such that +// \[ x = r \cos(\theta) \] +// and +// \[ y = r \sin(\theta) \] +// where \(r = \sqrt(x^2 + y^2) \). +func Atan2(scope *Scope, y tf.Output, x tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Atan2", + Input: []tf.Input{ + y, x, + }, + } + op := scope.AddOperation(opspec) return op.Output(0) } @@ -26648,182 +27428,197 @@ func StringStrip(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// Interleave the values from the `data` tensors into a single tensor. +// Returns the diagonal part of the tensor. // -// Builds a merged tensor such that +// This operation returns a tensor with the `diagonal` part +// of the `input`. The `diagonal` part is computed as follows: // -// ```python -// merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...] -// ``` +// Assume `input` has dimensions `[D1,..., Dk, D1,..., Dk]`, then the output is a +// tensor of rank `k` with dimensions `[D1,..., Dk]` where: // -// For example, if each `indices[m]` is scalar or vector, we have -// -// ```python -// # Scalar indices: -// merged[indices[m], ...] = data[m][...] -// -// # Vector indices: -// merged[indices[m][i], ...] = data[m][i, ...] -// ``` -// -// Each `data[i].shape` must start with the corresponding `indices[i].shape`, -// and the rest of `data[i].shape` must be constant w.r.t. `i`. That is, we -// must have `data[i].shape = indices[i].shape + constant`. In terms of this -// `constant`, the output shape is -// -// merged.shape = [max(indices)] + constant -// -// Values may be merged in parallel, so if an index appears in both `indices[m][i]` -// and `indices[n][j]`, the result may be invalid. This differs from the normal -// DynamicStitch operator that defines the behavior in that case. +// `diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik]`. // // For example: // -// ```python -// indices[0] = 6 -// indices[1] = [4, 1] -// indices[2] = [[5, 2], [0, 3]] -// data[0] = [61, 62] -// data[1] = [[41, 42], [11, 12]] -// data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]] -// merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42], -// [51, 52], [61, 62]] +// ``` +// # 'input' is [[1, 0, 0, 0] +// [0, 2, 0, 0] +// [0, 0, 3, 0] +// [0, 0, 0, 4]] +// +// tf.diag_part(input) ==> [1, 2, 3, 4] // ``` // -// This method can be used to merge partitions created by `dynamic_partition` -// as illustrated on the following example: +// Arguments: +// input: Rank k tensor where k is even and not zero. // -// ```python -// # Apply function (increments x_i) on elements for which a certain condition -// # apply (x_i != -1 in this example). -// x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4]) -// condition_mask=tf.not_equal(x,tf.constant(-1.)) -// partitioned_data = tf.dynamic_partition( -// x, tf.cast(condition_mask, tf.int32) , 2) -// partitioned_data[1] = partitioned_data[1] + 1.0 -// condition_indices = tf.dynamic_partition( -// tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2) -// x = tf.dynamic_stitch(condition_indices, partitioned_data) -// # Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain -// # unchanged. -// ``` -// -//
-// -//
-func ParallelDynamicStitch(scope *Scope, indices []tf.Output, data []tf.Output) (merged tf.Output) { +// Returns The extracted diagonal. +func DiagPart(scope *Scope, input tf.Output) (diagonal tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "ParallelDynamicStitch", + Type: "DiagPart", Input: []tf.Input{ - tf.OutputList(indices), tf.OutputList(data), + input, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// AudioSummaryAttr is an optional argument to AudioSummary. -type AudioSummaryAttr func(optionalAttr) - -// AudioSummaryMaxOutputs sets the optional max_outputs attribute to value. +// Makes a new iterator from the given `dataset` and stores it in `iterator`. // -// value: Max number of batch elements to generate audio for. -// If not specified, defaults to 3 +// This operation may be executed multiple times. Each execution will reset the +// iterator in `iterator` to the first element of `dataset`. // -// REQUIRES: value >= 1 -func AudioSummaryMaxOutputs(value int64) AudioSummaryAttr { - return func(m optionalAttr) { - m["max_outputs"] = value - } -} - -// Outputs a `Summary` protocol buffer with audio. -// -// DEPRECATED at GraphDef version 15: Use AudioSummaryV2. -// -// The summary has up to `max_outputs` summary values containing audio. The -// audio is built from `tensor` which must be 3-D with shape `[batch_size, -// frames, channels]` or 2-D with shape `[batch_size, frames]`. The values are -// assumed to be in the range of `[-1.0, 1.0]` with a sample rate of `sample_rate`. -// -// The `tag` argument is a scalar `Tensor` of type `string`. It is used to -// build the `tag` of the summary values: -// -// * If `max_outputs` is 1, the summary value tag is '*tag*/audio'. -// * If `max_outputs` is greater than 1, the summary value tags are -// generated sequentially as '*tag*/audio/0', '*tag*/audio/1', etc. -// -// Arguments: -// tag: Scalar. Used to build the `tag` attribute of the summary values. -// tensor: 2-D of shape `[batch_size, frames]`. -// sample_rate: The sample rate of the signal in hertz. -// -// Returns Scalar. Serialized `Summary` protocol buffer. -func AudioSummary(scope *Scope, tag tf.Output, tensor tf.Output, sample_rate float32, optional ...AudioSummaryAttr) (summary tf.Output) { +// Returns the created operation. +func MakeIterator(scope *Scope, dataset tf.Output, iterator tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"sample_rate": sample_rate} + opspec := tf.OpSpec{ + Type: "MakeIterator", + Input: []tf.Input{ + dataset, iterator, + }, + } + return scope.AddOperation(opspec) +} + +// InitializeTableFromTextFileV2Attr is an optional argument to InitializeTableFromTextFileV2. +type InitializeTableFromTextFileV2Attr func(optionalAttr) + +// InitializeTableFromTextFileV2VocabSize sets the optional vocab_size attribute to value. +// +// value: Number of elements of the file, use -1 if unknown. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func InitializeTableFromTextFileV2VocabSize(value int64) InitializeTableFromTextFileV2Attr { + return func(m optionalAttr) { + m["vocab_size"] = value + } +} + +// InitializeTableFromTextFileV2Delimiter sets the optional delimiter attribute to value. +// +// value: Delimiter to separate fields in a line. +// If not specified, defaults to "\t" +func InitializeTableFromTextFileV2Delimiter(value string) InitializeTableFromTextFileV2Attr { + return func(m optionalAttr) { + m["delimiter"] = value + } +} + +// Initializes a table from a text file. +// +// It inserts one key-value pair into the table for each line of the file. +// The key and value is extracted from the whole line content, elements from the +// split line based on `delimiter` or the line number (starting from zero). +// Where to extract the key and value from a line is specified by `key_index` and +// `value_index`. +// +// - A value of -1 means use the line number(starting from zero), expects `int64`. +// - A value of -2 means use the whole line content, expects `string`. +// - A value >= 0 means use the index (starting at zero) of the split line based +// on `delimiter`. +// +// Arguments: +// table_handle: Handle to a table which will be initialized. +// filename: Filename of a vocabulary text file. +// key_index: Column index in a line to get the table `key` values from. +// value_index: Column index that represents information of a line to get the table +// `value` values from. +// +// Returns the created operation. +func InitializeTableFromTextFileV2(scope *Scope, table_handle tf.Output, filename tf.Output, key_index int64, value_index int64, optional ...InitializeTableFromTextFileV2Attr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"key_index": key_index, "value_index": value_index} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "AudioSummary", + Type: "InitializeTableFromTextFileV2", Input: []tf.Input{ - tag, tensor, + table_handle, filename, }, Attrs: attrs, } + return scope.AddOperation(opspec) +} + +// Generate a sharded filename. The filename is printf formatted as +// +// %s-%05d-of-%05d, basename, shard, num_shards. +func ShardedFilename(scope *Scope, basename tf.Output, shard tf.Output, num_shards tf.Output) (filename tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ShardedFilename", + Input: []tf.Input{ + basename, shard, num_shards, + }, + } op := scope.AddOperation(opspec) return op.Output(0) } -// ProdAttr is an optional argument to Prod. -type ProdAttr func(optionalAttr) +// LoadTPUEmbeddingAdagradParametersAttr is an optional argument to LoadTPUEmbeddingAdagradParameters. +type LoadTPUEmbeddingAdagradParametersAttr func(optionalAttr) -// ProdKeepDims sets the optional keep_dims attribute to value. +// LoadTPUEmbeddingAdagradParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 // -// value: If true, retain reduced dimensions with length 1. -// If not specified, defaults to false -func ProdKeepDims(value bool) ProdAttr { +// REQUIRES: value >= -1 +func LoadTPUEmbeddingAdagradParametersTableId(value int64) LoadTPUEmbeddingAdagradParametersAttr { return func(m optionalAttr) { - m["keep_dims"] = value + m["table_id"] = value } } -// Computes the product of elements across dimensions of a tensor. +// LoadTPUEmbeddingAdagradParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingAdagradParametersTableName(value string) LoadTPUEmbeddingAdagradParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load Adagrad embedding parameters. // -// Reduces `input` along the dimensions given in `axis`. Unless -// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in -// `axis`. If `keep_dims` is true, the reduced dimensions are -// retained with length 1. +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. // // Arguments: -// input: The tensor to reduce. -// axis: The dimensions to reduce. Must be in the range -// `[-rank(input), rank(input))`. +// parameters: Value of parameters used in the Adagrad optimization algorithm. +// accumulators: Value of accumulators used in the Adagrad optimization algorithm. // -// Returns The reduced tensor. -func Prod(scope *Scope, input tf.Output, axis tf.Output, optional ...ProdAttr) (output tf.Output) { +// +// +// Returns the created operation. +func LoadTPUEmbeddingAdagradParameters(scope *Scope, parameters tf.Output, accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingAdagradParametersAttr) (o *tf.Operation) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "Prod", + Type: "LoadTPUEmbeddingAdagradParameters", Input: []tf.Input{ - input, axis, + parameters, accumulators, }, Attrs: attrs, } - op := scope.AddOperation(opspec) - return op.Output(0) + return scope.AddOperation(opspec) } // Returns element-wise integer closest to x. @@ -26851,67 +27646,6 @@ func Rint(scope *Scope, x tf.Output) (y tf.Output) { return op.Output(0) } -// StatefulUniformAttr is an optional argument to StatefulUniform. -type StatefulUniformAttr func(optionalAttr) - -// StatefulUniformDtype sets the optional dtype attribute to value. -// -// value: The type of the output. -// If not specified, defaults to DT_FLOAT -func StatefulUniformDtype(value tf.DataType) StatefulUniformAttr { - return func(m optionalAttr) { - m["dtype"] = value - } -} - -// Outputs random values from a uniform distribution. -// -// The generated values follow a uniform distribution in the range `[0, 1)`. The -// lower bound 0 is included in the range, while the upper bound 1 is excluded. -// -// Arguments: -// resource: The handle of the resource variable that stores the state of the RNG. -// algorithm: The RNG algorithm. -// shape: The shape of the output tensor. -// -// Returns Random values with specified shape. -func StatefulUniform(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, optional ...StatefulUniformAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StatefulUniform", - Input: []tf.Input{ - resource, algorithm, shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the gradient for the tanh of `x` wrt its input. -// -// Specifically, `grad = dy * (1 - y*y)`, where `y = tanh(x)`, and `dy` -// is the corresponding input gradient. -func TanhGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TanhGrad", - Input: []tf.Input{ - y, dy, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Decode web-safe base64-encoded strings. // // Input may or may not have padding at the end. See EncodeBase64 for padding. @@ -26935,27 +27669,151 @@ func DecodeBase64(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// Removes keys and its associated values from a table. -// -// The tensor `keys` must of the same type as the keys of the table. Keys not -// already in the table are silently ignored. -// -// Arguments: -// table_handle: Handle to the table. -// keys: Any shape. Keys of the elements to remove. -// -// Returns the created operation. -func LookupTableRemoveV2(scope *Scope, table_handle tf.Output, keys tf.Output) (o *tf.Operation) { +// Returns 0 if x == 0, and x * log(y) otherwise, elementwise. +func Xlogy(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "LookupTableRemoveV2", + Type: "Xlogy", Input: []tf.Input{ - table_handle, keys, + x, y, }, } - return scope.AddOperation(opspec) + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// AllAttr is an optional argument to All. +type AllAttr func(optionalAttr) + +// AllKeepDims sets the optional keep_dims attribute to value. +// +// value: If true, retain reduced dimensions with length 1. +// If not specified, defaults to false +func AllKeepDims(value bool) AllAttr { + return func(m optionalAttr) { + m["keep_dims"] = value + } +} + +// Computes the "logical and" of elements across dimensions of a tensor. +// +// Reduces `input` along the dimensions given in `axis`. Unless +// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in +// `axis`. If `keep_dims` is true, the reduced dimensions are +// retained with length 1. +// +// Arguments: +// input: The tensor to reduce. +// axis: The dimensions to reduce. Must be in the range +// `[-rank(input), rank(input))`. +// +// Returns The reduced tensor. +func All(scope *Scope, input tf.Output, axis tf.Output, optional ...AllAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "All", + Input: []tf.Input{ + input, axis, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Execute a sub graph on a remote processor. +// +// The graph specifications(such as graph itself, input tensors and output names) +// are stored as a serialized protocol buffer of RemoteFusedGraphExecuteInfo +// as serialized_remote_fused_graph_execute_info. +// The specifications will be passed to a dedicated registered +// remote fused graph executor. The executor will send the graph specifications +// to a remote processor and execute that graph. The execution results +// will be passed to consumer nodes as outputs of this node. +// +// Arguments: +// inputs: Arbitrary number of tensors with arbitrary data types +// +// serialized_remote_fused_graph_execute_info: Serialized protocol buffer +// of RemoteFusedGraphExecuteInfo which contains graph specifications. +// +// Returns Arbitrary number of tensors with arbitrary data types +func RemoteFusedGraphExecute(scope *Scope, inputs []tf.Output, Toutputs []tf.DataType, serialized_remote_fused_graph_execute_info string) (outputs []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"Toutputs": Toutputs, "serialized_remote_fused_graph_execute_info": serialized_remote_fused_graph_execute_info} + opspec := tf.OpSpec{ + Type: "RemoteFusedGraphExecute", + Input: []tf.Input{ + tf.OutputList(inputs), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if outputs, idx, err = makeOutputList(op, idx, "outputs"); err != nil { + scope.UpdateErr("RemoteFusedGraphExecute", err) + return + } + return outputs +} + +// StatelessTruncatedNormalAttr is an optional argument to StatelessTruncatedNormal. +type StatelessTruncatedNormalAttr func(optionalAttr) + +// StatelessTruncatedNormalDtype sets the optional dtype attribute to value. +// +// value: The type of the output. +// If not specified, defaults to DT_FLOAT +func StatelessTruncatedNormalDtype(value tf.DataType) StatelessTruncatedNormalAttr { + return func(m optionalAttr) { + m["dtype"] = value + } +} + +// Outputs deterministic pseudorandom values from a truncated normal distribution. +// +// The generated values follow a normal distribution with mean 0 and standard +// deviation 1, except that values whose magnitude is more than 2 standard +// deviations from the mean are dropped and re-picked. +// +// The outputs are a deterministic function of `shape` and `seed`. +// +// Arguments: +// shape: The shape of the output tensor. +// seed: 2 seeds (shape [2]). +// +// Returns Random values with specified shape. +func StatelessTruncatedNormal(scope *Scope, shape tf.Output, seed tf.Output, optional ...StatelessTruncatedNormalAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StatelessTruncatedNormal", + Input: []tf.Input{ + shape, seed, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) } // UnicodeEncodeAttr is an optional argument to UnicodeEncode. @@ -27036,21 +27894,139 @@ func UnicodeEncode(scope *Scope, input_values tf.Output, input_splits tf.Output, return op.Output(0) } -// Computes tan of x element-wise. -func Tan(scope *Scope, x tf.Output) (y tf.Output) { +// Pads a tensor. +// +// This operation pads `input` according to the `paddings` and `constant_values` +// you specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is +// the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates +// how many padding values to add before the contents of `input` in that dimension, +// and `paddings[D, 1]` indicates how many padding values to add after the contents +// of `input` in that dimension. `constant_values` is a scalar tensor of the same +// type as `input` that indicates the value to use for padding `input`. +// +// The padded size of each dimension D of the output is: +// +// `paddings(D, 0) + input.dim_size(D) + paddings(D, 1)` +// +// For example: +// +// ``` +// # 't' is [[1, 1], [2, 2]] +// # 'paddings' is [[1, 1], [2, 2]] +// # 'constant_values' is 0 +// # rank of 't' is 2 +// pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0] +// [0, 0, 1, 1, 0, 0] +// [0, 0, 2, 2, 0, 0] +// [0, 0, 0, 0, 0, 0]] +// ``` +func PadV2(scope *Scope, input tf.Output, paddings tf.Output, constant_values tf.Output) (output tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Tan", + Type: "PadV2", Input: []tf.Input{ - x, + input, paddings, constant_values, }, } op := scope.AddOperation(opspec) return op.Output(0) } +// UnicodeDecodeAttr is an optional argument to UnicodeDecode. +type UnicodeDecodeAttr func(optionalAttr) + +// UnicodeDecodeErrors sets the optional errors attribute to value. +// +// value: Error handling policy when there is invalid formatting found in the input. +// The value of 'strict' will cause the operation to produce a InvalidArgument +// error on any invalid input formatting. A value of 'replace' (the default) will +// cause the operation to replace any invalid formatting in the input with the +// `replacement_char` codepoint. A value of 'ignore' will cause the operation to +// skip any invalid formatting in the input and produce no corresponding output +// character. +// If not specified, defaults to "replace" +func UnicodeDecodeErrors(value string) UnicodeDecodeAttr { + return func(m optionalAttr) { + m["errors"] = value + } +} + +// UnicodeDecodeReplacementChar sets the optional replacement_char attribute to value. +// +// value: The replacement character codepoint to be used in place of any invalid +// formatting in the input when `errors='replace'`. Any valid unicode codepoint may +// be used. The default value is the default unicode replacement character is +// 0xFFFD or U+65533.) +// If not specified, defaults to 65533 +func UnicodeDecodeReplacementChar(value int64) UnicodeDecodeAttr { + return func(m optionalAttr) { + m["replacement_char"] = value + } +} + +// UnicodeDecodeReplaceControlCharacters sets the optional replace_control_characters attribute to value. +// +// value: Whether to replace the C0 control characters (00-1F) with the +// `replacement_char`. Default is false. +// If not specified, defaults to false +func UnicodeDecodeReplaceControlCharacters(value bool) UnicodeDecodeAttr { + return func(m optionalAttr) { + m["replace_control_characters"] = value + } +} + +// UnicodeDecodeTsplits sets the optional Tsplits attribute to value. +// If not specified, defaults to DT_INT64 +func UnicodeDecodeTsplits(value tf.DataType) UnicodeDecodeAttr { + return func(m optionalAttr) { + m["Tsplits"] = value + } +} + +// Decodes each string in `input` into a sequence of Unicode code points. +// +// The character codepoints for all strings are returned using a single vector +// `char_values`, with strings expanded to characters in row-major order. +// +// The `row_splits` tensor indicates where the codepoints for +// each input string begin and end within the `char_values` tensor. +// In particular, the values for the `i`th +// string (in row-major order) are stored in the slice +// `[row_splits[i]:row_splits[i+1]]`. Thus: +// +// * `char_values[row_splits[i]+j]` is the Unicode codepoint for the `j`th +// character in the `i`th string (in row-major order). +// * `row_splits[i+1] - row_splits[i]` is the number of characters in the `i`th +// string (in row-major order). +// +// Arguments: +// input: The text to be decoded. Can have any shape. Note that the output is flattened +// to a vector of char values. +// input_encoding: Text encoding of the input strings. This is any of the encodings supported +// by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. +// +// Returns A 1D int32 tensor containing the row splits.A 1D int32 Tensor containing the decoded codepoints. +func UnicodeDecode(scope *Scope, input tf.Output, input_encoding string, optional ...UnicodeDecodeAttr) (row_splits tf.Output, char_values tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"input_encoding": input_encoding} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "UnicodeDecode", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + // Outputs deterministic pseudorandom random integers from a uniform distribution. // // The generated values follow a uniform distribution in the range `[minval, maxval)`. @@ -27078,52 +28054,6 @@ func StatelessRandomUniformInt(scope *Scope, shape tf.Output, seed tf.Output, mi return op.Output(0) } -// RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug. -type RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr func(optionalAttr) - -// RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Retrieve RMSProp embedding parameters with debug support. -// -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. -// -// Returns Parameter parameters updated by the RMSProp optimization algorithm.Parameter ms updated by the RMSProp optimization algorithm.Parameter mom updated by the RMSProp optimization algorithm.Parameter gradient_accumulators updated by the RMSProp optimization algorithm. -func RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingRMSPropParametersGradAccumDebugAttr) (parameters tf.Output, ms tf.Output, mom tf.Output, gradient_accumulators tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3) -} - // StatelessRandomUniformAttr is an optional argument to StatelessRandomUniform. type StatelessRandomUniformAttr func(optionalAttr) @@ -27243,906 +28173,6 @@ func WindowDataset(scope *Scope, input_dataset tf.Output, size tf.Output, shift return op.Output(0) } -// RandomShuffleAttr is an optional argument to RandomShuffle. -type RandomShuffleAttr func(optionalAttr) - -// RandomShuffleSeed sets the optional seed attribute to value. -// -// value: If either `seed` or `seed2` are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func RandomShuffleSeed(value int64) RandomShuffleAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// RandomShuffleSeed2 sets the optional seed2 attribute to value. -// -// value: A second seed to avoid seed collision. -// If not specified, defaults to 0 -func RandomShuffleSeed2(value int64) RandomShuffleAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Randomly shuffles a tensor along its first dimension. -// -// The tensor is shuffled along dimension 0, such that each `value[j]` is mapped -// to one and only one `output[i]`. For example, a mapping that might occur for a -// 3x2 tensor is: -// -// ``` -// [[1, 2], [[5, 6], -// [3, 4], ==> [1, 2], -// [5, 6]] [3, 4]] -// ``` -// -// Arguments: -// value: The tensor to be shuffled. -// -// Returns A tensor of same shape and type as `value`, shuffled along its first -// dimension. -func RandomShuffle(scope *Scope, value tf.Output, optional ...RandomShuffleAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RandomShuffle", - Input: []tf.Input{ - value, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// StatefulUniformFullIntAttr is an optional argument to StatefulUniformFullInt. -type StatefulUniformFullIntAttr func(optionalAttr) - -// StatefulUniformFullIntDtype sets the optional dtype attribute to value. -// -// value: The type of the output. -// If not specified, defaults to DT_UINT64 -func StatefulUniformFullIntDtype(value tf.DataType) StatefulUniformFullIntAttr { - return func(m optionalAttr) { - m["dtype"] = value - } -} - -// Outputs random integers from a uniform distribution. -// -// The generated values are uniform integers covering the whole range of `dtype`. -// -// Arguments: -// resource: The handle of the resource variable that stores the state of the RNG. -// algorithm: The RNG algorithm. -// shape: The shape of the output tensor. -// -// Returns Random values with specified shape. -func StatefulUniformFullInt(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, optional ...StatefulUniformFullIntAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StatefulUniformFullInt", - Input: []tf.Input{ - resource, algorithm, shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// QuantizedDepthwiseConv2DAttr is an optional argument to QuantizedDepthwiseConv2D. -type QuantizedDepthwiseConv2DAttr func(optionalAttr) - -// QuantizedDepthwiseConv2DOutType sets the optional out_type attribute to value. -// -// value: The type of the output. -// If not specified, defaults to DT_QINT32 -func QuantizedDepthwiseConv2DOutType(value tf.DataType) QuantizedDepthwiseConv2DAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// QuantizedDepthwiseConv2DDilations sets the optional dilations attribute to value. -// -// value: List of dilation values. -// If not specified, defaults to -func QuantizedDepthwiseConv2DDilations(value []int64) QuantizedDepthwiseConv2DAttr { - return func(m optionalAttr) { - m["dilations"] = value - } -} - -// Computes quantized depthwise Conv2D. -// -// Arguments: -// input: The original input tensor. -// filter: The original filter tensor. -// min_input: The float value that the minimum quantized input value represents. -// max_input: The float value that the maximum quantized input value represents. -// min_filter: The float value that the minimum quantized filter value represents. -// max_filter: The float value that the maximum quantized filter value represents. -// strides: List of stride values. -// -// -// Returns The output tensor.The float value that the minimum quantized output value represents.The float value that the maximum quantized output value represents. -func QuantizedDepthwiseConv2D(scope *Scope, input tf.Output, filter tf.Output, min_input tf.Output, max_input tf.Output, min_filter tf.Output, max_filter tf.Output, strides []int64, padding string, optional ...QuantizedDepthwiseConv2DAttr) (output tf.Output, min_output tf.Output, max_output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "QuantizedDepthwiseConv2D", - Input: []tf.Input{ - input, filter, min_input, max_input, min_filter, max_filter, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// AsStringAttr is an optional argument to AsString. -type AsStringAttr func(optionalAttr) - -// AsStringPrecision sets the optional precision attribute to value. -// -// value: The post-decimal precision to use for floating point numbers. -// Only used if precision > -1. -// If not specified, defaults to -1 -func AsStringPrecision(value int64) AsStringAttr { - return func(m optionalAttr) { - m["precision"] = value - } -} - -// AsStringScientific sets the optional scientific attribute to value. -// -// value: Use scientific notation for floating point numbers. -// If not specified, defaults to false -func AsStringScientific(value bool) AsStringAttr { - return func(m optionalAttr) { - m["scientific"] = value - } -} - -// AsStringShortest sets the optional shortest attribute to value. -// -// value: Use shortest representation (either scientific or standard) for -// floating point numbers. -// If not specified, defaults to false -func AsStringShortest(value bool) AsStringAttr { - return func(m optionalAttr) { - m["shortest"] = value - } -} - -// AsStringWidth sets the optional width attribute to value. -// -// value: Pad pre-decimal numbers to this width. -// Applies to both floating point and integer numbers. -// Only used if width > -1. -// If not specified, defaults to -1 -func AsStringWidth(value int64) AsStringAttr { - return func(m optionalAttr) { - m["width"] = value - } -} - -// AsStringFill sets the optional fill attribute to value. -// -// value: The value to pad if width > -1. If empty, pads with spaces. -// Another typical value is '0'. String cannot be longer than 1 character. -// If not specified, defaults to "" -func AsStringFill(value string) AsStringAttr { - return func(m optionalAttr) { - m["fill"] = value - } -} - -// Converts each entry in the given tensor to strings. Supports many numeric -// -// types and boolean. -func AsString(scope *Scope, input tf.Output, optional ...AsStringAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AsString", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// FractionalAvgPoolAttr is an optional argument to FractionalAvgPool. -type FractionalAvgPoolAttr func(optionalAttr) - -// FractionalAvgPoolPseudoRandom sets the optional pseudo_random attribute to value. -// -// value: When set to True, generates the pooling sequence in a -// pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin -// Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for -// difference between pseudorandom and random. -// If not specified, defaults to false -func FractionalAvgPoolPseudoRandom(value bool) FractionalAvgPoolAttr { - return func(m optionalAttr) { - m["pseudo_random"] = value - } -} - -// FractionalAvgPoolOverlapping sets the optional overlapping attribute to value. -// -// value: When set to True, it means when pooling, the values at the boundary -// of adjacent pooling cells are used by both cells. For example: -// -// `index 0 1 2 3 4` -// -// `value 20 5 16 3 7` -// -// If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. -// The result would be [41/3, 26/3] for fractional avg pooling. -// If not specified, defaults to false -func FractionalAvgPoolOverlapping(value bool) FractionalAvgPoolAttr { - return func(m optionalAttr) { - m["overlapping"] = value - } -} - -// FractionalAvgPoolDeterministic sets the optional deterministic attribute to value. -// -// value: When set to True, a fixed pooling region will be used when -// iterating over a FractionalAvgPool node in the computation graph. Mainly used -// in unit test to make FractionalAvgPool deterministic. -// If not specified, defaults to false -func FractionalAvgPoolDeterministic(value bool) FractionalAvgPoolAttr { - return func(m optionalAttr) { - m["deterministic"] = value - } -} - -// FractionalAvgPoolSeed sets the optional seed attribute to value. -// -// value: If either seed or seed2 are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func FractionalAvgPoolSeed(value int64) FractionalAvgPoolAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// FractionalAvgPoolSeed2 sets the optional seed2 attribute to value. -// -// value: An second seed to avoid seed collision. -// If not specified, defaults to 0 -func FractionalAvgPoolSeed2(value int64) FractionalAvgPoolAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Performs fractional average pooling on the input. -// -// Fractional average pooling is similar to Fractional max pooling in the pooling -// region generation step. The only difference is that after pooling regions are -// generated, a mean operation is performed instead of a max operation in each -// pooling region. -// -// Arguments: -// value: 4-D with shape `[batch, height, width, channels]`. -// pooling_ratio: Pooling ratio for each dimension of `value`, currently only -// supports row and col dimension and should be >= 1.0. For example, a valid -// pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements -// must be 1.0 because we don't allow pooling on batch and channels -// dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions -// respectively. -// -// Returns output tensor after fractional avg pooling.row pooling sequence, needed to calculate gradient.column pooling sequence, needed to calculate gradient. -func FractionalAvgPool(scope *Scope, value tf.Output, pooling_ratio []float32, optional ...FractionalAvgPoolAttr) (output tf.Output, row_pooling_sequence tf.Output, col_pooling_sequence tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"pooling_ratio": pooling_ratio} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "FractionalAvgPool", - Input: []tf.Input{ - value, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)` -// -// if < 0, `scale * features` otherwise. -// -// To be used together with -// `initializer = tf.variance_scaling_initializer(factor=1.0, mode='FAN_IN')`. -// For correct dropout, use `tf.contrib.nn.alpha_dropout`. -// -// See [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) -func Selu(scope *Scope, features tf.Output) (activations tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Selu", - Input: []tf.Input{ - features, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Determine the script codes of a given tensor of Unicode integer code points. -// -// This operation converts Unicode code points to script codes corresponding to -// each code point. Script codes correspond to International Components for -// Unicode (ICU) UScriptCode values. See http://icu-project.org/apiref/icu4c/uscript_8h.html. -// Returns -1 (USCRIPT_INVALID_CODE) for invalid codepoints. Output shape will -// match input shape. -// -// Arguments: -// input: A Tensor of int32 Unicode code points. -// -// Returns A Tensor of int32 script codes corresponding to each input code point. -func UnicodeScript(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "UnicodeScript", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that emits the records from one or more TFRecord files. -// -// Arguments: -// filenames: A scalar or vector containing the name(s) of the file(s) to be -// read. -// compression_type: A scalar containing either (i) the empty string (no -// compression), (ii) "ZLIB", or (iii) "GZIP". -// buffer_size: A scalar representing the number of bytes to buffer. A value of -// 0 means no buffering will be performed. -func TFRecordDataset(scope *Scope, filenames tf.Output, compression_type tf.Output, buffer_size tf.Output) (handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TFRecordDataset", - Input: []tf.Input{ - filenames, compression_type, buffer_size, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// StatelessMultinomialAttr is an optional argument to StatelessMultinomial. -type StatelessMultinomialAttr func(optionalAttr) - -// StatelessMultinomialOutputDtype sets the optional output_dtype attribute to value. -// If not specified, defaults to DT_INT64 -func StatelessMultinomialOutputDtype(value tf.DataType) StatelessMultinomialAttr { - return func(m optionalAttr) { - m["output_dtype"] = value - } -} - -// Draws samples from a multinomial distribution. -// -// Arguments: -// logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` -// represents the unnormalized log probabilities for all classes. -// num_samples: 0-D. Number of independent samples to draw for each row slice. -// seed: 2 seeds (shape [2]). -// -// Returns 2-D Tensor with shape `[batch_size, num_samples]`. Each slice `[i, :]` -// contains the drawn class labels with range `[0, num_classes)`. -func StatelessMultinomial(scope *Scope, logits tf.Output, num_samples tf.Output, seed tf.Output, optional ...StatelessMultinomialAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StatelessMultinomial", - Input: []tf.Input{ - logits, num_samples, seed, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that batches `batch_size` elements from `input_dataset`. -// -// Arguments: -// -// batch_size: A scalar representing the number of elements to accumulate in a -// batch. -// -// -func BatchDataset(scope *Scope, input_dataset tf.Output, batch_size tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "BatchDataset", - Input: []tf.Input{ - input_dataset, batch_size, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// BatchToSpace for 4-D tensors of type T. -// -// This is a legacy version of the more general BatchToSpaceND. -// -// Rearranges (permutes) data from batch into blocks of spatial data, followed by -// cropping. This is the reverse transformation of SpaceToBatch. More specifically, -// this op outputs a copy of the input tensor where values from the `batch` -// dimension are moved in spatial blocks to the `height` and `width` dimensions, -// followed by cropping along the `height` and `width` dimensions. -// -// Arguments: -// input: 4-D tensor with shape -// `[batch*block_size*block_size, height_pad/block_size, width_pad/block_size, -// depth]`. Note that the batch size of the input tensor must be divisible by -// `block_size * block_size`. -// crops: 2-D tensor of non-negative integers with shape `[2, 2]`. It specifies -// how many elements to crop from the intermediate result across the spatial -// dimensions as follows: -// -// crops = [[crop_top, crop_bottom], [crop_left, crop_right]] -// -// -// Returns 4-D with shape `[batch, height, width, depth]`, where: -// -// height = height_pad - crop_top - crop_bottom -// width = width_pad - crop_left - crop_right -// -// The attr `block_size` must be greater than one. It indicates the block size. -// -// Some examples: -// -// (1) For the following input of shape `[4, 1, 1, 1]` and block_size of 2: -// -// ``` -// [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] -// ``` -// -// The output tensor has shape `[1, 2, 2, 1]` and value: -// -// ``` -// x = [[[[1], [2]], [[3], [4]]]] -// ``` -// -// (2) For the following input of shape `[4, 1, 1, 3]` and block_size of 2: -// -// ``` -// [[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]] -// ``` -// -// The output tensor has shape `[1, 2, 2, 3]` and value: -// -// ``` -// x = [[[[1, 2, 3], [4, 5, 6]], -// [[7, 8, 9], [10, 11, 12]]]] -// ``` -// -// (3) For the following input of shape `[4, 2, 2, 1]` and block_size of 2: -// -// ``` -// x = [[[[1], [3]], [[9], [11]]], -// [[[2], [4]], [[10], [12]]], -// [[[5], [7]], [[13], [15]]], -// [[[6], [8]], [[14], [16]]]] -// ``` -// -// The output tensor has shape `[1, 4, 4, 1]` and value: -// -// ``` -// x = [[[[1], [2], [3], [4]], -// [[5], [6], [7], [8]], -// [[9], [10], [11], [12]], -// [[13], [14], [15], [16]]]] -// ``` -// -// (4) For the following input of shape `[8, 1, 2, 1]` and block_size of 2: -// -// ``` -// x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]], -// [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]] -// ``` -// -// The output tensor has shape `[2, 2, 4, 1]` and value: -// -// ``` -// x = [[[[1], [3]], [[5], [7]]], -// [[[2], [4]], [[10], [12]]], -// [[[5], [7]], [[13], [15]]], -// [[[6], [8]], [[14], [16]]]] -// ``` -func BatchToSpace(scope *Scope, input tf.Output, crops tf.Output, block_size int64) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"block_size": block_size} - opspec := tf.OpSpec{ - Type: "BatchToSpace", - Input: []tf.Input{ - input, crops, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr is an optional argument to RetrieveTPUEmbeddingStochasticGradientDescentParameters. -type RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr func(optionalAttr) - -// RetrieveTPUEmbeddingStochasticGradientDescentParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingStochasticGradientDescentParametersTableId(value int64) RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// RetrieveTPUEmbeddingStochasticGradientDescentParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingStochasticGradientDescentParametersTableName(value string) RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Retrieve SGD embedding parameters. -// -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. -// -// Returns Parameter parameters updated by the stochastic gradient descent optimization algorithm. -func RetrieveTPUEmbeddingStochasticGradientDescentParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr) (parameters tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingStochasticGradientDescentParameters", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// QuantizedDepthwiseConv2DWithBiasAttr is an optional argument to QuantizedDepthwiseConv2DWithBias. -type QuantizedDepthwiseConv2DWithBiasAttr func(optionalAttr) - -// QuantizedDepthwiseConv2DWithBiasOutType sets the optional out_type attribute to value. -// -// value: The type of the output. -// If not specified, defaults to DT_QINT32 -func QuantizedDepthwiseConv2DWithBiasOutType(value tf.DataType) QuantizedDepthwiseConv2DWithBiasAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// QuantizedDepthwiseConv2DWithBiasDilations sets the optional dilations attribute to value. -// -// value: List of dilation values. -// If not specified, defaults to -func QuantizedDepthwiseConv2DWithBiasDilations(value []int64) QuantizedDepthwiseConv2DWithBiasAttr { - return func(m optionalAttr) { - m["dilations"] = value - } -} - -// Computes quantized depthwise Conv2D with Bias. -// -// Arguments: -// input: The original input tensor. -// filter: The original filter tensor. -// bias: The original bias tensor. -// min_input: The float value that the minimum quantized input value represents. -// max_input: The float value that the maximum quantized input value represents. -// min_filter: The float value that the minimum quantized filter value represents. -// max_filter: The float value that the maximum quantized filter value represents. -// strides: List of stride values. -// -// -// Returns The output tensor.The float value that the minimum quantized output value represents.The float value that the maximum quantized output value represents. -func QuantizedDepthwiseConv2DWithBias(scope *Scope, input tf.Output, filter tf.Output, bias tf.Output, min_input tf.Output, max_input tf.Output, min_filter tf.Output, max_filter tf.Output, strides []int64, padding string, optional ...QuantizedDepthwiseConv2DWithBiasAttr) (output tf.Output, min_output tf.Output, max_output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "QuantizedDepthwiseConv2DWithBias", - Input: []tf.Input{ - input, filter, bias, min_input, max_input, min_filter, max_filter, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// CudnnRNNParamsSizeAttr is an optional argument to CudnnRNNParamsSize. -type CudnnRNNParamsSizeAttr func(optionalAttr) - -// CudnnRNNParamsSizeRnnMode sets the optional rnn_mode attribute to value. -// If not specified, defaults to "lstm" -func CudnnRNNParamsSizeRnnMode(value string) CudnnRNNParamsSizeAttr { - return func(m optionalAttr) { - m["rnn_mode"] = value - } -} - -// CudnnRNNParamsSizeInputMode sets the optional input_mode attribute to value. -// If not specified, defaults to "linear_input" -func CudnnRNNParamsSizeInputMode(value string) CudnnRNNParamsSizeAttr { - return func(m optionalAttr) { - m["input_mode"] = value - } -} - -// CudnnRNNParamsSizeDirection sets the optional direction attribute to value. -// If not specified, defaults to "unidirectional" -func CudnnRNNParamsSizeDirection(value string) CudnnRNNParamsSizeAttr { - return func(m optionalAttr) { - m["direction"] = value - } -} - -// CudnnRNNParamsSizeDropout sets the optional dropout attribute to value. -// If not specified, defaults to 0 -func CudnnRNNParamsSizeDropout(value float32) CudnnRNNParamsSizeAttr { - return func(m optionalAttr) { - m["dropout"] = value - } -} - -// CudnnRNNParamsSizeSeed sets the optional seed attribute to value. -// If not specified, defaults to 0 -func CudnnRNNParamsSizeSeed(value int64) CudnnRNNParamsSizeAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// CudnnRNNParamsSizeSeed2 sets the optional seed2 attribute to value. -// If not specified, defaults to 0 -func CudnnRNNParamsSizeSeed2(value int64) CudnnRNNParamsSizeAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Computes size of weights that can be used by a Cudnn RNN model. -// -// Return the params size that can be used by the Cudnn RNN model. Subsequent -// weight allocation and initialization should use this size. -// -// num_layers: Specifies the number of layers in the RNN model. -// num_units: Specifies the size of the hidden state. -// input_size: Specifies the size of the input state. -// rnn_mode: Indicates the type of the RNN model. -// input_mode: Indicate whether there is a linear projection between the input and -// The actual computation before the first layer. 'skip_input' is only allowed -// when input_size == num_units; 'auto_select' implies 'skip_input' when -// input_size == num_units; otherwise, it implies 'linear_input'. -// direction: Indicates whether a bidirectional model will be used. -// dir = (direction == bidirectional) ? 2 : 1 -// dropout: dropout probability. When set to 0., dropout is disabled. -// seed: the 1st part of a seed to initialize dropout. -// seed2: the 2nd part of a seed to initialize dropout. -// params_size: The size of the params buffer that should be allocated and -// initialized for this RNN model. Note that this params buffer may not be -// compatible across GPUs. Please use CudnnRNNParamsWeights and -// CudnnRNNParamsBiases to save and restore them in a way that is compatible -// across different runs. -func CudnnRNNParamsSize(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, T tf.DataType, S tf.DataType, optional ...CudnnRNNParamsSizeAttr) (params_size tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"T": T, "S": S} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "CudnnRNNParamsSize", - Input: []tf.Input{ - num_layers, num_units, input_size, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Outputs random integers from a uniform distribution. -// -// The generated values are uniform integers in the range `[minval, maxval)`. -// The lower bound `minval` is included in the range, while the upper bound -// `maxval` is excluded. -// -// The random integers are slightly biased unless `maxval - minval` is an exact -// power of two. The bias is small for values of `maxval - minval` significantly -// smaller than the range of the output (either `2^32` or `2^64`). -// -// Arguments: -// resource: The handle of the resource variable that stores the state of the RNG. -// algorithm: The RNG algorithm. -// shape: The shape of the output tensor. -// minval: Minimum value (inclusive, scalar). -// maxval: Maximum value (exclusive, scalar). -// -// Returns Random values with specified shape. -func StatefulUniformInt(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, minval tf.Output, maxval tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "StatefulUniformInt", - Input: []tf.Input{ - resource, algorithm, shape, minval, maxval, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes inverse hyperbolic cosine of x element-wise. -func Acosh(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Acosh", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes rectified linear gradients for a Relu operation. -// -// Arguments: -// gradients: The backpropagated gradients to the corresponding Relu operation. -// features: The features passed as input to the corresponding Relu operation, OR -// the outputs of that operation (both work equivalently). -// -// Returns `gradients * (features > 0)`. -func ReluGrad(scope *Scope, gradients tf.Output, features tf.Output) (backprops tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ReluGrad", - Input: []tf.Input{ - gradients, features, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes softmax cross entropy cost and gradients to backpropagate. -// -// Inputs are the logits, not probabilities. -// -// Arguments: -// features: batch_size x num_classes matrix -// labels: batch_size x num_classes matrix -// The caller must ensure that each batch of labels represents a valid -// probability distribution. -// -// Returns Per example loss (batch_size vector).backpropagated gradients (batch_size x num_classes matrix). -func SoftmaxCrossEntropyWithLogits(scope *Scope, features tf.Output, labels tf.Output) (loss tf.Output, backprop tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SoftmaxCrossEntropyWithLogits", - Input: []tf.Input{ - features, labels, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// Inverse fast Fourier transform. -// -// Computes the inverse 1-dimensional discrete Fourier transform over the -// inner-most dimension of `input`. -// -// Arguments: -// input: A complex tensor. -// -// Returns A complex tensor of the same shape as `input`. The inner-most -// dimension of `input` is replaced with its inverse 1D Fourier transform. -// -// @compatibility(numpy) -// Equivalent to np.fft.ifft -// @end_compatibility -func IFFT(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "IFFT", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // OrderedMapStageAttr is an optional argument to OrderedMapStage. type OrderedMapStageAttr func(optionalAttr) @@ -28248,89 +28278,205 @@ func FFT2D(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// A placeholder op that passes through `input` when its output is not fed. +// UnicodeDecodeWithOffsetsAttr is an optional argument to UnicodeDecodeWithOffsets. +type UnicodeDecodeWithOffsetsAttr func(optionalAttr) + +// UnicodeDecodeWithOffsetsErrors sets the optional errors attribute to value. +// +// value: Error handling policy when there is invalid formatting found in the input. +// The value of 'strict' will cause the operation to produce a InvalidArgument +// error on any invalid input formatting. A value of 'replace' (the default) will +// cause the operation to replace any invalid formatting in the input with the +// `replacement_char` codepoint. A value of 'ignore' will cause the operation to +// skip any invalid formatting in the input and produce no corresponding output +// character. +// If not specified, defaults to "replace" +func UnicodeDecodeWithOffsetsErrors(value string) UnicodeDecodeWithOffsetsAttr { + return func(m optionalAttr) { + m["errors"] = value + } +} + +// UnicodeDecodeWithOffsetsReplacementChar sets the optional replacement_char attribute to value. +// +// value: The replacement character codepoint to be used in place of any invalid +// formatting in the input when `errors='replace'`. Any valid unicode codepoint may +// be used. The default value is the default unicode replacement character is +// 0xFFFD or U+65533.) +// If not specified, defaults to 65533 +func UnicodeDecodeWithOffsetsReplacementChar(value int64) UnicodeDecodeWithOffsetsAttr { + return func(m optionalAttr) { + m["replacement_char"] = value + } +} + +// UnicodeDecodeWithOffsetsReplaceControlCharacters sets the optional replace_control_characters attribute to value. +// +// value: Whether to replace the C0 control characters (00-1F) with the +// `replacement_char`. Default is false. +// If not specified, defaults to false +func UnicodeDecodeWithOffsetsReplaceControlCharacters(value bool) UnicodeDecodeWithOffsetsAttr { + return func(m optionalAttr) { + m["replace_control_characters"] = value + } +} + +// UnicodeDecodeWithOffsetsTsplits sets the optional Tsplits attribute to value. +// If not specified, defaults to DT_INT64 +func UnicodeDecodeWithOffsetsTsplits(value tf.DataType) UnicodeDecodeWithOffsetsAttr { + return func(m optionalAttr) { + m["Tsplits"] = value + } +} + +// Decodes each string in `input` into a sequence of Unicode code points. +// +// The character codepoints for all strings are returned using a single vector +// `char_values`, with strings expanded to characters in row-major order. +// Similarly, the character start byte offsets are returned using a single vector +// `char_to_byte_starts`, with strings expanded in row-major order. +// +// The `row_splits` tensor indicates where the codepoints and start offsets for +// each input string begin and end within the `char_values` and +// `char_to_byte_starts` tensors. In particular, the values for the `i`th +// string (in row-major order) are stored in the slice +// `[row_splits[i]:row_splits[i+1]]`. Thus: +// +// * `char_values[row_splits[i]+j]` is the Unicode codepoint for the `j`th +// character in the `i`th string (in row-major order). +// * `char_to_bytes_starts[row_splits[i]+j]` is the start byte offset for the `j`th +// character in the `i`th string (in row-major order). +// * `row_splits[i+1] - row_splits[i]` is the number of characters in the `i`th +// string (in row-major order). // // Arguments: -// input: The default value to produce when `output` is not fed. -// shape: The (possibly partial) shape of the tensor. +// input: The text to be decoded. Can have any shape. Note that the output is flattened +// to a vector of char values. +// input_encoding: Text encoding of the input strings. This is any of the encodings supported +// by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. // -// Returns A placeholder tensor that defaults to `input` if it is not fed. -func PlaceholderWithDefault(scope *Scope, input tf.Output, shape tf.Shape) (output tf.Output) { +// Returns A 1D int32 tensor containing the row splits.A 1D int32 Tensor containing the decoded codepoints.A 1D int32 Tensor containing the byte index in the input string where each +// character in `char_values` starts. +func UnicodeDecodeWithOffsets(scope *Scope, input tf.Output, input_encoding string, optional ...UnicodeDecodeWithOffsetsAttr) (row_splits tf.Output, char_values tf.Output, char_to_byte_starts tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"shape": shape} + attrs := map[string]interface{}{"input_encoding": input_encoding} + for _, a := range optional { + a(attrs) + } opspec := tf.OpSpec{ - Type: "PlaceholderWithDefault", + Type: "UnicodeDecodeWithOffsets", Input: []tf.Input{ input, }, Attrs: attrs, } op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Sets the index-th position of the list to contain the given tensor. +// +// input_handle: the list +// index: the position in the list to which the tensor will be assigned +// item: the element to be assigned to that position +// output_handle: the new list, with the element in the proper position +// +func TensorListSetItem(scope *Scope, input_handle tf.Output, index tf.Output, item tf.Output) (output_handle tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorListSetItem", + Input: []tf.Input{ + input_handle, index, item, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Pop the element at the top of the stack. +// +// Arguments: +// handle: The handle to a stack. +// elem_type: The type of the elem that is popped. +// +// Returns The tensor that is popped from the top of the stack. +func StackPopV2(scope *Scope, handle tf.Output, elem_type tf.DataType) (elem tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"elem_type": elem_type} + opspec := tf.OpSpec{ + Type: "StackPopV2", + Input: []tf.Input{ + handle, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) return op.Output(0) } -// ResourceScatterNdSubAttr is an optional argument to ResourceScatterNdSub. -type ResourceScatterNdSubAttr func(optionalAttr) +// EnqueueTPUEmbeddingSparseBatchAttr is an optional argument to EnqueueTPUEmbeddingSparseBatch. +type EnqueueTPUEmbeddingSparseBatchAttr func(optionalAttr) -// ResourceScatterNdSubUseLocking sets the optional use_locking attribute to value. +// EnqueueTPUEmbeddingSparseBatchDeviceOrdinal sets the optional device_ordinal attribute to value. // -// value: An optional bool. Defaults to True. If True, the assignment will -// be protected by a lock; otherwise the behavior is undefined, -// but may exhibit less contention. -// If not specified, defaults to true -func ResourceScatterNdSubUseLocking(value bool) ResourceScatterNdSubAttr { +// value: The TPU device to use. Should be >= 0 and less than the number +// of TPU cores in the task on which the node is placed. +// If not specified, defaults to -1 +func EnqueueTPUEmbeddingSparseBatchDeviceOrdinal(value int64) EnqueueTPUEmbeddingSparseBatchAttr { return func(m optionalAttr) { - m["use_locking"] = value + m["device_ordinal"] = value } } -// Applies sparse subtraction to individual values or slices in a Variable. +// EnqueueTPUEmbeddingSparseBatchCombiners sets the optional combiners attribute to value. // -// `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. +// value: A list of string scalars, one for each embedding table that specify +// how to normalize the embedding activations after weighted summation. +// Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have +// the sum of the weights be 0 for 'mean' or the sum of the squared weights be +// 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for +// all tables. +// If not specified, defaults to <> +func EnqueueTPUEmbeddingSparseBatchCombiners(value []string) EnqueueTPUEmbeddingSparseBatchAttr { + return func(m optionalAttr) { + m["combiners"] = value + } +} + +// An op that enqueues TPUEmbedding input indices from a SparseTensor. // -// `indices` must be integer tensor, containing indices into `ref`. -// It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. +// This Op eases the porting of code that uses embedding_lookup_sparse(), +// although some Python preprocessing of the SparseTensor arguments to +// embedding_lookup_sparse() is required to produce the arguments to this Op, +// since only a single EnqueueTPUEmbeddingSparseBatch Op is allowed per training +// step. // -// The innermost dimension of `indices` (with length `K`) corresponds to -// indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th -// dimension of `ref`. -// -// `updates` is `Tensor` of rank `Q-1+P-K` with shape: -// -// ``` -// [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]] -// ``` -// -// For example, say we want to subtract 4 scattered elements from a rank-1 tensor -// with 8 elements. In Python, that subtraction would look like this: -// -// ```python -// ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8], use_resource=True) -// indices = tf.constant([[4], [3], [1], [7]]) -// updates = tf.constant([9, 10, 11, 12]) -// sub = tf.scatter_nd_sub(ref, indices, updates) -// with tf.Session() as sess: -// print sess.run(sub) -// ``` -// -// The resulting update to ref would look like this: -// -// [1, -9, 3, -6, -4, 6, 7, -4] -// -// See `tf.scatter_nd` for more details about how to make updates to -// slices. +// The tensors at corresponding positions in the three input lists +// must have the same shape, i.e. rank 1 with dim_size() equal to the total +// number of lookups into the table described by the corresponding table_id. // // Arguments: -// ref: A resource handle. Must be from a VarHandleOp. -// indices: A Tensor. Must be one of the following types: int32, int64. -// A tensor of indices into ref. -// updates: A Tensor. Must have the same type as ref. A tensor of -// values to add to ref. +// sample_indices: A list of rank 1 Tensors specifying the training example and +// feature to which the corresponding embedding_indices and aggregation_weights +// values belong. sample_indices[i] must equal b * nf + f, where nf is the +// number of features from the corresponding table, f is in [0, nf), and +// b is in [0, batch size). +// embedding_indices: A list of rank 1 Tensors, indices into the embedding tables. +// aggregation_weights: A list of rank 1 Tensors containing per sample -- i.e. per +// (training example, feature) -- aggregation weights. +// mode_override: A string input that overrides the mode specified in the +// TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', +// 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set +// in TPUEmbeddingConfiguration is used, otherwise mode_override is used. // // Returns the created operation. -func ResourceScatterNdSub(scope *Scope, ref tf.Output, indices tf.Output, updates tf.Output, optional ...ResourceScatterNdSubAttr) (o *tf.Operation) { +func EnqueueTPUEmbeddingSparseBatch(scope *Scope, sample_indices []tf.Output, embedding_indices []tf.Output, aggregation_weights []tf.Output, mode_override tf.Output, optional ...EnqueueTPUEmbeddingSparseBatchAttr) (o *tf.Operation) { if scope.Err() != nil { return } @@ -28339,15 +28485,929 @@ func ResourceScatterNdSub(scope *Scope, ref tf.Output, indices tf.Output, update a(attrs) } opspec := tf.OpSpec{ - Type: "ResourceScatterNdSub", + Type: "EnqueueTPUEmbeddingSparseBatch", Input: []tf.Input{ - ref, indices, updates, + tf.OutputList(sample_indices), tf.OutputList(embedding_indices), tf.OutputList(aggregation_weights), mode_override, }, Attrs: attrs, } return scope.AddOperation(opspec) } +// ResourceSparseApplyProximalGradientDescentAttr is an optional argument to ResourceSparseApplyProximalGradientDescent. +type ResourceSparseApplyProximalGradientDescentAttr func(optionalAttr) + +// ResourceSparseApplyProximalGradientDescentUseLocking sets the optional use_locking attribute to value. +// +// value: If True, the subtraction will be protected by a lock; +// otherwise the behavior is undefined, but may exhibit less contention. +// If not specified, defaults to false +func ResourceSparseApplyProximalGradientDescentUseLocking(value bool) ResourceSparseApplyProximalGradientDescentAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Sparse update '*var' as FOBOS algorithm with fixed learning rate. +// +// That is for rows we have grad for, we update var as follows: +// prox_v = var - alpha * grad +// var = sign(prox_v)/(1+alpha*l2) * max{|prox_v|-alpha*l1,0} +// +// Arguments: +// var_: Should be from a Variable(). +// alpha: Scaling factor. Must be a scalar. +// l1: L1 regularization. Must be a scalar. +// l2: L2 regularization. Must be a scalar. +// grad: The gradient. +// indices: A vector of indices into the first dimension of var and accum. +// +// Returns the created operation. +func ResourceSparseApplyProximalGradientDescent(scope *Scope, var_ tf.Output, alpha tf.Output, l1 tf.Output, l2 tf.Output, grad tf.Output, indices tf.Output, optional ...ResourceSparseApplyProximalGradientDescentAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceSparseApplyProximalGradientDescent", + Input: []tf.Input{ + var_, alpha, l1, l2, grad, indices, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)` +// +// if < 0, `scale * features` otherwise. +// +// To be used together with +// `initializer = tf.variance_scaling_initializer(factor=1.0, mode='FAN_IN')`. +// For correct dropout, use `tf.contrib.nn.alpha_dropout`. +// +// See [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) +func Selu(scope *Scope, features tf.Output) (activations tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Selu", + Input: []tf.Input{ + features, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Determine the script codes of a given tensor of Unicode integer code points. +// +// This operation converts Unicode code points to script codes corresponding to +// each code point. Script codes correspond to International Components for +// Unicode (ICU) UScriptCode values. See http://icu-project.org/apiref/icu4c/uscript_8h.html. +// Returns -1 (USCRIPT_INVALID_CODE) for invalid codepoints. Output shape will +// match input shape. +// +// Arguments: +// input: A Tensor of int32 Unicode code points. +// +// Returns A Tensor of int32 script codes corresponding to each input code point. +func UnicodeScript(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "UnicodeScript", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// MultinomialAttr is an optional argument to Multinomial. +type MultinomialAttr func(optionalAttr) + +// MultinomialSeed sets the optional seed attribute to value. +// +// value: If either seed or seed2 is set to be non-zero, the internal random number +// generator is seeded by the given seed. Otherwise, a random seed is used. +// If not specified, defaults to 0 +func MultinomialSeed(value int64) MultinomialAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// MultinomialSeed2 sets the optional seed2 attribute to value. +// +// value: A second seed to avoid seed collision. +// If not specified, defaults to 0 +func MultinomialSeed2(value int64) MultinomialAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// MultinomialOutputDtype sets the optional output_dtype attribute to value. +// If not specified, defaults to DT_INT64 +func MultinomialOutputDtype(value tf.DataType) MultinomialAttr { + return func(m optionalAttr) { + m["output_dtype"] = value + } +} + +// Draws samples from a multinomial distribution. +// +// Arguments: +// logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` +// represents the unnormalized log probabilities for all classes. +// num_samples: 0-D. Number of independent samples to draw for each row slice. +// +// Returns 2-D Tensor with shape `[batch_size, num_samples]`. Each slice `[i, :]` +// contains the drawn class labels with range `[0, num_classes)`. +func Multinomial(scope *Scope, logits tf.Output, num_samples tf.Output, optional ...MultinomialAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Multinomial", + Input: []tf.Input{ + logits, num_samples, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr is an optional argument to LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug. +type LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr func(optionalAttr) + +// LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugTableId(value int64) LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugTableName(value string) LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load proximal Adagrad embedding parameters with debug support. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the proximal Adagrad optimization algorithm. +// accumulators: Value of accumulators used in the proximal Adagrad optimization algorithm. +// gradient_accumulators: Value of gradient_accumulators used in the proximal Adagrad optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug(scope *Scope, parameters tf.Output, accumulators tf.Output, gradient_accumulators tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug", + Input: []tf.Input{ + parameters, accumulators, gradient_accumulators, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// StatelessMultinomialAttr is an optional argument to StatelessMultinomial. +type StatelessMultinomialAttr func(optionalAttr) + +// StatelessMultinomialOutputDtype sets the optional output_dtype attribute to value. +// If not specified, defaults to DT_INT64 +func StatelessMultinomialOutputDtype(value tf.DataType) StatelessMultinomialAttr { + return func(m optionalAttr) { + m["output_dtype"] = value + } +} + +// Draws samples from a multinomial distribution. +// +// Arguments: +// logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` +// represents the unnormalized log probabilities for all classes. +// num_samples: 0-D. Number of independent samples to draw for each row slice. +// seed: 2 seeds (shape [2]). +// +// Returns 2-D Tensor with shape `[batch_size, num_samples]`. Each slice `[i, :]` +// contains the drawn class labels with range `[0, num_classes)`. +func StatelessMultinomial(scope *Scope, logits tf.Output, num_samples tf.Output, seed tf.Output, optional ...StatelessMultinomialAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "StatelessMultinomial", + Input: []tf.Input{ + logits, num_samples, seed, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Checks whether a quantile stream has been initialized. +// +// An Op that checks if quantile stream resource is initialized. +// +// Arguments: +// quantile_stream_resource_handle: resource; The reference to quantile stream resource handle. +// +// Returns bool; True if the resource is initialized, False otherwise. +func IsBoostedTreesQuantileStreamResourceInitialized(scope *Scope, quantile_stream_resource_handle tf.Output) (is_initialized tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "IsBoostedTreesQuantileStreamResourceInitialized", + Input: []tf.Input{ + quantile_stream_resource_handle, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Reshapes a tensor. +// +// Given `tensor`, this operation returns a tensor that has the same values +// as `tensor` with shape `shape`. +// +// If one component of `shape` is the special value -1, the size of that dimension +// is computed so that the total size remains constant. In particular, a `shape` +// of `[-1]` flattens into 1-D. At most one component of `shape` can be -1. +// +// If `shape` is 1-D or higher, then the operation returns a tensor with shape +// `shape` filled with the values of `tensor`. In this case, the number of elements +// implied by `shape` must be the same as the number of elements in `tensor`. +// +// For example: +// +// ``` +// # tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9] +// # tensor 't' has shape [9] +// reshape(t, [3, 3]) ==> [[1, 2, 3], +// [4, 5, 6], +// [7, 8, 9]] +// +// # tensor 't' is [[[1, 1], [2, 2]], +// # [[3, 3], [4, 4]]] +// # tensor 't' has shape [2, 2, 2] +// reshape(t, [2, 4]) ==> [[1, 1, 2, 2], +// [3, 3, 4, 4]] +// +// # tensor 't' is [[[1, 1, 1], +// # [2, 2, 2]], +// # [[3, 3, 3], +// # [4, 4, 4]], +// # [[5, 5, 5], +// # [6, 6, 6]]] +// # tensor 't' has shape [3, 2, 3] +// # pass '[-1]' to flatten 't' +// reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6] +// +// # -1 can also be used to infer the shape +// +// # -1 is inferred to be 9: +// reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], +// [4, 4, 4, 5, 5, 5, 6, 6, 6]] +// # -1 is inferred to be 2: +// reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], +// [4, 4, 4, 5, 5, 5, 6, 6, 6]] +// # -1 is inferred to be 3: +// reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1], +// [2, 2, 2], +// [3, 3, 3]], +// [[4, 4, 4], +// [5, 5, 5], +// [6, 6, 6]]] +// +// # tensor 't' is [7] +// # shape `[]` reshapes to a scalar +// reshape(t, []) ==> 7 +// ``` +// +// Arguments: +// +// shape: Defines the shape of the output tensor. +func Reshape(scope *Scope, tensor tf.Output, shape tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Reshape", + Input: []tf.Input{ + tensor, shape, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns the max of x and y (i.e. x > y ? x : y) element-wise. +// +// *NOTE*: `Maximum` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func Maximum(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Maximum", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// DataFormatVecPermuteAttr is an optional argument to DataFormatVecPermute. +type DataFormatVecPermuteAttr func(optionalAttr) + +// DataFormatVecPermuteSrcFormat sets the optional src_format attribute to value. +// +// value: source data format. +// If not specified, defaults to "NHWC" +func DataFormatVecPermuteSrcFormat(value string) DataFormatVecPermuteAttr { + return func(m optionalAttr) { + m["src_format"] = value + } +} + +// DataFormatVecPermuteDstFormat sets the optional dst_format attribute to value. +// +// value: destination data format. +// If not specified, defaults to "NCHW" +func DataFormatVecPermuteDstFormat(value string) DataFormatVecPermuteAttr { + return func(m optionalAttr) { + m["dst_format"] = value + } +} + +// Returns the permuted vector/tensor in the destination data format given the +// +// one in the source data format. +// +// Arguments: +// x: Vector of size 4 or Tensor of shape (4, 2) in source data format. +// +// Returns Vector of size 4 or Tensor of shape (4, 2) in destination data format. +func DataFormatVecPermute(scope *Scope, x tf.Output, optional ...DataFormatVecPermuteAttr) (y tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DataFormatVecPermute", + Input: []tf.Input{ + x, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes a range that covers the actual values present in a quantized tensor. +// +// Given a quantized tensor described by `(input, input_min, input_max)`, outputs a +// range that covers the actual values present in that tensor. This op is typically +// used to produce the `requested_output_min` and `requested_output_max` for +// `Requantize`. +// +// Arguments: +// +// input_min: The float value that the minimum quantized input value represents. +// input_max: The float value that the maximum quantized input value represents. +// +// Returns The computed min output.the computed max output. +func RequantizationRange(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output) (output_min tf.Output, output_max tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "RequantizationRange", + Input: []tf.Input{ + input, input_min, input_max, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// Transforms a Tensor into a serialized TensorProto proto. +// +// Arguments: +// tensor: A Tensor of type `T`. +// +// Returns A serialized TensorProto proto of the input tensor. +func SerializeTensor(scope *Scope, tensor tf.Output) (serialized tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SerializeTensor", + Input: []tf.Input{ + tensor, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the Gauss error function of `x` element-wise. +func Erf(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Erf", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns 0 if the denominator is zero. +// +// +// *NOTE*: `DivNoNan` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func DivNoNan(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "DivNoNan", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ExtractGlimpseAttr is an optional argument to ExtractGlimpse. +type ExtractGlimpseAttr func(optionalAttr) + +// ExtractGlimpseCentered sets the optional centered attribute to value. +// +// value: indicates if the offset coordinates are centered relative to +// the image, in which case the (0, 0) offset is relative to the center +// of the input images. If false, the (0,0) offset corresponds to the +// upper left corner of the input images. +// If not specified, defaults to true +func ExtractGlimpseCentered(value bool) ExtractGlimpseAttr { + return func(m optionalAttr) { + m["centered"] = value + } +} + +// ExtractGlimpseNormalized sets the optional normalized attribute to value. +// +// value: indicates if the offset coordinates are normalized. +// If not specified, defaults to true +func ExtractGlimpseNormalized(value bool) ExtractGlimpseAttr { + return func(m optionalAttr) { + m["normalized"] = value + } +} + +// ExtractGlimpseUniformNoise sets the optional uniform_noise attribute to value. +// +// value: indicates if the noise should be generated using a +// uniform distribution or a Gaussian distribution. +// If not specified, defaults to true +func ExtractGlimpseUniformNoise(value bool) ExtractGlimpseAttr { + return func(m optionalAttr) { + m["uniform_noise"] = value + } +} + +// ExtractGlimpseNoise sets the optional noise attribute to value. +// +// value: indicates if the noise should `uniform`, `gaussian`, or +// `zero`. The default is `uniform` which means the the noise type +// will be decided by `uniform_noise`. +// If not specified, defaults to "uniform" +func ExtractGlimpseNoise(value string) ExtractGlimpseAttr { + return func(m optionalAttr) { + m["noise"] = value + } +} + +// Extracts a glimpse from the input tensor. +// +// Returns a set of windows called glimpses extracted at location +// `offsets` from the input tensor. If the windows only partially +// overlaps the inputs, the non overlapping areas will be filled with +// random noise. +// +// The result is a 4-D tensor of shape `[batch_size, glimpse_height, +// glimpse_width, channels]`. The channels and batch dimensions are the +// same as that of the input tensor. The height and width of the output +// windows are specified in the `size` parameter. +// +// The argument `normalized` and `centered` controls how the windows are built: +// +// * If the coordinates are normalized but not centered, 0.0 and 1.0 +// correspond to the minimum and maximum of each height and width +// dimension. +// * If the coordinates are both normalized and centered, they range from +// -1.0 to 1.0. The coordinates (-1.0, -1.0) correspond to the upper +// left corner, the lower right corner is located at (1.0, 1.0) and the +// center is at (0, 0). +// * If the coordinates are not normalized they are interpreted as +// numbers of pixels. +// +// Arguments: +// input: A 4-D float tensor of shape `[batch_size, height, width, channels]`. +// size: A 1-D tensor of 2 elements containing the size of the glimpses +// to extract. The glimpse height must be specified first, following +// by the glimpse width. +// offsets: A 2-D integer tensor of shape `[batch_size, 2]` containing +// the y, x locations of the center of each window. +// +// Returns A tensor representing the glimpses `[batch_size, +// glimpse_height, glimpse_width, channels]`. +func ExtractGlimpse(scope *Scope, input tf.Output, size tf.Output, offsets tf.Output, optional ...ExtractGlimpseAttr) (glimpse tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ExtractGlimpse", + Input: []tf.Input{ + input, size, offsets, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Forwards the value of an available tensor from `inputs` to `output`. +// +// `Merge` waits for at least one of the tensors in `inputs` to become available. +// It is usually combined with `Switch` to implement branching. +// +// `Merge` forwards the first tensor to become available to `output`, and sets +// `value_index` to its index in `inputs`. +// +// Arguments: +// inputs: The input tensors, exactly one of which will become available. +// +// Returns Will be set to the available input tensor.The index of the chosen input tensor in `inputs`. +func Merge(scope *Scope, inputs []tf.Output) (output tf.Output, value_index tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Merge", + Input: []tf.Input{ + tf.OutputList(inputs), + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// CropAndResizeGradImageAttr is an optional argument to CropAndResizeGradImage. +type CropAndResizeGradImageAttr func(optionalAttr) + +// CropAndResizeGradImageMethod sets the optional method attribute to value. +// +// value: A string specifying the interpolation method. Only 'bilinear' is +// supported for now. +// If not specified, defaults to "bilinear" +func CropAndResizeGradImageMethod(value string) CropAndResizeGradImageAttr { + return func(m optionalAttr) { + m["method"] = value + } +} + +// Computes the gradient of the crop_and_resize op wrt the input image tensor. +// +// Arguments: +// grads: A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`. +// boxes: A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor +// specifies the coordinates of a box in the `box_ind[i]` image and is specified +// in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of +// `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the +// `[0, 1]` interval of normalized image height is mapped to +// `[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in +// which case the sampled crop is an up-down flipped version of the original +// image. The width dimension is treated similarly. Normalized coordinates +// outside the `[0, 1]` range are allowed, in which case we use +// `extrapolation_value` to extrapolate the input image values. +// box_ind: A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`. +// The value of `box_ind[i]` specifies the image that the `i`-th box refers to. +// image_size: A 1-D tensor with value `[batch, image_height, image_width, depth]` +// containing the original image size. Both `image_height` and `image_width` need +// to be positive. +// +// +// Returns A 4-D tensor of shape `[batch, image_height, image_width, depth]`. +func CropAndResizeGradImage(scope *Scope, grads tf.Output, boxes tf.Output, box_ind tf.Output, image_size tf.Output, T tf.DataType, optional ...CropAndResizeGradImageAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"T": T} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CropAndResizeGradImage", + Input: []tf.Input{ + grads, boxes, box_ind, image_size, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// LoadTPUEmbeddingCenteredRMSPropParametersAttr is an optional argument to LoadTPUEmbeddingCenteredRMSPropParameters. +type LoadTPUEmbeddingCenteredRMSPropParametersAttr func(optionalAttr) + +// LoadTPUEmbeddingCenteredRMSPropParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingCenteredRMSPropParametersTableId(value int64) LoadTPUEmbeddingCenteredRMSPropParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingCenteredRMSPropParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingCenteredRMSPropParametersTableName(value string) LoadTPUEmbeddingCenteredRMSPropParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load centered RMSProp embedding parameters. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the centered RMSProp optimization algorithm. +// ms: Value of ms used in the centered RMSProp optimization algorithm. +// mom: Value of mom used in the centered RMSProp optimization algorithm. +// mg: Value of mg used in the centered RMSProp optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingCenteredRMSPropParameters(scope *Scope, parameters tf.Output, ms tf.Output, mom tf.Output, mg tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingCenteredRMSPropParametersAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingCenteredRMSPropParameters", + Input: []tf.Input{ + parameters, ms, mom, mg, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Computes the gradient for the rsqrt of `x` wrt its input. +// +// Specifically, `grad = dy * -0.5 * y^3`, where `y = rsqrt(x)`, and `dy` +// is the corresponding input gradient. +func RsqrtGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "RsqrtGrad", + Input: []tf.Input{ + y, dy, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// RestoreSliceAttr is an optional argument to RestoreSlice. +type RestoreSliceAttr func(optionalAttr) + +// RestoreSlicePreferredShard sets the optional preferred_shard attribute to value. +// +// value: Index of file to open first if multiple files match +// `file_pattern`. See the documentation for `Restore`. +// If not specified, defaults to -1 +func RestoreSlicePreferredShard(value int64) RestoreSliceAttr { + return func(m optionalAttr) { + m["preferred_shard"] = value + } +} + +// Restores a tensor from checkpoint files. +// +// This is like `Restore` except that restored tensor can be listed as filling +// only a slice of a larger tensor. `shape_and_slice` specifies the shape of the +// larger tensor and the slice that the restored tensor covers. +// +// The `shape_and_slice` input has the same format as the +// elements of the `shapes_and_slices` input of the `SaveSlices` op. +// +// Arguments: +// file_pattern: Must have a single element. The pattern of the files from +// which we read the tensor. +// tensor_name: Must have a single element. The name of the tensor to be +// restored. +// shape_and_slice: Scalar. The shapes and slice specifications to use when +// restoring a tensors. +// dt: The type of the tensor to be restored. +// +// Returns The restored tensor. +func RestoreSlice(scope *Scope, file_pattern tf.Output, tensor_name tf.Output, shape_and_slice tf.Output, dt tf.DataType, optional ...RestoreSliceAttr) (tensor tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dt": dt} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "RestoreSlice", + Input: []tf.Input{ + file_pattern, tensor_name, shape_and_slice, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// CumsumAttr is an optional argument to Cumsum. +type CumsumAttr func(optionalAttr) + +// CumsumExclusive sets the optional exclusive attribute to value. +// +// value: If `True`, perform exclusive cumsum. +// If not specified, defaults to false +func CumsumExclusive(value bool) CumsumAttr { + return func(m optionalAttr) { + m["exclusive"] = value + } +} + +// CumsumReverse sets the optional reverse attribute to value. +// +// value: A `bool` (default: False). +// If not specified, defaults to false +func CumsumReverse(value bool) CumsumAttr { + return func(m optionalAttr) { + m["reverse"] = value + } +} + +// Compute the cumulative sum of the tensor `x` along `axis`. +// +// By default, this op performs an inclusive cumsum, which means that the first +// element of the input is identical to the first element of the output: +// +// ```python +// tf.cumsum([a, b, c]) # => [a, a + b, a + b + c] +// ``` +// +// By setting the `exclusive` kwarg to `True`, an exclusive cumsum is +// performed instead: +// +// ```python +// tf.cumsum([a, b, c], exclusive=True) # => [0, a, a + b] +// ``` +// +// By setting the `reverse` kwarg to `True`, the cumsum is performed in the +// opposite direction: +// +// ```python +// tf.cumsum([a, b, c], reverse=True) # => [a + b + c, b + c, c] +// ``` +// +// This is more efficient than using separate `tf.reverse` ops. +// +// The `reverse` and `exclusive` kwargs can also be combined: +// +// ```python +// tf.cumsum([a, b, c], exclusive=True, reverse=True) # => [b + c, c, 0] +// ``` +// +// Arguments: +// x: A `Tensor`. Must be one of the following types: `float32`, `float64`, +// `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, +// `complex128`, `qint8`, `quint8`, `qint32`, `half`. +// axis: A `Tensor` of type `int32` (default: 0). Must be in the range +// `[-rank(x), rank(x))`. +func Cumsum(scope *Scope, x tf.Output, axis tf.Output, optional ...CumsumAttr) (out tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Cumsum", + Input: []tf.Input{ + x, axis, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Inverse fast Fourier transform. +// +// Computes the inverse 1-dimensional discrete Fourier transform over the +// inner-most dimension of `input`. +// +// Arguments: +// input: A complex tensor. +// +// Returns A complex tensor of the same shape as `input`. The inner-most +// dimension of `input` is replaced with its inverse 1D Fourier transform. +// +// @compatibility(numpy) +// Equivalent to np.fft.ifft +// @end_compatibility +func IFFT(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "IFFT", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Performs a padding as a preprocess during a convolution. // // Similar to FusedResizeAndPadConv2d, this op allows for an optimized @@ -28416,365 +29476,102 @@ func IFFT3D(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// SparseTensorDenseMatMulAttr is an optional argument to SparseTensorDenseMatMul. -type SparseTensorDenseMatMulAttr func(optionalAttr) +// RetrieveTPUEmbeddingAdadeltaParametersAttr is an optional argument to RetrieveTPUEmbeddingAdadeltaParameters. +type RetrieveTPUEmbeddingAdadeltaParametersAttr func(optionalAttr) -// SparseTensorDenseMatMulAdjointA sets the optional adjoint_a attribute to value. +// RetrieveTPUEmbeddingAdadeltaParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 // -// value: Use the adjoint of A in the matrix multiply. If A is complex, this -// is transpose(conj(A)). Otherwise it's transpose(A). -// If not specified, defaults to false -func SparseTensorDenseMatMulAdjointA(value bool) SparseTensorDenseMatMulAttr { +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingAdadeltaParametersTableId(value int64) RetrieveTPUEmbeddingAdadeltaParametersAttr { return func(m optionalAttr) { - m["adjoint_a"] = value + m["table_id"] = value } } -// SparseTensorDenseMatMulAdjointB sets the optional adjoint_b attribute to value. -// -// value: Use the adjoint of B in the matrix multiply. If B is complex, this -// is transpose(conj(B)). Otherwise it's transpose(B). -// If not specified, defaults to false -func SparseTensorDenseMatMulAdjointB(value bool) SparseTensorDenseMatMulAttr { +// RetrieveTPUEmbeddingAdadeltaParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func RetrieveTPUEmbeddingAdadeltaParametersTableName(value string) RetrieveTPUEmbeddingAdadeltaParametersAttr { return func(m optionalAttr) { - m["adjoint_b"] = value + m["table_name"] = value } } -// Multiply SparseTensor (of rank 2) "A" by dense matrix "B". +// Retrieve Adadelta embedding parameters. // -// No validity checking is performed on the indices of A. However, the following -// input format is recommended for optimal behavior: +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. // -// if adjoint_a == false: -// A should be sorted in lexicographically increasing order. Use SparseReorder -// if you're not sure. -// if adjoint_a == true: -// A should be sorted in order of increasing dimension 1 (i.e., "column major" -// order instead of "row major" order). -// -// Arguments: -// a_indices: 2-D. The `indices` of the `SparseTensor`, size `[nnz, 2]` Matrix. -// a_values: 1-D. The `values` of the `SparseTensor`, size `[nnz]` Vector. -// a_shape: 1-D. The `shape` of the `SparseTensor`, size `[2]` Vector. -// b: 2-D. A dense Matrix. -func SparseTensorDenseMatMul(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b tf.Output, optional ...SparseTensorDenseMatMulAttr) (product tf.Output) { +// Returns Parameter parameters updated by the Adadelta optimization algorithm.Parameter accumulators updated by the Adadelta optimization algorithm.Parameter updates updated by the Adadelta optimization algorithm. +func RetrieveTPUEmbeddingAdadeltaParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingAdadeltaParametersAttr) (parameters tf.Output, accumulators tf.Output, updates tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "SparseTensorDenseMatMul", - Input: []tf.Input{ - a_indices, a_values, a_shape, b, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} + Type: "RetrieveTPUEmbeddingAdadeltaParameters", -// Real-valued fast Fourier transform. -// -// Computes the 1-dimensional discrete Fourier transform of a real-valued signal -// over the inner-most dimension of `input`. -// -// Since the DFT of a real signal is Hermitian-symmetric, `RFFT` only returns the -// `fft_length / 2 + 1` unique components of the FFT: the zero-frequency term, -// followed by the `fft_length / 2` positive-frequency terms. -// -// Along the axis `RFFT` is computed on, if `fft_length` is smaller than the -// corresponding dimension of `input`, the dimension is cropped. If it is larger, -// the dimension is padded with zeros. -// -// Arguments: -// input: A float32 tensor. -// fft_length: An int32 tensor of shape [1]. The FFT length. -// -// Returns A complex64 tensor of the same rank as `input`. The inner-most -// dimension of `input` is replaced with the `fft_length / 2 + 1` unique -// frequency components of its 1D Fourier transform. -// -// @compatibility(numpy) -// Equivalent to np.fft.rfft -// @end_compatibility -func RFFT(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RFFT", - Input: []tf.Input{ - input, fft_length, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// StringSplitAttr is an optional argument to StringSplit. -type StringSplitAttr func(optionalAttr) - -// StringSplitSkipEmpty sets the optional skip_empty attribute to value. -// -// value: A `bool`. If `True`, skip the empty strings from the result. -// If not specified, defaults to true -func StringSplitSkipEmpty(value bool) StringSplitAttr { - return func(m optionalAttr) { - m["skip_empty"] = value - } -} - -// Split elements of `input` based on `delimiter` into a `SparseTensor`. -// -// Let N be the size of source (typically N will be the batch size). Split each -// element of `input` based on `delimiter` and return a `SparseTensor` -// containing the splitted tokens. Empty tokens are ignored. -// -// `delimiter` can be empty, or a string of split characters. If `delimiter` is an -// empty string, each element of `input` is split into individual single-byte -// character strings, including splitting of UTF-8 multibyte sequences. Otherwise -// every character of `delimiter` is a potential split point. -// -// For example: -// N = 2, input[0] is 'hello world' and input[1] is 'a b c', then the output -// will be -// -// indices = [0, 0; -// 0, 1; -// 1, 0; -// 1, 1; -// 1, 2] -// shape = [2, 3] -// values = ['hello', 'world', 'a', 'b', 'c'] -// -// Arguments: -// input: 1-D. Strings to split. -// delimiter: 0-D. Delimiter characters (bytes), or empty string. -// -// Returns A dense matrix of int64 representing the indices of the sparse tensor.A vector of strings corresponding to the splited values.a length-2 vector of int64 representing the shape of the sparse -// tensor, where the first value is N and the second value is the maximum number -// of tokens in a single input entry. -func StringSplit(scope *Scope, input tf.Output, delimiter tf.Output, optional ...StringSplitAttr) (indices tf.Output, values tf.Output, shape tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StringSplit", - Input: []tf.Input{ - input, delimiter, - }, Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0), op.Output(1), op.Output(2) } -// NonMaxSuppressionV4Attr is an optional argument to NonMaxSuppressionV4. -type NonMaxSuppressionV4Attr func(optionalAttr) - -// NonMaxSuppressionV4PadToMaxOutputSize sets the optional pad_to_max_output_size attribute to value. +// Clips tensor values to a specified min and max. // -// value: If true, the output `selected_indices` is padded to be of length -// `max_output_size`. Defaults to false. -// If not specified, defaults to false -func NonMaxSuppressionV4PadToMaxOutputSize(value bool) NonMaxSuppressionV4Attr { - return func(m optionalAttr) { - m["pad_to_max_output_size"] = value - } -} - -// Greedily selects a subset of bounding boxes in descending order of score, -// -// pruning away boxes that have high intersection-over-union (IOU) overlap -// with previously selected boxes. Bounding boxes with score less than -// `score_threshold` are removed. Bounding boxes are supplied as -// [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any -// diagonal pair of box corners and the coordinates can be provided as normalized -// (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm -// is agnostic to where the origin is in the coordinate system and more -// generally is invariant to orthogonal transformations and translations -// of the coordinate system; thus translating or reflections of the coordinate -// system result in the same boxes being selected by the algorithm. -// The output of this operation is a set of integers indexing into the input -// collection of bounding boxes representing the selected boxes. The bounding -// box coordinates corresponding to the selected indices can then be obtained -// using the `tf.gather operation`. For example: -// selected_indices = tf.image.non_max_suppression_v2( -// boxes, scores, max_output_size, iou_threshold, score_threshold) -// selected_boxes = tf.gather(boxes, selected_indices) +// Given a tensor `t`, this operation returns a tensor of the same type and +// shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`. +// Any values less than `clip_value_min` are set to `clip_value_min`. Any values +// greater than `clip_value_max` are set to `clip_value_max`. // // Arguments: -// boxes: A 2-D float tensor of shape `[num_boxes, 4]`. -// scores: A 1-D float tensor of shape `[num_boxes]` representing a single -// score corresponding to each box (each row of boxes). -// max_output_size: A scalar integer tensor representing the maximum number of -// boxes to be selected by non max suppression. -// iou_threshold: A 0-D float tensor representing the threshold for deciding whether -// boxes overlap too much with respect to IOU. -// score_threshold: A 0-D float tensor representing the threshold for deciding when to remove -// boxes based on score. +// t: A `Tensor`. +// clip_value_min: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape +// as `t`. The minimum value to clip by. +// clip_value_max: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape +// as `t`. The maximum value to clip by. // -// Returns A 1-D integer tensor of shape `[M]` representing the selected -// indices from the boxes tensor, where `M <= max_output_size`.A 0-D integer tensor representing the number of valid elements in -// `selected_indices`, with the valid elements appearing first. -func NonMaxSuppressionV4(scope *Scope, boxes tf.Output, scores tf.Output, max_output_size tf.Output, iou_threshold tf.Output, score_threshold tf.Output, optional ...NonMaxSuppressionV4Attr) (selected_indices tf.Output, valid_outputs tf.Output) { +// Returns A clipped `Tensor` with the same shape as input 't'. +func ClipByValue(scope *Scope, t tf.Output, clip_value_min tf.Output, clip_value_max tf.Output) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "NonMaxSuppressionV4", + Type: "ClipByValue", Input: []tf.Input{ - boxes, scores, max_output_size, iou_threshold, score_threshold, + t, clip_value_min, clip_value_max, }, - Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) + return op.Output(0) } -// Inverse real-valued fast Fourier transform. +// Subtracts a value from the current value of a variable. // -// Computes the inverse 1-dimensional discrete Fourier transform of a real-valued -// signal over the inner-most dimension of `input`. -// -// The inner-most dimension of `input` is assumed to be the result of `RFFT`: the -// `fft_length / 2 + 1` unique components of the DFT of a real-valued signal. If -// `fft_length` is not provided, it is computed from the size of the inner-most -// dimension of `input` (`fft_length = 2 * (inner - 1)`). If the FFT length used to -// compute `input` is odd, it should be provided since it cannot be inferred -// properly. -// -// Along the axis `IRFFT` is computed on, if `fft_length / 2 + 1` is smaller -// than the corresponding dimension of `input`, the dimension is cropped. If it is -// larger, the dimension is padded with zeros. +// Any ReadVariableOp with a control dependency on this op is guaranteed to +// see the decremented value or a subsequent newer one. // // Arguments: -// input: A complex64 tensor. -// fft_length: An int32 tensor of shape [1]. The FFT length. +// resource: handle to the resource in which to store the variable. +// value: the value by which the variable will be incremented. // -// Returns A float32 tensor of the same rank as `input`. The inner-most -// dimension of `input` is replaced with the `fft_length` samples of its inverse -// 1D Fourier transform. -// -// @compatibility(numpy) -// Equivalent to np.fft.irfft -// @end_compatibility -func IRFFT(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { +// Returns the created operation. +func AssignSubVariableOp(scope *Scope, resource tf.Output, value tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "IRFFT", + Type: "AssignSubVariableOp", Input: []tf.Input{ - input, fft_length, + resource, value, }, } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Gives a guarantee to the TF runtime that the input tensor is a constant. -// -// The runtime is then free to make optimizations based on this. -// -// Only accepts value typed tensors as inputs and rejects resource variable handles -// as input. -// -// Returns the input tensor without modification. -func GuaranteeConst(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "GuaranteeConst", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Compute the polygamma function \\(\psi^{(n)}(x)\\). -// -// The polygamma function is defined as: -// -// -// \\(\psi^{(a)}(x) = \frac{d^a}{dx^a} \psi(x)\\) -// -// where \\(\psi(x)\\) is the digamma function. -// The polygamma function is defined only for non-negative integer orders \\a\\. -func Polygamma(scope *Scope, a tf.Output, x tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Polygamma", - Input: []tf.Input{ - a, x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// AvgPoolGradAttr is an optional argument to AvgPoolGrad. -type AvgPoolGradAttr func(optionalAttr) - -// AvgPoolGradDataFormat sets the optional data_format attribute to value. -// -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the data is stored in the order of: -// [batch, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// If not specified, defaults to "NHWC" -func AvgPoolGradDataFormat(value string) AvgPoolGradAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Computes gradients of the average pooling function. -// -// Arguments: -// orig_input_shape: 1-D. Shape of the original input to `avg_pool`. -// grad: 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. -// the output of `avg_pool`. -// ksize: The size of the sliding window for each dimension of the input. -// strides: The stride of the sliding window for each dimension of the input. -// padding: The type of padding algorithm to use. -// -// Returns 4-D. Gradients w.r.t. the input of `avg_pool`. -func AvgPoolGrad(scope *Scope, orig_input_shape tf.Output, grad tf.Output, ksize []int64, strides []int64, padding string, optional ...AvgPoolGradAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AvgPoolGrad", - Input: []tf.Input{ - orig_input_shape, grad, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) + return scope.AddOperation(opspec) } // ConfigureDistributedTPUAttr is an optional argument to ConfigureDistributedTPU. @@ -28832,166 +29629,34 @@ func ConfigureDistributedTPU(scope *Scope, optional ...ConfigureDistributedTPUAt return op.Output(0) } -// Adds sparse updates to the variable referenced by `resource`. +// ResourceApplyAdagradDAAttr is an optional argument to ResourceApplyAdagradDA. +type ResourceApplyAdagradDAAttr func(optionalAttr) + +// ResourceApplyAdagradDAUseLocking sets the optional use_locking attribute to value. // -// This operation computes -// -// # Scalar indices -// ref[indices, ...] += updates[...] -// -// # Vector indices (for each i) -// ref[indices[i], ...] += updates[i, ...] -// -// # High rank indices (for each i, ..., j) -// ref[indices[i, ..., j], ...] += updates[i, ..., j, ...] -// -// Duplicate entries are handled correctly: if multiple `indices` reference -// the same location, their contributions add. -// -// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. -// -//
-// -//
+// value: If True, updating of the var and accum tensors will be protected by +// a lock; otherwise the behavior is undefined, but may exhibit less contention. +// If not specified, defaults to false +func ResourceApplyAdagradDAUseLocking(value bool) ResourceApplyAdagradDAAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' according to the proximal adagrad scheme. // // Arguments: -// resource: Should be from a `Variable` node. -// indices: A tensor of indices into the first dimension of `ref`. -// updates: A tensor of updated values to add to `ref`. +// var_: Should be from a Variable(). +// gradient_accumulator: Should be from a Variable(). +// gradient_squared_accumulator: Should be from a Variable(). +// grad: The gradient. +// lr: Scaling factor. Must be a scalar. +// l1: L1 regularization. Must be a scalar. +// l2: L2 regularization. Must be a scalar. +// global_step: Training step number. Must be a scalar. // // Returns the created operation. -func ResourceScatterAdd(scope *Scope, resource tf.Output, indices tf.Output, updates tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ResourceScatterAdd", - Input: []tf.Input{ - resource, indices, updates, - }, - } - return scope.AddOperation(opspec) -} - -// MutableHashTableV2Attr is an optional argument to MutableHashTableV2. -type MutableHashTableV2Attr func(optionalAttr) - -// MutableHashTableV2Container sets the optional container attribute to value. -// -// value: If non-empty, this table is placed in the given container. -// Otherwise, a default container is used. -// If not specified, defaults to "" -func MutableHashTableV2Container(value string) MutableHashTableV2Attr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// MutableHashTableV2SharedName sets the optional shared_name attribute to value. -// -// value: If non-empty, this table is shared under the given name across -// multiple sessions. -// If not specified, defaults to "" -func MutableHashTableV2SharedName(value string) MutableHashTableV2Attr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// MutableHashTableV2UseNodeNameSharing sets the optional use_node_name_sharing attribute to value. -// -// value: If true and shared_name is empty, the table is shared -// using the node name. -// If not specified, defaults to false -func MutableHashTableV2UseNodeNameSharing(value bool) MutableHashTableV2Attr { - return func(m optionalAttr) { - m["use_node_name_sharing"] = value - } -} - -// Creates an empty hash table. -// -// This op creates a mutable hash table, specifying the type of its keys and -// values. Each value must be a scalar. Data can be inserted into the table using -// the insert operations. It does not support the initialization operation. -// -// Arguments: -// key_dtype: Type of the table keys. -// value_dtype: Type of the table values. -// -// Returns Handle to a table. -func MutableHashTableV2(scope *Scope, key_dtype tf.DataType, value_dtype tf.DataType, optional ...MutableHashTableV2Attr) (table_handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"key_dtype": key_dtype, "value_dtype": value_dtype} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MutableHashTableV2", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Adjust the hue of one or more images. -// -// `images` is a tensor of at least 3 dimensions. The last dimension is -// interpretted as channels, and must be three. -// -// The input image is considered in the RGB colorspace. Conceptually, the RGB -// colors are first mapped into HSV. A delta is then applied all the hue values, -// and then remapped back to RGB colorspace. -// -// Arguments: -// images: Images to adjust. At least 3-D. -// delta: A float delta to add to the hue. -// -// Returns The hue-adjusted image or images. -func AdjustHue(scope *Scope, images tf.Output, delta tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "AdjustHue", - Input: []tf.Input{ - images, delta, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// DecodeBmpAttr is an optional argument to DecodeBmp. -type DecodeBmpAttr func(optionalAttr) - -// DecodeBmpChannels sets the optional channels attribute to value. -// If not specified, defaults to 0 -func DecodeBmpChannels(value int64) DecodeBmpAttr { - return func(m optionalAttr) { - m["channels"] = value - } -} - -// Decode the first frame of a BMP-encoded image to a uint8 tensor. -// -// The attr `channels` indicates the desired number of color channels for the -// decoded image. -// -// Accepted values are: -// -// * 0: Use the number of channels in the BMP-encoded image. -// * 3: output an RGB image. -// * 4: output an RGBA image. -// -// Arguments: -// contents: 0-D. The BMP-encoded image. -// -// Returns 3-D with shape `[height, width, channels]`. RGB order -func DecodeBmp(scope *Scope, contents tf.Output, optional ...DecodeBmpAttr) (image tf.Output) { +func ResourceApplyAdagradDA(scope *Scope, var_ tf.Output, gradient_accumulator tf.Output, gradient_squared_accumulator tf.Output, grad tf.Output, lr tf.Output, l1 tf.Output, l2 tf.Output, global_step tf.Output, optional ...ResourceApplyAdagradDAAttr) (o *tf.Operation) { if scope.Err() != nil { return } @@ -29000,214 +29665,200 @@ func DecodeBmp(scope *Scope, contents tf.Output, optional ...DecodeBmpAttr) (ima a(attrs) } opspec := tf.OpSpec{ - Type: "DecodeBmp", + Type: "ResourceApplyAdagradDA", Input: []tf.Input{ - contents, + var_, gradient_accumulator, gradient_squared_accumulator, grad, lr, l1, l2, global_step, }, Attrs: attrs, } + return scope.AddOperation(opspec) +} + +// Inverse 3D real-valued fast Fourier transform. +// +// Computes the inverse 3-dimensional discrete Fourier transform of a real-valued +// signal over the inner-most 3 dimensions of `input`. +// +// The inner-most 3 dimensions of `input` are assumed to be the result of `RFFT3D`: +// The inner-most dimension contains the `fft_length / 2 + 1` unique components of +// the DFT of a real-valued signal. If `fft_length` is not provided, it is computed +// from the size of the inner-most 3 dimensions of `input`. If the FFT length used +// to compute `input` is odd, it should be provided since it cannot be inferred +// properly. +// +// Along each axis `IRFFT3D` is computed on, if `fft_length` (or +// `fft_length / 2 + 1` for the inner-most dimension) is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// +// Arguments: +// input: A complex64 tensor. +// fft_length: An int32 tensor of shape [3]. The FFT length for each dimension. +// +// Returns A float32 tensor of the same rank as `input`. The inner-most 3 +// dimensions of `input` are replaced with the `fft_length` samples of their +// inverse 3D real Fourier transform. +// +// @compatibility(numpy) +// Equivalent to np.irfftn with 3 dimensions. +// @end_compatibility +func IRFFT3D(scope *Scope, input tf.Output, fft_length tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "IRFFT3D", + Input: []tf.Input{ + input, fft_length, + }, + } op := scope.AddOperation(opspec) return op.Output(0) } -// Forwards the value of an available tensor from `inputs` to `output`. +// Component-wise divides a SparseTensor by a dense Tensor. // -// `Merge` waits for at least one of the tensors in `inputs` to become available. -// It is usually combined with `Switch` to implement branching. -// -// `Merge` forwards the first tensor to become available to `output`, and sets -// `value_index` to its index in `inputs`. +// *Limitation*: this Op only broadcasts the dense side to the sparse side, but not +// the other direction. // // Arguments: -// inputs: The input tensors, exactly one of which will become available. +// sp_indices: 2-D. `N x R` matrix with the indices of non-empty values in a +// SparseTensor, possibly not in canonical ordering. +// sp_values: 1-D. `N` non-empty values corresponding to `sp_indices`. +// sp_shape: 1-D. Shape of the input SparseTensor. +// dense: `R`-D. The dense Tensor operand. // -// Returns Will be set to the available input tensor.The index of the chosen input tensor in `inputs`. -func Merge(scope *Scope, inputs []tf.Output) (output tf.Output, value_index tf.Output) { +// Returns 1-D. The `N` values that are operated on. +func SparseDenseCwiseDiv(scope *Scope, sp_indices tf.Output, sp_values tf.Output, sp_shape tf.Output, dense tf.Output) (output tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Merge", + Type: "SparseDenseCwiseDiv", Input: []tf.Input{ - tf.OutputList(inputs), + sp_indices, sp_values, sp_shape, dense, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a tree ensemble model and returns a handle to it. +// +// Arguments: +// tree_ensemble_handle: Handle to the tree ensemble resource to be created. +// stamp_token: Token to use as the initial value of the resource stamp. +// tree_ensemble_serialized: Serialized proto of the tree ensemble. +// +// Returns the created operation. +func BoostedTreesCreateEnsemble(scope *Scope, tree_ensemble_handle tf.Output, stamp_token tf.Output, tree_ensemble_serialized tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "BoostedTreesCreateEnsemble", + Input: []tf.Input{ + tree_ensemble_handle, stamp_token, tree_ensemble_serialized, + }, + } + return scope.AddOperation(opspec) +} + +// Reorders a SparseTensor into the canonical, row-major ordering. +// +// Note that by convention, all sparse ops preserve the canonical ordering along +// increasing dimension number. The only time ordering can be violated is during +// manual manipulation of the indices and values vectors to add entries. +// +// Reordering does not affect the shape of the SparseTensor. +// +// If the tensor has rank `R` and `N` non-empty values, `input_indices` has +// shape `[N, R]`, input_values has length `N`, and input_shape has length `R`. +// +// Arguments: +// input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a +// SparseTensor, possibly not in canonical ordering. +// input_values: 1-D. `N` non-empty values corresponding to `input_indices`. +// input_shape: 1-D. Shape of the input SparseTensor. +// +// Returns 2-D. `N x R` matrix with the same indices as input_indices, but +// in canonical row-major ordering.1-D. `N` non-empty values corresponding to `output_indices`. +func SparseReorder(scope *Scope, input_indices tf.Output, input_values tf.Output, input_shape tf.Output) (output_indices tf.Output, output_values tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseReorder", + Input: []tf.Input{ + input_indices, input_values, input_shape, }, } op := scope.AddOperation(opspec) return op.Output(0), op.Output(1) } -// SetSizeAttr is an optional argument to SetSize. -type SetSizeAttr func(optionalAttr) +// AsStringAttr is an optional argument to AsString. +type AsStringAttr func(optionalAttr) -// SetSizeValidateIndices sets the optional validate_indices attribute to value. -// If not specified, defaults to true -func SetSizeValidateIndices(value bool) SetSizeAttr { - return func(m optionalAttr) { - m["validate_indices"] = value - } -} - -// Number of unique elements along last dimension of input `set`. +// AsStringPrecision sets the optional precision attribute to value. // -// Input `set` is a `SparseTensor` represented by `set_indices`, `set_values`, -// and `set_shape`. The last dimension contains values in a set, duplicates are -// allowed but ignored. -// -// If `validate_indices` is `True`, this op validates the order and range of `set` -// indices. -// -// Arguments: -// set_indices: 2D `Tensor`, indices of a `SparseTensor`. -// set_values: 1D `Tensor`, values of a `SparseTensor`. -// set_shape: 1D `Tensor`, shape of a `SparseTensor`. -// -// Returns For `set` ranked `n`, this is a `Tensor` with rank `n-1`, and the same 1st -// `n-1` dimensions as `set`. Each value is the number of unique elements in -// the corresponding `[0...n-1]` dimension of `set`. -func SetSize(scope *Scope, set_indices tf.Output, set_values tf.Output, set_shape tf.Output, optional ...SetSizeAttr) (size tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SetSize", - Input: []tf.Input{ - set_indices, set_values, set_shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Concatenates a list of `N` tensors along the first dimension. -// -// The input tensors are all required to have size 1 in the first dimension. -// -// For example: -// -// ``` -// # 'x' is [[1, 4]] -// # 'y' is [[2, 5]] -// # 'z' is [[3, 6]] -// parallel_concat([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim. -// ``` -// -// The difference between concat and parallel_concat is that concat requires all -// of the inputs be computed before the operation will begin but doesn't require -// that the input shapes be known during graph construction. Parallel concat -// will copy pieces of the input into the output as they become available, in -// some situations this can provide a performance benefit. -// -// Arguments: -// values: Tensors to be concatenated. All must have size 1 in the first dimension -// and same shape. -// shape: the final shape of the result; should be equal to the shapes of any input -// but with the number of input values in the first dimension. -// -// Returns The concatenated tensor. -func ParallelConcat(scope *Scope, values []tf.Output, shape tf.Shape) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"shape": shape} - opspec := tf.OpSpec{ - Type: "ParallelConcat", - Input: []tf.Input{ - tf.OutputList(values), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// LoadTPUEmbeddingCenteredRMSPropParametersAttr is an optional argument to LoadTPUEmbeddingCenteredRMSPropParameters. -type LoadTPUEmbeddingCenteredRMSPropParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingCenteredRMSPropParametersTableId sets the optional table_id attribute to value. +// value: The post-decimal precision to use for floating point numbers. +// Only used if precision > -1. // If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingCenteredRMSPropParametersTableId(value int64) LoadTPUEmbeddingCenteredRMSPropParametersAttr { +func AsStringPrecision(value int64) AsStringAttr { return func(m optionalAttr) { - m["table_id"] = value + m["precision"] = value } } -// LoadTPUEmbeddingCenteredRMSPropParametersTableName sets the optional table_name attribute to value. +// AsStringScientific sets the optional scientific attribute to value. +// +// value: Use scientific notation for floating point numbers. +// If not specified, defaults to false +func AsStringScientific(value bool) AsStringAttr { + return func(m optionalAttr) { + m["scientific"] = value + } +} + +// AsStringShortest sets the optional shortest attribute to value. +// +// value: Use shortest representation (either scientific or standard) for +// floating point numbers. +// If not specified, defaults to false +func AsStringShortest(value bool) AsStringAttr { + return func(m optionalAttr) { + m["shortest"] = value + } +} + +// AsStringWidth sets the optional width attribute to value. +// +// value: Pad pre-decimal numbers to this width. +// Applies to both floating point and integer numbers. +// Only used if width > -1. +// If not specified, defaults to -1 +func AsStringWidth(value int64) AsStringAttr { + return func(m optionalAttr) { + m["width"] = value + } +} + +// AsStringFill sets the optional fill attribute to value. +// +// value: The value to pad if width > -1. If empty, pads with spaces. +// Another typical value is '0'. String cannot be longer than 1 character. // If not specified, defaults to "" -func LoadTPUEmbeddingCenteredRMSPropParametersTableName(value string) LoadTPUEmbeddingCenteredRMSPropParametersAttr { +func AsStringFill(value string) AsStringAttr { return func(m optionalAttr) { - m["table_name"] = value + m["fill"] = value } } -// Load centered RMSProp embedding parameters. +// Converts each entry in the given tensor to strings. Supports many numeric // -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the centered RMSProp optimization algorithm. -// ms: Value of ms used in the centered RMSProp optimization algorithm. -// mom: Value of mom used in the centered RMSProp optimization algorithm. -// mg: Value of mg used in the centered RMSProp optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingCenteredRMSPropParameters(scope *Scope, parameters tf.Output, ms tf.Output, mom tf.Output, mg tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingCenteredRMSPropParametersAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingCenteredRMSPropParameters", - Input: []tf.Input{ - parameters, ms, mom, mg, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// EncodeBase64Attr is an optional argument to EncodeBase64. -type EncodeBase64Attr func(optionalAttr) - -// EncodeBase64Pad sets the optional pad attribute to value. -// -// value: Bool whether padding is applied at the ends. -// If not specified, defaults to false -func EncodeBase64Pad(value bool) EncodeBase64Attr { - return func(m optionalAttr) { - m["pad"] = value - } -} - -// Encode strings into web-safe base64 format. -// -// Refer to the following article for more information on base64 format: -// en.wikipedia.org/wiki/Base64. Base64 strings may have padding with '=' at the -// end so that the encoded has length multiple of 4. See Padding section of the -// link above. -// -// Web-safe means that the encoder uses - and _ instead of + and /. -// -// Arguments: -// input: Strings to be encoded. -// -// Returns Input strings encoded in base64. -func EncodeBase64(scope *Scope, input tf.Output, optional ...EncodeBase64Attr) (output tf.Output) { +// types and boolean. +func AsString(scope *Scope, input tf.Output, optional ...AsStringAttr) (output tf.Output) { if scope.Err() != nil { return } @@ -29216,7 +29867,7 @@ func EncodeBase64(scope *Scope, input tf.Output, optional ...EncodeBase64Attr) ( a(attrs) } opspec := tf.OpSpec{ - Type: "EncodeBase64", + Type: "AsString", Input: []tf.Input{ input, }, @@ -29226,199 +29877,43 @@ func EncodeBase64(scope *Scope, input tf.Output, optional ...EncodeBase64Attr) ( return op.Output(0) } -// Creates a Tensor by indexing into the TensorList. -// -// Each row in the produced Tensor corresponds to the element in the TensorList -// specified by the given index (see `tf.gather`). -// -// input_handle: The input tensor list. -// indices: The indices used to index into the list. -// values: The tensor. -func TensorListGather(scope *Scope, input_handle tf.Output, indices tf.Output, element_shape tf.Output, element_dtype tf.DataType) (values tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"element_dtype": element_dtype} - opspec := tf.OpSpec{ - Type: "TensorListGather", - Input: []tf.Input{ - input_handle, indices, element_shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} +// QuantizedDepthwiseConv2DAttr is an optional argument to QuantizedDepthwiseConv2D. +type QuantizedDepthwiseConv2DAttr func(optionalAttr) -// Computes the sum along sparse segments of a tensor divided by the sqrt of N. +// QuantizedDepthwiseConv2DOutType sets the optional out_type attribute to value. // -// N is the size of the segment being reduced. -// -// See `tf.sparse.segment_sum` for usage examples. -// -// -// Arguments: -// -// indices: A 1-D tensor. Has same rank as `segment_ids`. -// segment_ids: A 1-D tensor. Values should be sorted and can be repeated. -// -// Returns Has same shape as data, except for dimension 0 which -// has size `k`, the number of segments. -func SparseSegmentSqrtN(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSegmentSqrtN", - Input: []tf.Input{ - data, indices, segment_ids, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// A substitute for `InterleaveDataset` on a fixed list of `N` datasets. -// -// Arguments: -// selector_input_dataset: A dataset of scalar `DT_INT64` elements that determines which of the -// `N` data inputs should produce the next output element. -// data_input_datasets: `N` datasets with the same type that will be interleaved according to -// the values of `selector_input_dataset`. -// -// -func ExperimentalDirectedInterleaveDataset(scope *Scope, selector_input_dataset tf.Output, data_input_datasets []tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ExperimentalDirectedInterleaveDataset", - Input: []tf.Input{ - selector_input_dataset, tf.OutputList(data_input_datasets), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// QrAttr is an optional argument to Qr. -type QrAttr func(optionalAttr) - -// QrFullMatrices sets the optional full_matrices attribute to value. -// -// value: If true, compute full-sized `q` and `r`. If false -// (the default), compute only the leading `P` columns of `q`. -// If not specified, defaults to false -func QrFullMatrices(value bool) QrAttr { - return func(m optionalAttr) { - m["full_matrices"] = value - } -} - -// Computes the QR decompositions of one or more matrices. -// -// Computes the QR decomposition of each inner matrix in `tensor` such that -// `tensor[..., :, :] = q[..., :, :] * r[..., :,:])` -// -// ```python -// # a is a tensor. -// # q is a tensor of orthonormal matrices. -// # r is a tensor of upper triangular matrices. -// q, r = qr(a) -// q_full, r_full = qr(a, full_matrices=True) -// ``` -// -// Arguments: -// input: A tensor of shape `[..., M, N]` whose inner-most 2 dimensions -// form matrices of size `[M, N]`. Let `P` be the minimum of `M` and `N`. -// -// Returns Orthonormal basis for range of `a`. If `full_matrices` is `False` then -// shape is `[..., M, P]`; if `full_matrices` is `True` then shape is -// `[..., M, M]`.Triangular factor. If `full_matrices` is `False` then shape is -// `[..., P, N]`. If `full_matrices` is `True` then shape is `[..., M, N]`. -func Qr(scope *Scope, input tf.Output, optional ...QrAttr) (q tf.Output, r tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Qr", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// Scatter the data from the input value into specific TensorArray elements. -// -// `indices` must be a vector, its length must match the first dim of `value`. -// -// Arguments: -// handle: The handle to a TensorArray. -// indices: The locations at which to write the tensor elements. -// value: The concatenated tensor to write to the TensorArray. -// flow_in: A float scalar that enforces proper chaining of operations. -// -// Returns A float scalar that enforces proper chaining of operations. -func TensorArrayScatterV3(scope *Scope, handle tf.Output, indices tf.Output, value tf.Output, flow_in tf.Output) (flow_out tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorArrayScatterV3", - Input: []tf.Input{ - handle, indices, value, flow_in, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// QuantizedConv2DPerChannelAttr is an optional argument to QuantizedConv2DPerChannel. -type QuantizedConv2DPerChannelAttr func(optionalAttr) - -// QuantizedConv2DPerChannelOutType sets the optional out_type attribute to value. -// -// value: The quantized type of output tensor that needs to be converted. +// value: The type of the output. // If not specified, defaults to DT_QINT32 -func QuantizedConv2DPerChannelOutType(value tf.DataType) QuantizedConv2DPerChannelAttr { +func QuantizedDepthwiseConv2DOutType(value tf.DataType) QuantizedDepthwiseConv2DAttr { return func(m optionalAttr) { m["out_type"] = value } } -// QuantizedConv2DPerChannelDilations sets the optional dilations attribute to value. +// QuantizedDepthwiseConv2DDilations sets the optional dilations attribute to value. // -// value: list of dilation values. +// value: List of dilation values. // If not specified, defaults to -func QuantizedConv2DPerChannelDilations(value []int64) QuantizedConv2DPerChannelAttr { +func QuantizedDepthwiseConv2DDilations(value []int64) QuantizedDepthwiseConv2DAttr { return func(m optionalAttr) { m["dilations"] = value } } -// Computes QuantizedConv2D per channel. +// Computes quantized depthwise Conv2D. // // Arguments: // input: The original input tensor. // filter: The original filter tensor. -// min_input: The minimum value of the input tensor -// max_input: The maximum value of the input tensor. -// min_filter: The minimum value of the filter tensor. -// max_filter: The maximum value of the filter tensor. -// strides: list of stride values. +// min_input: The float value that the minimum quantized input value represents. +// max_input: The float value that the maximum quantized input value represents. +// min_filter: The float value that the minimum quantized filter value represents. +// max_filter: The float value that the maximum quantized filter value represents. +// strides: List of stride values. // // -// Returns The output tensor.The minimum value of the final output tensor.The maximum value of the final output tensor. -func QuantizedConv2DPerChannel(scope *Scope, input tf.Output, filter tf.Output, min_input tf.Output, max_input tf.Output, min_filter tf.Output, max_filter tf.Output, strides []int64, padding string, optional ...QuantizedConv2DPerChannelAttr) (output tf.Output, min_output tf.Output, max_output tf.Output) { +// Returns The output tensor.The float value that the minimum quantized output value represents.The float value that the maximum quantized output value represents. +func QuantizedDepthwiseConv2D(scope *Scope, input tf.Output, filter tf.Output, min_input tf.Output, max_input tf.Output, min_filter tf.Output, max_filter tf.Output, strides []int64, padding string, optional ...QuantizedDepthwiseConv2DAttr) (output tf.Output, min_output tf.Output, max_output tf.Output) { if scope.Err() != nil { return } @@ -29427,7 +29922,7 @@ func QuantizedConv2DPerChannel(scope *Scope, input tf.Output, filter tf.Output, a(attrs) } opspec := tf.OpSpec{ - Type: "QuantizedConv2DPerChannel", + Type: "QuantizedDepthwiseConv2D", Input: []tf.Input{ input, filter, min_input, max_input, min_filter, max_filter, }, @@ -29493,26 +29988,6 @@ func QuantizedDepthwiseConv2DWithBiasAndRelu(scope *Scope, input tf.Output, filt return op.Output(0), op.Output(1), op.Output(2) } -// Serializes the tree handle to a proto -// -// Arguments: -// tree_handle: Handle to the tree resource to be serialized. -// -// Returns Serialied proto string of the tree resource. -func TensorForestTreeSerialize(scope *Scope, tree_handle tf.Output) (tree_config tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorForestTreeSerialize", - Input: []tf.Input{ - tree_handle, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // FusedResizeAndPadConv2DAttr is an optional argument to FusedResizeAndPadConv2D. type FusedResizeAndPadConv2DAttr func(optionalAttr) @@ -29691,131 +30166,24 @@ func AddN(scope *Scope, inputs []tf.Output) (sum tf.Output) { return op.Output(0) } -// Returns the element-wise sum of a list of tensors. -// -// `tf.accumulate_n_v2` performs the same operation as `tf.add_n`, but does not -// wait for all of its inputs to be ready before beginning to sum. This can -// save memory if inputs are ready at different times, since minimum temporary -// storage is proportional to the output size rather than the inputs size. -// -// Unlike the original `accumulate_n`, `accumulate_n_v2` is differentiable. -// -// Returns a `Tensor` of same shape and type as the elements of `inputs`. -// -// Arguments: -// inputs: A list of `Tensor` objects, each with same shape and type. -// shape: Shape of elements of `inputs`. -func AccumulateNV2(scope *Scope, inputs []tf.Output, shape tf.Shape) (sum tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"shape": shape} - opspec := tf.OpSpec{ - Type: "AccumulateNV2", - Input: []tf.Input{ - tf.OutputList(inputs), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} +// BatchMatMulAttr is an optional argument to BatchMatMul. +type BatchMatMulAttr func(optionalAttr) -// QuantizedMatMulAttr is an optional argument to QuantizedMatMul. -type QuantizedMatMulAttr func(optionalAttr) - -// QuantizedMatMulToutput sets the optional Toutput attribute to value. -// If not specified, defaults to DT_QINT32 -func QuantizedMatMulToutput(value tf.DataType) QuantizedMatMulAttr { - return func(m optionalAttr) { - m["Toutput"] = value - } -} - -// QuantizedMatMulTransposeA sets the optional transpose_a attribute to value. -// -// value: If true, `a` is transposed before multiplication. -// If not specified, defaults to false -func QuantizedMatMulTransposeA(value bool) QuantizedMatMulAttr { - return func(m optionalAttr) { - m["transpose_a"] = value - } -} - -// QuantizedMatMulTransposeB sets the optional transpose_b attribute to value. -// -// value: If true, `b` is transposed before multiplication. -// If not specified, defaults to false -func QuantizedMatMulTransposeB(value bool) QuantizedMatMulAttr { - return func(m optionalAttr) { - m["transpose_b"] = value - } -} - -// QuantizedMatMulTactivation sets the optional Tactivation attribute to value. -// -// value: The type of output produced by activation function -// following this operation. -// If not specified, defaults to DT_QUINT8 -func QuantizedMatMulTactivation(value tf.DataType) QuantizedMatMulAttr { - return func(m optionalAttr) { - m["Tactivation"] = value - } -} - -// Perform a quantized matrix multiplication of `a` by the matrix `b`. -// -// The inputs must be two-dimensional matrices and the inner dimension of -// `a` (after being transposed if `transpose_a` is non-zero) must match the -// outer dimension of `b` (after being transposed if `transposed_b` is -// non-zero). -// -// Arguments: -// a: Must be a two-dimensional tensor. -// b: Must be a two-dimensional tensor. -// min_a: The float value that the lowest quantized `a` value represents. -// max_a: The float value that the highest quantized `a` value represents. -// min_b: The float value that the lowest quantized `b` value represents. -// max_b: The float value that the highest quantized `b` value represents. -// -// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. -func QuantizedMatMul(scope *Scope, a tf.Output, b tf.Output, min_a tf.Output, max_a tf.Output, min_b tf.Output, max_b tf.Output, optional ...QuantizedMatMulAttr) (out tf.Output, min_out tf.Output, max_out tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "QuantizedMatMul", - Input: []tf.Input{ - a, b, min_a, max_a, min_b, max_b, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// BatchMatMulV2Attr is an optional argument to BatchMatMulV2. -type BatchMatMulV2Attr func(optionalAttr) - -// BatchMatMulV2AdjX sets the optional adj_x attribute to value. +// BatchMatMulAdjX sets the optional adj_x attribute to value. // // value: If `True`, adjoint the slices of `x`. Defaults to `False`. // If not specified, defaults to false -func BatchMatMulV2AdjX(value bool) BatchMatMulV2Attr { +func BatchMatMulAdjX(value bool) BatchMatMulAttr { return func(m optionalAttr) { m["adj_x"] = value } } -// BatchMatMulV2AdjY sets the optional adj_y attribute to value. +// BatchMatMulAdjY sets the optional adj_y attribute to value. // // value: If `True`, adjoint the slices of `y`. Defaults to `False`. // If not specified, defaults to false -func BatchMatMulV2AdjY(value bool) BatchMatMulV2Attr { +func BatchMatMulAdjY(value bool) BatchMatMulAttr { return func(m optionalAttr) { m["adj_y"] = value } @@ -29842,17 +30210,12 @@ func BatchMatMulV2AdjY(value bool) BatchMatMulV2Attr { // // output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :]) // -// *NOTE*: `BatchMatMulV2` supports broadcasting in the batch dimensions. More -// about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html). -// -// // Arguments: // x: 2-D or higher with shape `[..., r_x, c_x]`. // y: 2-D or higher with shape `[..., r_y, c_y]`. // // Returns 3-D or higher with shape `[..., r_o, c_o]` -func BatchMatMulV2(scope *Scope, x tf.Output, y tf.Output, optional ...BatchMatMulV2Attr) (output tf.Output) { +func BatchMatMul(scope *Scope, x tf.Output, y tf.Output, optional ...BatchMatMulAttr) (output tf.Output) { if scope.Err() != nil { return } @@ -29861,7 +30224,7 @@ func BatchMatMulV2(scope *Scope, x tf.Output, y tf.Output, optional ...BatchMatM a(attrs) } opspec := tf.OpSpec{ - Type: "BatchMatMulV2", + Type: "BatchMatMul", Input: []tf.Input{ x, y, }, @@ -29871,175 +30234,55 @@ func BatchMatMulV2(scope *Scope, x tf.Output, y tf.Output, optional ...BatchMatM return op.Output(0) } -// CTCBeamSearchDecoderAttr is an optional argument to CTCBeamSearchDecoder. -type CTCBeamSearchDecoderAttr func(optionalAttr) +// NonMaxSuppressionV4Attr is an optional argument to NonMaxSuppressionV4. +type NonMaxSuppressionV4Attr func(optionalAttr) -// CTCBeamSearchDecoderMergeRepeated sets the optional merge_repeated attribute to value. +// NonMaxSuppressionV4PadToMaxOutputSize sets the optional pad_to_max_output_size attribute to value. // -// value: If true, merge repeated classes in output. -// If not specified, defaults to true -func CTCBeamSearchDecoderMergeRepeated(value bool) CTCBeamSearchDecoderAttr { - return func(m optionalAttr) { - m["merge_repeated"] = value - } -} - -// Performs beam search decoding on the logits given in input. -// -// A note about the attribute merge_repeated: For the beam search decoder, -// this means that if consecutive entries in a beam are the same, only -// the first of these is emitted. That is, when the top path is "A B B B B", -// "A B" is returned if merge_repeated = True but "A B B B B" is -// returned if merge_repeated = False. -// -// Arguments: -// inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. -// sequence_length: A vector containing sequence lengths, size `(batch)`. -// beam_width: A scalar >= 0 (beam search beam width). -// top_paths: A scalar >= 0, <= beam_width (controls output size). -// -// Returns A list (length: top_paths) of indices matrices. Matrix j, -// size `(total_decoded_outputs[j] x 2)`, has indices of a -// `SparseTensor`. The rows store: [batch, time].A list (length: top_paths) of values vectors. Vector j, -// size `(length total_decoded_outputs[j])`, has the values of a -// `SparseTensor`. The vector stores the decoded classes for beam j.A list (length: top_paths) of shape vector. Vector j, -// size `(2)`, stores the shape of the decoded `SparseTensor[j]`. -// Its values are: `[batch_size, max_decoded_length[j]]`.A matrix, shaped: `(batch_size x top_paths)`. The -// sequence log-probabilities. -func CTCBeamSearchDecoder(scope *Scope, inputs tf.Output, sequence_length tf.Output, beam_width int64, top_paths int64, optional ...CTCBeamSearchDecoderAttr) (decoded_indices []tf.Output, decoded_values []tf.Output, decoded_shape []tf.Output, log_probability tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"beam_width": beam_width, "top_paths": top_paths} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "CTCBeamSearchDecoder", - Input: []tf.Input{ - inputs, sequence_length, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if decoded_indices, idx, err = makeOutputList(op, idx, "decoded_indices"); err != nil { - scope.UpdateErr("CTCBeamSearchDecoder", err) - return - } - if decoded_values, idx, err = makeOutputList(op, idx, "decoded_values"); err != nil { - scope.UpdateErr("CTCBeamSearchDecoder", err) - return - } - if decoded_shape, idx, err = makeOutputList(op, idx, "decoded_shape"); err != nil { - scope.UpdateErr("CTCBeamSearchDecoder", err) - return - } - log_probability = op.Output(idx) - return decoded_indices, decoded_values, decoded_shape, log_probability -} - -// Applies softmax to a batched N-D `SparseTensor`. -// -// The inputs represent an N-D SparseTensor with logical shape `[..., B, C]` -// (where `N >= 2`), and with indices sorted in the canonical lexicographic order. -// -// This op is equivalent to applying the normal `tf.nn.softmax()` to each innermost -// logical submatrix with shape `[B, C]`, but with the catch that *the implicitly -// zero elements do not participate*. Specifically, the algorithm is equivalent -// to the following: -// -// (1) Applies `tf.nn.softmax()` to a densified view of each innermost submatrix -// with shape `[B, C]`, along the size-C dimension; -// (2) Masks out the original implicitly-zero locations; -// (3) Renormalizes the remaining elements. -// -// Hence, the `SparseTensor` result has exactly the same non-zero indices and -// shape. -// -// Arguments: -// sp_indices: 2-D. `NNZ x R` matrix with the indices of non-empty values in a -// SparseTensor, in canonical ordering. -// sp_values: 1-D. `NNZ` non-empty values corresponding to `sp_indices`. -// sp_shape: 1-D. Shape of the input SparseTensor. -// -// Returns 1-D. The `NNZ` values for the result `SparseTensor`. -func SparseSoftmax(scope *Scope, sp_indices tf.Output, sp_values tf.Output, sp_shape tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSoftmax", - Input: []tf.Input{ - sp_indices, sp_values, sp_shape, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// CastAttr is an optional argument to Cast. -type CastAttr func(optionalAttr) - -// CastTruncate sets the optional Truncate attribute to value. +// value: If true, the output `selected_indices` is padded to be of length +// `max_output_size`. Defaults to false. // If not specified, defaults to false -func CastTruncate(value bool) CastAttr { +func NonMaxSuppressionV4PadToMaxOutputSize(value bool) NonMaxSuppressionV4Attr { return func(m optionalAttr) { - m["Truncate"] = value + m["pad_to_max_output_size"] = value } } -// Cast x of type SrcT to y of DstT. -func Cast(scope *Scope, x tf.Output, DstT tf.DataType, optional ...CastAttr) (y tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"DstT": DstT} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Cast", - Input: []tf.Input{ - x, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// StatelessTruncatedNormalAttr is an optional argument to StatelessTruncatedNormal. -type StatelessTruncatedNormalAttr func(optionalAttr) - -// StatelessTruncatedNormalDtype sets the optional dtype attribute to value. +// Greedily selects a subset of bounding boxes in descending order of score, // -// value: The type of the output. -// If not specified, defaults to DT_FLOAT -func StatelessTruncatedNormalDtype(value tf.DataType) StatelessTruncatedNormalAttr { - return func(m optionalAttr) { - m["dtype"] = value - } -} - -// Outputs deterministic pseudorandom values from a truncated normal distribution. -// -// The generated values follow a normal distribution with mean 0 and standard -// deviation 1, except that values whose magnitude is more than 2 standard -// deviations from the mean are dropped and re-picked. -// -// The outputs are a deterministic function of `shape` and `seed`. +// pruning away boxes that have high intersection-over-union (IOU) overlap +// with previously selected boxes. Bounding boxes with score less than +// `score_threshold` are removed. Bounding boxes are supplied as +// [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any +// diagonal pair of box corners and the coordinates can be provided as normalized +// (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm +// is agnostic to where the origin is in the coordinate system and more +// generally is invariant to orthogonal transformations and translations +// of the coordinate system; thus translating or reflections of the coordinate +// system result in the same boxes being selected by the algorithm. +// The output of this operation is a set of integers indexing into the input +// collection of bounding boxes representing the selected boxes. The bounding +// box coordinates corresponding to the selected indices can then be obtained +// using the `tf.gather operation`. For example: +// selected_indices = tf.image.non_max_suppression_v2( +// boxes, scores, max_output_size, iou_threshold, score_threshold) +// selected_boxes = tf.gather(boxes, selected_indices) // // Arguments: -// shape: The shape of the output tensor. -// seed: 2 seeds (shape [2]). +// boxes: A 2-D float tensor of shape `[num_boxes, 4]`. +// scores: A 1-D float tensor of shape `[num_boxes]` representing a single +// score corresponding to each box (each row of boxes). +// max_output_size: A scalar integer tensor representing the maximum number of +// boxes to be selected by non max suppression. +// iou_threshold: A 0-D float tensor representing the threshold for deciding whether +// boxes overlap too much with respect to IOU. +// score_threshold: A 0-D float tensor representing the threshold for deciding when to remove +// boxes based on score. // -// Returns Random values with specified shape. -func StatelessTruncatedNormal(scope *Scope, shape tf.Output, seed tf.Output, optional ...StatelessTruncatedNormalAttr) (output tf.Output) { +// Returns A 1-D integer tensor of shape `[M]` representing the selected +// indices from the boxes tensor, where `M <= max_output_size`.A 0-D integer tensor representing the number of valid elements in +// `selected_indices`, with the valid elements appearing first. +func NonMaxSuppressionV4(scope *Scope, boxes tf.Output, scores tf.Output, max_output_size tf.Output, iou_threshold tf.Output, score_threshold tf.Output, optional ...NonMaxSuppressionV4Attr) (selected_indices tf.Output, valid_outputs tf.Output) { if scope.Err() != nil { return } @@ -30048,13 +30291,70 @@ func StatelessTruncatedNormal(scope *Scope, shape tf.Output, seed tf.Output, opt a(attrs) } opspec := tf.OpSpec{ - Type: "StatelessTruncatedNormal", + Type: "NonMaxSuppressionV4", Input: []tf.Input{ - shape, seed, + boxes, scores, max_output_size, iou_threshold, score_threshold, }, Attrs: attrs, } op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// OrderedMapSizeAttr is an optional argument to OrderedMapSize. +type OrderedMapSizeAttr func(optionalAttr) + +// OrderedMapSizeCapacity sets the optional capacity attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func OrderedMapSizeCapacity(value int64) OrderedMapSizeAttr { + return func(m optionalAttr) { + m["capacity"] = value + } +} + +// OrderedMapSizeMemoryLimit sets the optional memory_limit attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func OrderedMapSizeMemoryLimit(value int64) OrderedMapSizeAttr { + return func(m optionalAttr) { + m["memory_limit"] = value + } +} + +// OrderedMapSizeContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func OrderedMapSizeContainer(value string) OrderedMapSizeAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// OrderedMapSizeSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func OrderedMapSizeSharedName(value string) OrderedMapSizeAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Op returns the number of elements in the underlying container. +func OrderedMapSize(scope *Scope, dtypes []tf.DataType, optional ...OrderedMapSizeAttr) (size tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtypes": dtypes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "OrderedMapSize", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) return op.Output(0) } @@ -30163,30 +30463,42 @@ func TensorScatterAdd(scope *Scope, tensor tf.Output, indices tf.Output, updates return op.Output(0) } -// QuantizeAndDequantizeV3Attr is an optional argument to QuantizeAndDequantizeV3. -type QuantizeAndDequantizeV3Attr func(optionalAttr) +// UnbatchGradAttr is an optional argument to UnbatchGrad. +type UnbatchGradAttr func(optionalAttr) -// QuantizeAndDequantizeV3SignedInput sets the optional signed_input attribute to value. -// If not specified, defaults to true -func QuantizeAndDequantizeV3SignedInput(value bool) QuantizeAndDequantizeV3Attr { +// UnbatchGradContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func UnbatchGradContainer(value string) UnbatchGradAttr { return func(m optionalAttr) { - m["signed_input"] = value + m["container"] = value } } -// QuantizeAndDequantizeV3RangeGiven sets the optional range_given attribute to value. -// If not specified, defaults to true -func QuantizeAndDequantizeV3RangeGiven(value bool) QuantizeAndDequantizeV3Attr { +// UnbatchGradSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func UnbatchGradSharedName(value string) UnbatchGradAttr { return func(m optionalAttr) { - m["range_given"] = value + m["shared_name"] = value } } -// Quantizes then dequantizes a tensor. +// Gradient of Unbatch. // -// This is almost identical to QuantizeAndDequantizeV2, except that num_bits is a -// tensor, so its value can change during training. -func QuantizeAndDequantizeV3(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output, num_bits tf.Output, optional ...QuantizeAndDequantizeV3Attr) (output tf.Output) { +// Acts like Batch but using the given batch_index index of batching things as they +// become available. This ensures that the gradients are propagated back in the +// same session which did the forward pass. +// +// original_input: The input to the Unbatch operation this is the gradient of. +// batch_index: The batch_index given to the Unbatch operation this is the gradient +// of. +// grad: The downstream gradient. +// id: The id scalar emitted by Batch. +// batched_grad: The return value, either an empty tensor or the batched gradient. +// container: Container to control resource sharing. +// shared_name: Instances of UnbatchGrad with the same container and shared_name +// are assumed to possibly belong to the same batch. If left empty, the op name +// will be used as the shared name. +func UnbatchGrad(scope *Scope, original_input tf.Output, batch_index tf.Output, grad tf.Output, id tf.Output, optional ...UnbatchGradAttr) (batched_grad tf.Output) { if scope.Err() != nil { return } @@ -30195,9 +30507,9 @@ func QuantizeAndDequantizeV3(scope *Scope, input tf.Output, input_min tf.Output, a(attrs) } opspec := tf.OpSpec{ - Type: "QuantizeAndDequantizeV3", + Type: "UnbatchGrad", Input: []tf.Input{ - input, input_min, input_max, num_bits, + original_input, batch_index, grad, id, }, Attrs: attrs, } @@ -30205,27 +30517,94 @@ func QuantizeAndDequantizeV3(scope *Scope, input tf.Output, input_min tf.Output, return op.Output(0) } -// Adds a value to the current value of a variable. +// Deprecated. Use TensorArrayReadV3 // -// Any ReadVariableOp with a control dependency on this op is guaranteed to -// see the incremented value or a subsequent newer one. +// DEPRECATED at GraphDef version 26: Use TensorArrayReadV3 +func TensorArrayReadV2(scope *Scope, handle tf.Output, index tf.Output, flow_in tf.Output, dtype tf.DataType) (value tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + opspec := tf.OpSpec{ + Type: "TensorArrayReadV2", + Input: []tf.Input{ + handle, index, flow_in, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns x + y element-wise. // -// Arguments: -// resource: handle to the resource in which to store the variable. -// value: the value by which the variable will be incremented. -// -// Returns the created operation. -func AssignAddVariableOp(scope *Scope, resource tf.Output, value tf.Output) (o *tf.Operation) { +// *NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func AddV2(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "AssignAddVariableOp", + Type: "AddV2", Input: []tf.Input{ - resource, value, + x, y, }, } - return scope.AddOperation(opspec) + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// SparseReduceSumSparseAttr is an optional argument to SparseReduceSumSparse. +type SparseReduceSumSparseAttr func(optionalAttr) + +// SparseReduceSumSparseKeepDims sets the optional keep_dims attribute to value. +// +// value: If true, retain reduced dimensions with length 1. +// If not specified, defaults to false +func SparseReduceSumSparseKeepDims(value bool) SparseReduceSumSparseAttr { + return func(m optionalAttr) { + m["keep_dims"] = value + } +} + +// Computes the sum of elements across dimensions of a SparseTensor. +// +// This Op takes a SparseTensor and is the sparse counterpart to +// `tf.reduce_sum()`. In contrast to SparseReduceSum, this Op returns a +// SparseTensor. +// +// Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless +// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in +// `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained +// with length 1. +// +// If `reduction_axes` has no entries, all dimensions are reduced, and a tensor +// with a single element is returned. Additionally, the axes can be negative, +// which are interpreted according to the indexing rules in Python. +// +// Arguments: +// input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a +// SparseTensor, possibly not in canonical ordering. +// input_values: 1-D. `N` non-empty values corresponding to `input_indices`. +// input_shape: 1-D. Shape of the input SparseTensor. +// reduction_axes: 1-D. Length-`K` vector containing the reduction axes. +func SparseReduceSumSparse(scope *Scope, input_indices tf.Output, input_values tf.Output, input_shape tf.Output, reduction_axes tf.Output, optional ...SparseReduceSumSparseAttr) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "SparseReduceSumSparse", + Input: []tf.Input{ + input_indices, input_values, input_shape, reduction_axes, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) } // ComplexAbsAttr is an optional argument to ComplexAbs. @@ -30341,109 +30720,6 @@ func BesselI1e(scope *Scope, x tf.Output) (y tf.Output) { return op.Output(0) } -// Delete the TensorArray from its resource container. -// -// This enables the user to close and release the resource in the middle -// of a step/run. -// -// Arguments: -// handle: The handle to a TensorArray (output of TensorArray or TensorArrayGrad). -// -// Returns the created operation. -func TensorArrayCloseV3(scope *Scope, handle tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorArrayCloseV3", - Input: []tf.Input{ - handle, - }, - } - return scope.AddOperation(opspec) -} - -// Computes the absolute value of a tensor. -// -// Given a tensor `x`, this operation returns a tensor containing the absolute -// value of each element in `x`. For example, if x is an input element and y is -// an output element, this operation computes \\(y = |x|\\). -func Abs(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Abs", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. -// -// Each comparison returns a boolean `true` (if `input_value > threshold`) -// or and `false` otherwise. -// -// This operation is useful for Locality-Sensitive-Hashing (LSH) and other -// algorithms that use hashing approximations of cosine and `L2` distances; -// codes can be generated from an input via: -// -// ```python -// codebook_size = 50 -// codebook_bits = codebook_size * 32 -// codebook = tf.get_variable('codebook', [x.shape[-1].value, codebook_bits], -// dtype=x.dtype, -// initializer=tf.orthogonal_initializer()) -// codes = compare_and_threshold(tf.matmul(x, codebook), threshold=0.) -// codes = tf.bitcast(codes, tf.int32) # go from uint8 to int32 -// # now codes has shape x.shape[:-1] + [codebook_size] -// ``` -// -// **NOTE**: Currently, the innermost dimension of the tensor must be divisible -// by 8. -// -// Given an `input` shaped `[s0, s1, ..., s_n]`, the output is -// a `uint8` tensor shaped `[s0, s1, ..., s_n / 8]`. -// -// Arguments: -// input: Values to compare against `threshold` and bitpack. -// threshold: Threshold to compare against. -// -// Returns The bitpacked comparisons. -func CompareAndBitpack(scope *Scope, input tf.Output, threshold tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "CompareAndBitpack", - Input: []tf.Input{ - input, threshold, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the reciprocal of x element-wise. -// -// I.e., \\(y = 1 / x\\). -func Reciprocal(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Reciprocal", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Computes square of x element-wise. // // I.e., \\(y = x * x = x^2\\). @@ -30461,168 +30737,6 @@ func Square(scope *Scope, x tf.Output) (y tf.Output) { return op.Output(0) } -// ResourceApplyAddSignAttr is an optional argument to ResourceApplyAddSign. -type ResourceApplyAddSignAttr func(optionalAttr) - -// ResourceApplyAddSignUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var and m tensors is -// protected by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceApplyAddSignUseLocking(value bool) ResourceApplyAddSignAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' according to the AddSign update. -// -// m_t <- beta1 * m_{t-1} + (1 - beta1) * g -// update <- (alpha + sign_decay * sign(g) *sign(m)) * g -// variable <- variable - lr_t * update -// -// Arguments: -// var_: Should be from a Variable(). -// m: Should be from a Variable(). -// lr: Scaling factor. Must be a scalar. -// alpha: Must be a scalar. -// sign_decay: Must be a scalar. -// beta: Must be a scalar. -// grad: The gradient. -// -// Returns the created operation. -func ResourceApplyAddSign(scope *Scope, var_ tf.Output, m tf.Output, lr tf.Output, alpha tf.Output, sign_decay tf.Output, beta tf.Output, grad tf.Output, optional ...ResourceApplyAddSignAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyAddSign", - Input: []tf.Input{ - var_, m, lr, alpha, sign_decay, beta, grad, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// ResourceApplyAdagradAttr is an optional argument to ResourceApplyAdagrad. -type ResourceApplyAdagradAttr func(optionalAttr) - -// ResourceApplyAdagradUseLocking sets the optional use_locking attribute to value. -// -// value: If `True`, updating of the var and accum tensors will be protected -// by a lock; otherwise the behavior is undefined, but may exhibit less -// contention. -// If not specified, defaults to false -func ResourceApplyAdagradUseLocking(value bool) ResourceApplyAdagradAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// ResourceApplyAdagradUpdateSlots sets the optional update_slots attribute to value. -// If not specified, defaults to true -func ResourceApplyAdagradUpdateSlots(value bool) ResourceApplyAdagradAttr { - return func(m optionalAttr) { - m["update_slots"] = value - } -} - -// Update '*var' according to the adagrad scheme. -// -// accum += grad * grad -// var -= lr * grad * (1 / sqrt(accum)) -// -// Arguments: -// var_: Should be from a Variable(). -// accum: Should be from a Variable(). -// lr: Scaling factor. Must be a scalar. -// grad: The gradient. -// -// Returns the created operation. -func ResourceApplyAdagrad(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, grad tf.Output, optional ...ResourceApplyAdagradAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceApplyAdagrad", - Input: []tf.Input{ - var_, accum, lr, grad, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// RestoreAttr is an optional argument to Restore. -type RestoreAttr func(optionalAttr) - -// RestorePreferredShard sets the optional preferred_shard attribute to value. -// -// value: Index of file to open first if multiple files match -// `file_pattern`. -// If not specified, defaults to -1 -func RestorePreferredShard(value int64) RestoreAttr { - return func(m optionalAttr) { - m["preferred_shard"] = value - } -} - -// Restores a tensor from checkpoint files. -// -// Reads a tensor stored in one or several files. If there are several files (for -// instance because a tensor was saved as slices), `file_pattern` may contain -// wildcard symbols (`*` and `?`) in the filename portion only, not in the -// directory portion. -// -// If a `file_pattern` matches several files, `preferred_shard` can be used to hint -// in which file the requested tensor is likely to be found. This op will first -// open the file at index `preferred_shard` in the list of matching files and try -// to restore tensors from that file. Only if some tensors or tensor slices are -// not found in that first file, then the Op opens all the files. Setting -// `preferred_shard` to match the value passed as the `shard` input -// of a matching `Save` Op may speed up Restore. This attribute only affects -// performance, not correctness. The default value -1 means files are processed in -// order. -// -// See also `RestoreSlice`. -// -// Arguments: -// file_pattern: Must have a single element. The pattern of the files from -// which we read the tensor. -// tensor_name: Must have a single element. The name of the tensor to be -// restored. -// dt: The type of the tensor to be restored. -// -// Returns The restored tensor. -func Restore(scope *Scope, file_pattern tf.Output, tensor_name tf.Output, dt tf.DataType, optional ...RestoreAttr) (tensor tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dt": dt} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Restore", - Input: []tf.Input{ - file_pattern, tensor_name, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Computes the gradient for the sqrt of `x` wrt its input. // // Specifically, `grad = dy * 0.5 / y`, where `y = sqrt(x)`, and `dy` @@ -30676,6 +30790,107 @@ func Round(scope *Scope, x tf.Output) (y tf.Output) { return op.Output(0) } +// ThreadUnsafeUnigramCandidateSamplerAttr is an optional argument to ThreadUnsafeUnigramCandidateSampler. +type ThreadUnsafeUnigramCandidateSamplerAttr func(optionalAttr) + +// ThreadUnsafeUnigramCandidateSamplerSeed sets the optional seed attribute to value. +// +// value: If either seed or seed2 are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func ThreadUnsafeUnigramCandidateSamplerSeed(value int64) ThreadUnsafeUnigramCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// ThreadUnsafeUnigramCandidateSamplerSeed2 sets the optional seed2 attribute to value. +// +// value: An second seed to avoid seed collision. +// If not specified, defaults to 0 +func ThreadUnsafeUnigramCandidateSamplerSeed2(value int64) ThreadUnsafeUnigramCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Generates labels for candidate sampling with a learned unigram distribution. +// +// See explanations of candidate sampling and the data formats at +// go/candidate-sampling. +// +// For each batch, this op picks a single set of sampled candidate labels. +// +// The advantages of sampling candidates per-batch are simplicity and the +// possibility of efficient dense matrix multiplication. The disadvantage is that +// the sampled candidates must be chosen independently of the context and of the +// true labels. +// +// Arguments: +// true_classes: A batch_size * num_true matrix, in which each row contains the +// IDs of the num_true target_classes in the corresponding original label. +// num_true: Number of true labels per context. +// num_sampled: Number of candidates to randomly sample. +// unique: If unique is true, we sample with rejection, so that all sampled +// candidates in a batch are unique. This requires some approximation to +// estimate the post-rejection sampling probabilities. +// range_max: The sampler will sample integers from the interval [0, range_max). +// +// Returns A vector of length num_sampled, in which each element is +// the ID of a sampled candidate.A batch_size * num_true matrix, representing +// the number of times each candidate is expected to occur in a batch +// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled +// candidate representing the number of times the candidate is expected +// to occur in a batch of sampled candidates. If unique=true, then this is a +// probability. +func ThreadUnsafeUnigramCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, range_max int64, optional ...ThreadUnsafeUnigramCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique, "range_max": range_max} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ThreadUnsafeUnigramCandidateSampler", + Input: []tf.Input{ + true_classes, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Creates a dataset that passes a sliding window over `input_dataset`. +// +// Arguments: +// +// window_size: A scalar representing the number of elements in the +// sliding window. +// window_shift: A scalar representing the steps moving the sliding window +// forward in one iteration. It must be positive. +// window_stride: A scalar representing the stride of the input elements of the sliding window. +// It must be positive. +// +// +func ExperimentalSlidingWindowDataset(scope *Scope, input_dataset tf.Output, window_size tf.Output, window_shift tf.Output, window_stride tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "ExperimentalSlidingWindowDataset", + Input: []tf.Input{ + input_dataset, window_size, window_shift, window_stride, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Computes exponential of x element-wise. \\(y = e^x\\). func Exp(scope *Scope, x tf.Output) (y tf.Output) { if scope.Err() != nil { @@ -30691,6 +30906,85 @@ func Exp(scope *Scope, x tf.Output) (y tf.Output) { return op.Output(0) } +// ExperimentalStatsAggregatorHandleAttr is an optional argument to ExperimentalStatsAggregatorHandle. +type ExperimentalStatsAggregatorHandleAttr func(optionalAttr) + +// ExperimentalStatsAggregatorHandleContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func ExperimentalStatsAggregatorHandleContainer(value string) ExperimentalStatsAggregatorHandleAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// ExperimentalStatsAggregatorHandleSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func ExperimentalStatsAggregatorHandleSharedName(value string) ExperimentalStatsAggregatorHandleAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Creates a statistics manager resource. +func ExperimentalStatsAggregatorHandle(scope *Scope, optional ...ExperimentalStatsAggregatorHandleAttr) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ExperimentalStatsAggregatorHandle", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Concatenates a list of `N` tensors along the first dimension. +// +// The input tensors are all required to have size 1 in the first dimension. +// +// For example: +// +// ``` +// # 'x' is [[1, 4]] +// # 'y' is [[2, 5]] +// # 'z' is [[3, 6]] +// parallel_concat([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim. +// ``` +// +// The difference between concat and parallel_concat is that concat requires all +// of the inputs be computed before the operation will begin but doesn't require +// that the input shapes be known during graph construction. Parallel concat +// will copy pieces of the input into the output as they become available, in +// some situations this can provide a performance benefit. +// +// Arguments: +// values: Tensors to be concatenated. All must have size 1 in the first dimension +// and same shape. +// shape: the final shape of the result; should be equal to the shapes of any input +// but with the number of input values in the first dimension. +// +// Returns The concatenated tensor. +func ParallelConcat(scope *Scope, values []tf.Output, shape tf.Shape) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"shape": shape} + opspec := tf.OpSpec{ + Type: "ParallelConcat", + Input: []tf.Input{ + tf.OutputList(values), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Computes exponential of x - 1 element-wise. // // I.e., \\(y = (\exp x) - 1\\). @@ -30708,40 +31002,92 @@ func Expm1(scope *Scope, x tf.Output) (y tf.Output) { return op.Output(0) } -// Computes hyperbolic sine of x element-wise. -func Sinh(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return +// FusedBatchNormGradV2Attr is an optional argument to FusedBatchNormGradV2. +type FusedBatchNormGradV2Attr func(optionalAttr) + +// FusedBatchNormGradV2Epsilon sets the optional epsilon attribute to value. +// +// value: A small float number added to the variance of x. +// If not specified, defaults to 0.0001 +func FusedBatchNormGradV2Epsilon(value float32) FusedBatchNormGradV2Attr { + return func(m optionalAttr) { + m["epsilon"] = value } - opspec := tf.OpSpec{ - Type: "Sinh", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) } -// Compute the pairwise cross product. +// FusedBatchNormGradV2DataFormat sets the optional data_format attribute to value. // -// `a` and `b` must be the same shape; they can either be simple 3-element vectors, -// or any shape where the innermost dimension is 3. In the latter case, each pair -// of corresponding 3-element vectors is cross-multiplied independently. +// value: The data format for y_backprop, x, x_backprop. +// Either "NHWC" (default) or "NCHW". +// If not specified, defaults to "NHWC" +func FusedBatchNormGradV2DataFormat(value string) FusedBatchNormGradV2Attr { + return func(m optionalAttr) { + m["data_format"] = value + } +} + +// FusedBatchNormGradV2IsTraining sets the optional is_training attribute to value. +// +// value: A bool value to indicate the operation is for training (default) +// or inference. +// If not specified, defaults to true +func FusedBatchNormGradV2IsTraining(value bool) FusedBatchNormGradV2Attr { + return func(m optionalAttr) { + m["is_training"] = value + } +} + +// Gradient for batch normalization. +// +// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". +// The size of 1D Tensors matches the dimension C of the 4D Tensors. // // Arguments: -// a: A tensor containing 3-element vectors. -// b: Another tensor, of same type and shape as `a`. +// y_backprop: A 4D Tensor for the gradient with respect to y. +// x: A 4D Tensor for input data. +// scale: A 1D Tensor for scaling factor, to scale the normalized x. +// reserve_space_1: When is_training is True, a 1D Tensor for the computed batch +// mean to be reused in gradient computation. When is_training is +// False, a 1D Tensor for the population mean to be reused in both +// 1st and 2nd order gradient computation. +// reserve_space_2: When is_training is True, a 1D Tensor for the computed batch +// variance (inverted variance in the cuDNN case) to be reused in +// gradient computation. When is_training is False, a 1D Tensor +// for the population variance to be reused in both 1st and 2nd +// order gradient computation. // -// Returns Pairwise cross product of the vectors in `a` and `b`. -func Cross(scope *Scope, a tf.Output, b tf.Output) (product tf.Output) { +// Returns A 4D Tensor for the gradient with respect to x.A 1D Tensor for the gradient with respect to scale.A 1D Tensor for the gradient with respect to offset.Unused placeholder to match the mean input in FusedBatchNorm.Unused placeholder to match the variance input +// in FusedBatchNorm. +func FusedBatchNormGradV2(scope *Scope, y_backprop tf.Output, x tf.Output, scale tf.Output, reserve_space_1 tf.Output, reserve_space_2 tf.Output, optional ...FusedBatchNormGradV2Attr) (x_backprop tf.Output, scale_backprop tf.Output, offset_backprop tf.Output, reserve_space_3 tf.Output, reserve_space_4 tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "FusedBatchNormGradV2", + Input: []tf.Input{ + y_backprop, x, scale, reserve_space_1, reserve_space_2, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) +} + +// Computes natural logarithm of (1 + x) element-wise. +// +// I.e., \\(y = \log_e (1 + x)\\). +func Log1p(scope *Scope, x tf.Output) (y tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Cross", + Type: "Log1p", Input: []tf.Input{ - a, b, + x, }, } op := scope.AddOperation(opspec) @@ -30763,15 +31109,56 @@ func Cosh(scope *Scope, x tf.Output) (y tf.Output) { return op.Output(0) } -// Computes hyperbolic tangent of `x` element-wise. -func Tanh(scope *Scope, x tf.Output) (y tf.Output) { +// SizeAttr is an optional argument to Size. +type SizeAttr func(optionalAttr) + +// SizeOutType sets the optional out_type attribute to value. +// If not specified, defaults to DT_INT32 +func SizeOutType(value tf.DataType) SizeAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// Returns the size of a tensor. +// +// This operation returns an integer representing the number of elements in +// `input`. +// +// For example: +// +// ``` +// # 't' is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]] +// size(t) ==> 12 +// ``` +func Size(scope *Scope, input tf.Output, optional ...SizeAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Size", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns 0 if x == 0, and x / y otherwise, elementwise. +func Xdivy(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Tanh", + Type: "Xdivy", Input: []tf.Input{ - x, + x, y, }, } op := scope.AddOperation(opspec) @@ -30793,33 +31180,1173 @@ func Atanh(scope *Scope, x tf.Output) (y tf.Output) { return op.Output(0) } -// Saves the input tensors to disk. +// Computes the gradient for the tanh of `x` wrt its input. // -// The size of `tensor_names` must match the number of tensors in `data`. `data[i]` -// is written to `filename` with name `tensor_names[i]`. -// -// See also `SaveSlices`. -// -// Arguments: -// filename: Must have a single element. The name of the file to which we write -// the tensor. -// tensor_names: Shape `[N]`. The names of the tensors to be saved. -// data: `N` tensors to save. -// -// Returns the created operation. -func Save(scope *Scope, filename tf.Output, tensor_names tf.Output, data []tf.Output) (o *tf.Operation) { +// Specifically, `grad = dy * (1 - y*y)`, where `y = tanh(x)`, and `dy` +// is the corresponding input gradient. +func TanhGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Save", + Type: "TanhGrad", Input: []tf.Input{ - filename, tensor_names, tf.OutputList(data), + y, dy, }, } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the log of the absolute value of `Gamma(x)` element-wise. +func Lgamma(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Lgamma", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// TopKAttr is an optional argument to TopK. +type TopKAttr func(optionalAttr) + +// TopKSorted sets the optional sorted attribute to value. +// +// value: If true the resulting `k` elements will be sorted by the values in +// descending order. +// If not specified, defaults to true +func TopKSorted(value bool) TopKAttr { + return func(m optionalAttr) { + m["sorted"] = value + } +} + +// Finds values and indices of the `k` largest elements for the last dimension. +// +// DEPRECATED at GraphDef version 7: Use TopKV2 instead +// +// If the input is a vector (rank-1), finds the `k` largest entries in the vector +// and outputs their values and indices as vectors. Thus `values[j]` is the +// `j`-th largest entry in `input`, and its index is `indices[j]`. +// +// For matrices (resp. higher rank input), computes the top `k` entries in each +// row (resp. vector along the last dimension). Thus, +// +// values.shape = indices.shape = input.shape[:-1] + [k] +// +// If two elements are equal, the lower-index element appears first. +// +// If `k` varies dynamically, use `TopKV2` below. +// +// Arguments: +// input: 1-D or higher with last dimension at least `k`. +// k: Number of top elements to look for along the last dimension (along each +// row for matrices). +// +// Returns The `k` largest elements along each last dimensional slice.The indices of `values` within the last dimension of `input`. +func TopK(scope *Scope, input tf.Output, k int64, optional ...TopKAttr) (values tf.Output, indices tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"k": k} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TopK", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// Compute the regularized incomplete beta integral \\(I_x(a, b)\\). +// +// The regularized incomplete beta integral is defined as: +// +// +// \\(I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}\\) +// +// where +// +// +// \\(B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} dt\\) +// +// +// is the incomplete beta function and \\(B(a, b)\\) is the *complete* +// beta function. +func Betainc(scope *Scope, a tf.Output, b tf.Output, x tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Betainc", + Input: []tf.Input{ + a, b, x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Deserialize `SparseTensor` objects. +// +// The input `serialized_sparse` must have the shape `[?, ?, ..., ?, 3]` where +// the last dimension stores serialized `SparseTensor` objects and the other N +// dimensions (N >= 0) correspond to a batch. The ranks of the original +// `SparseTensor` objects must all match. When the final `SparseTensor` is +// created, its rank is the rank of the incoming `SparseTensor` objects plus N; +// the sparse tensors have been concatenated along new dimensions, one for each +// batch. +// +// The output `SparseTensor` object's shape values for the original dimensions +// are the max across the input `SparseTensor` objects' shape values for the +// corresponding dimensions. The new dimensions match the size of the batch. +// +// The input `SparseTensor` objects' indices are assumed ordered in +// standard lexicographic order. If this is not the case, after this +// step run `SparseReorder` to restore index ordering. +// +// For example, if the serialized input is a `[2 x 3]` matrix representing two +// original `SparseTensor` objects: +// +// index = [ 0] +// [10] +// [20] +// values = [1, 2, 3] +// shape = [50] +// +// and +// +// index = [ 2] +// [10] +// values = [4, 5] +// shape = [30] +// +// then the final deserialized `SparseTensor` will be: +// +// index = [0 0] +// [0 10] +// [0 20] +// [1 2] +// [1 10] +// values = [1, 2, 3, 4, 5] +// shape = [2 50] +// +// Arguments: +// serialized_sparse: The serialized `SparseTensor` objects. The last dimension +// must have 3 columns. +// dtype: The `dtype` of the serialized `SparseTensor` objects. +func DeserializeSparse(scope *Scope, serialized_sparse tf.Output, dtype tf.DataType) (sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtype": dtype} + opspec := tf.OpSpec{ + Type: "DeserializeSparse", + Input: []tf.Input{ + serialized_sparse, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Returns the truth value of (x == y) element-wise. +// +// *NOTE*: `Equal` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func Equal(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Equal", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes inverse hyperbolic sine of x element-wise. +func Asinh(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Asinh", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the complementary error function of `x` element-wise. +func Erfc(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Erfc", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes cos of x element-wise. +func Cos(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Cos", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the trignometric inverse sine of x element-wise. +// +// The `tf.math.asin` operation returns the inverse of `tf.math.sin`, such that +// if `y = tf.math.sin(x)` then, `x = tf.math.asin(y)`. +// +// **Note**: The output of `tf.math.asin` will lie within the invertible range +// of sine, i.e [-pi/2, pi/2]. +// +// For example: +// +// ```python +// # Note: [1.047, 0.785] ~= [(pi/3), (pi/4)] +// x = tf.constant([1.047, 0.785]) +// y = tf.math.sin(x) # [0.8659266, 0.7068252] +// +// tf.math.asin(y) # [1.047, 0.785] = x +// ``` +// +func Asin(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Asin", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the Bessel i0e function of `x` element-wise. +// +// Exponentially scaled modified Bessel function of order 0 defined as +// `bessel_i0e(x) = exp(-abs(x)) bessel_i0(x)`. +// +// This function is faster and numerically stabler than `bessel_i0(x)`. +func BesselI0e(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "BesselI0e", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// BatchAttr is an optional argument to Batch. +type BatchAttr func(optionalAttr) + +// BatchMaxEnqueuedBatches sets the optional max_enqueued_batches attribute to value. +// If not specified, defaults to 10 +func BatchMaxEnqueuedBatches(value int64) BatchAttr { + return func(m optionalAttr) { + m["max_enqueued_batches"] = value + } +} + +// BatchAllowedBatchSizes sets the optional allowed_batch_sizes attribute to value. +// If not specified, defaults to <> +func BatchAllowedBatchSizes(value []int64) BatchAttr { + return func(m optionalAttr) { + m["allowed_batch_sizes"] = value + } +} + +// BatchContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func BatchContainer(value string) BatchAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// BatchSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func BatchSharedName(value string) BatchAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// BatchBatchingQueue sets the optional batching_queue attribute to value. +// If not specified, defaults to "" +func BatchBatchingQueue(value string) BatchAttr { + return func(m optionalAttr) { + m["batching_queue"] = value + } +} + +// Batches all input tensors nondeterministically. +// +// When many instances of this Op are being run concurrently with the same +// container/shared_name in the same device, some will output zero-shaped Tensors +// and others will output Tensors of size up to max_batch_size. +// +// All Tensors in in_tensors are batched together (so, for example, labels and +// features should be batched with a single instance of this operation. +// +// Each invocation of batch emits an `id` scalar which will be used to identify +// this particular invocation when doing unbatch or its gradient. +// +// Each op which emits a non-empty batch will also emit a non-empty batch_index +// Tensor, which, is a [K, 3] matrix where each row contains the invocation's id, +// start, and length of elements of each set of Tensors present in batched_tensors. +// +// Batched tensors are concatenated along the first dimension, and all tensors in +// in_tensors must have the first dimension of the same size. +// +// in_tensors: The tensors to be batched. +// num_batch_threads: Number of scheduling threads for processing batches of work. +// Determines the number of batches processed in parallel. +// max_batch_size: Batch sizes will never be bigger than this. +// batch_timeout_micros: Maximum number of microseconds to wait before outputting +// an incomplete batch. +// allowed_batch_sizes: Optional list of allowed batch sizes. If left empty, does +// nothing. Otherwise, supplies a list of batch sizes, causing the op to pad +// batches up to one of those sizes. The entries must increase monotonically, and +// the final entry must equal max_batch_size. +// grad_timeout_micros: The timeout to use for the gradient. See Unbatch. +// batched_tensors: Either empty tensors or a batch of concatenated Tensors. +// batch_index: If out_tensors is non-empty, has information to invert it. +// container: Controls the scope of sharing of this batch. +// id: always contains a scalar with a unique ID for this invocation of Batch. +// shared_name: Concurrently running instances of batch in the same device with the +// same container and shared_name will batch their elements together. If left +// empty, the op name will be used as the shared name. +// T: the types of tensors to be batched. +func Batch(scope *Scope, in_tensors []tf.Output, num_batch_threads int64, max_batch_size int64, batch_timeout_micros int64, grad_timeout_micros int64, optional ...BatchAttr) (batched_tensors []tf.Output, batch_index tf.Output, id tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_batch_threads": num_batch_threads, "max_batch_size": max_batch_size, "batch_timeout_micros": batch_timeout_micros, "grad_timeout_micros": grad_timeout_micros} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Batch", + Input: []tf.Input{ + tf.OutputList(in_tensors), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if batched_tensors, idx, err = makeOutputList(op, idx, "batched_tensors"); err != nil { + scope.UpdateErr("Batch", err) + return + } + batch_index = op.Output(idx) + id = op.Output(idx) + return batched_tensors, batch_index, id +} + +// Returns the number of tensors in the input tensor list. +// +// input_handle: the input list +// length: the number of tensors in the list +func TensorListLength(scope *Scope, input_handle tf.Output) (length tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorListLength", + Input: []tf.Input{ + input_handle, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns which elements of x are Inf. +// +// @compatibility(numpy) +// Equivalent to np.isinf +// @end_compatibility +func IsInf(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "IsInf", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns an element-wise indication of the sign of a number. +// +// `y = sign(x) = -1` if `x < 0`; 0 if `x == 0`; 1 if `x > 0`. +// +// For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y = 0`. +func Sign(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Sign", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// LoadTPUEmbeddingStochasticGradientDescentParametersAttr is an optional argument to LoadTPUEmbeddingStochasticGradientDescentParameters. +type LoadTPUEmbeddingStochasticGradientDescentParametersAttr func(optionalAttr) + +// LoadTPUEmbeddingStochasticGradientDescentParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 +// +// REQUIRES: value >= -1 +func LoadTPUEmbeddingStochasticGradientDescentParametersTableId(value int64) LoadTPUEmbeddingStochasticGradientDescentParametersAttr { + return func(m optionalAttr) { + m["table_id"] = value + } +} + +// LoadTPUEmbeddingStochasticGradientDescentParametersTableName sets the optional table_name attribute to value. +// If not specified, defaults to "" +func LoadTPUEmbeddingStochasticGradientDescentParametersTableName(value string) LoadTPUEmbeddingStochasticGradientDescentParametersAttr { + return func(m optionalAttr) { + m["table_name"] = value + } +} + +// Load SGD embedding parameters. +// +// An op that loads optimization parameters into HBM for embedding. Must be +// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct +// embedding table configuration. For example, this op is used to install +// parameters that are loaded from a checkpoint before a training loop is +// executed. +// +// Arguments: +// parameters: Value of parameters used in the stochastic gradient descent optimization algorithm. +// +// +// +// Returns the created operation. +func LoadTPUEmbeddingStochasticGradientDescentParameters(scope *Scope, parameters tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingStochasticGradientDescentParametersAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadTPUEmbeddingStochasticGradientDescentParameters", + Input: []tf.Input{ + parameters, + }, + Attrs: attrs, + } return scope.AddOperation(opspec) } +// Returns element-wise largest integer not greater than x. +func Floor(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Floor", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns a copy of the input tensor. +func Snapshot(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Snapshot", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Adds Tensor 'bias' to Tensor 'input' for Quantized types. +// +// Broadcasts the values of bias on dimensions 0..N-2 of 'input'. +// +// Arguments: +// +// bias: A 1D bias Tensor with size matching the last dimension of 'input'. +// min_input: The float value that the lowest quantized input value represents. +// max_input: The float value that the highest quantized input value represents. +// min_bias: The float value that the lowest quantized bias value represents. +// max_bias: The float value that the highest quantized bias value represents. +// +// +// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. +func QuantizedBiasAdd(scope *Scope, input tf.Output, bias tf.Output, min_input tf.Output, max_input tf.Output, min_bias tf.Output, max_bias tf.Output, out_type tf.DataType) (output tf.Output, min_out tf.Output, max_out tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"out_type": out_type} + opspec := tf.OpSpec{ + Type: "QuantizedBiasAdd", + Input: []tf.Input{ + input, bias, min_input, max_input, min_bias, max_bias, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Decodes a `variant` Tensor into a `RaggedTensor`. +// +// Decodes the given `variant` Tensor and returns a `RaggedTensor`. The input +// could be a scalar, meaning it encodes a single `RaggedTensor` with ragged_rank +// `input_ragged_rank`. It could also have an arbitrary rank, in which case each +// element is decoded into a `RaggedTensor` with ragged_rank `input_ragged_rank` +// and these are then stacked according to the input shape to output a single +// `RaggedTensor` with ragged_rank `output_ragged_rank`. Each `variant` element in +// the input Tensor is decoded by retrieving from the element a 1-D `variant` +// Tensor with `input_ragged_rank + 1` Tensors, corresponding to the splits and +// values of the decoded `RaggedTensor`. See `RaggedTensorToVariant` for the +// corresponding encoding logic. +// +// +// Arguments: +// encoded_ragged: A `variant` Tensor containing encoded `RaggedTensor`s. +// input_ragged_rank: The ragged rank of each encoded `RaggedTensor` component in the input. +// output_ragged_rank: The expected ragged rank of the output `RaggedTensor`. The following must hold: +// `rank(encoded_ragged) = output_ragged_rank - input_ragged_rank`. +// +// +// +// Returns A list of one or more Tensors representing the splits of the output +// `RaggedTensor`.A Tensor representing the values of the output `RaggedTensor`. +func RaggedTensorFromVariant(scope *Scope, encoded_ragged tf.Output, input_ragged_rank int64, output_ragged_rank int64, Tvalues tf.DataType, Tsplits tf.DataType) (output_nested_splits []tf.Output, output_dense_values tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"input_ragged_rank": input_ragged_rank, "output_ragged_rank": output_ragged_rank, "Tvalues": Tvalues, "Tsplits": Tsplits} + opspec := tf.OpSpec{ + Type: "RaggedTensorFromVariant", + Input: []tf.Input{ + encoded_ragged, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if output_nested_splits, idx, err = makeOutputList(op, idx, "output_nested_splits"); err != nil { + scope.UpdateErr("RaggedTensorFromVariant", err) + return + } + output_dense_values = op.Output(idx) + return output_nested_splits, output_dense_values +} + +// Returns x - y element-wise. +// +// *NOTE*: `Subtract` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func Sub(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Sub", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes tan of x element-wise. +func Tan(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Tan", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the sum along sparse segments of a tensor. +// +// Like `SparseSegmentSum`, but allows missing ids in `segment_ids`. If an id is +// misisng, the `output` tensor at that position will be zeroed. +// +// Read +// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/sparse#Segmentation) +// for an explanation of segments. +// +// For example: +// +// ```python +// c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]]) +// +// tf.sparse_segment_sum_with_num_segments( +// c, tf.constant([0, 1]), tf.constant([0, 0]), num_segments=3) +// # => [[0 0 0 0] +// # [0 0 0 0] +// # [0 0 0 0]] +// +// tf.sparse_segment_sum_with_num_segments(c, +// tf.constant([0, 1]), +// tf.constant([0, 2], +// num_segments=4)) +// # => [[ 1 2 3 4] +// # [ 0 0 0 0] +// # [-1 -2 -3 -4] +// # [ 0 0 0 0]] +// ``` +// +// Arguments: +// +// indices: A 1-D tensor. Has same rank as `segment_ids`. +// segment_ids: A 1-D tensor. Values should be sorted and can be repeated. +// num_segments: Should equal the number of distinct segment IDs. +// +// Returns Has same shape as data, except for dimension 0 which +// has size `num_segments`. +func SparseSegmentSumWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSegmentSumWithNumSegments", + Input: []tf.Input{ + data, indices, segment_ids, num_segments, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// ResourceApplyProximalGradientDescentAttr is an optional argument to ResourceApplyProximalGradientDescent. +type ResourceApplyProximalGradientDescentAttr func(optionalAttr) + +// ResourceApplyProximalGradientDescentUseLocking sets the optional use_locking attribute to value. +// +// value: If True, the subtraction will be protected by a lock; +// otherwise the behavior is undefined, but may exhibit less contention. +// If not specified, defaults to false +func ResourceApplyProximalGradientDescentUseLocking(value bool) ResourceApplyProximalGradientDescentAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// Update '*var' as FOBOS algorithm with fixed learning rate. +// +// prox_v = var - alpha * delta +// var = sign(prox_v)/(1+alpha*l2) * max{|prox_v|-alpha*l1,0} +// +// Arguments: +// var_: Should be from a Variable(). +// alpha: Scaling factor. Must be a scalar. +// l1: L1 regularization. Must be a scalar. +// l2: L2 regularization. Must be a scalar. +// delta: The change. +// +// Returns the created operation. +func ResourceApplyProximalGradientDescent(scope *Scope, var_ tf.Output, alpha tf.Output, l1 tf.Output, l2 tf.Output, delta tf.Output, optional ...ResourceApplyProximalGradientDescentAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceApplyProximalGradientDescent", + Input: []tf.Input{ + var_, alpha, l1, l2, delta, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Records the latency of producing `input_dataset` elements in a StatsAggregator. +func ExperimentalLatencyStatsDataset(scope *Scope, input_dataset tf.Output, tag tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "ExperimentalLatencyStatsDataset", + Input: []tf.Input{ + input_dataset, tag, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// CTCLossAttr is an optional argument to CTCLoss. +type CTCLossAttr func(optionalAttr) + +// CTCLossPreprocessCollapseRepeated sets the optional preprocess_collapse_repeated attribute to value. +// +// value: Scalar, if true then repeated labels are +// collapsed prior to the CTC calculation. +// If not specified, defaults to false +func CTCLossPreprocessCollapseRepeated(value bool) CTCLossAttr { + return func(m optionalAttr) { + m["preprocess_collapse_repeated"] = value + } +} + +// CTCLossCtcMergeRepeated sets the optional ctc_merge_repeated attribute to value. +// +// value: Scalar. If set to false, *during* CTC calculation +// repeated non-blank labels will not be merged and are interpreted as +// individual labels. This is a simplified version of CTC. +// If not specified, defaults to true +func CTCLossCtcMergeRepeated(value bool) CTCLossAttr { + return func(m optionalAttr) { + m["ctc_merge_repeated"] = value + } +} + +// CTCLossIgnoreLongerOutputsThanInputs sets the optional ignore_longer_outputs_than_inputs attribute to value. +// +// value: Scalar. If set to true, during CTC +// calculation, items that have longer output sequences than input sequences +// are skipped: they don't contribute to the loss term and have zero-gradient. +// If not specified, defaults to false +func CTCLossIgnoreLongerOutputsThanInputs(value bool) CTCLossAttr { + return func(m optionalAttr) { + m["ignore_longer_outputs_than_inputs"] = value + } +} + +// Calculates the CTC Loss (log probability) for each batch entry. Also calculates +// +// the gradient. This class performs the softmax operation for you, so inputs +// should be e.g. linear projections of outputs by an LSTM. +// +// Arguments: +// inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. +// labels_indices: The indices of a `SparseTensor`. +// `labels_indices(i, :) == [b, t]` means `labels_values(i)` stores the id for +// `(batch b, time t)`. +// labels_values: The values (labels) associated with the given batch and time. +// sequence_length: A vector containing sequence lengths (batch). +// +// Returns A vector (batch) containing log-probabilities.The gradient of `loss`. 3-D, shape: +// `(max_time x batch_size x num_classes)`. +func CTCLoss(scope *Scope, inputs tf.Output, labels_indices tf.Output, labels_values tf.Output, sequence_length tf.Output, optional ...CTCLossAttr) (loss tf.Output, gradient tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CTCLoss", + Input: []tf.Input{ + inputs, labels_indices, labels_values, sequence_length, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// DecodePaddedRawAttr is an optional argument to DecodePaddedRaw. +type DecodePaddedRawAttr func(optionalAttr) + +// DecodePaddedRawLittleEndian sets the optional little_endian attribute to value. +// +// value: Whether the input `input_bytes` is in little-endian order. Ignored for +// `out_type` values that are stored in a single byte, like `uint8` +// If not specified, defaults to true +func DecodePaddedRawLittleEndian(value bool) DecodePaddedRawAttr { + return func(m optionalAttr) { + m["little_endian"] = value + } +} + +// Reinterpret the bytes of a string as a vector of numbers. +// +// Arguments: +// input_bytes: Tensor of string to be decoded. +// fixed_length: Length in bytes for each element of the decoded output. Must be a multiple +// of the size of the output type. +// +// +// Returns A Tensor with one more dimension than the input `bytes`. The added dimension +// will have size equal to the length of the elements of `bytes` divided by the +// number of bytes to represent `out_type`. +func DecodePaddedRaw(scope *Scope, input_bytes tf.Output, fixed_length tf.Output, out_type tf.DataType, optional ...DecodePaddedRawAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"out_type": out_type} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DecodePaddedRaw", + Input: []tf.Input{ + input_bytes, fixed_length, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns x * y element-wise. +// +// *NOTE*: `Multiply` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func Mul(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Mul", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns x * y element-wise. Returns zero if y is zero, even if x if infinite or NaN. +// +// *NOTE*: `Mul` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func MulNoNan(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "MulNoNan", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns x / y element-wise. +// +// *NOTE*: `Div` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func Div(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Div", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns x / y element-wise for integer types. +// +// Truncation designates that negative numbers will round fractional quantities +// toward zero. I.e. -7 / 5 = -1. This matches C semantics but it is different +// than Python semantics. See `FloorDiv` for a division function that matches +// Python Semantics. +// +// *NOTE*: `TruncateDiv` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func TruncateDiv(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TruncateDiv", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// CTCBeamSearchDecoderAttr is an optional argument to CTCBeamSearchDecoder. +type CTCBeamSearchDecoderAttr func(optionalAttr) + +// CTCBeamSearchDecoderMergeRepeated sets the optional merge_repeated attribute to value. +// +// value: If true, merge repeated classes in output. +// If not specified, defaults to true +func CTCBeamSearchDecoderMergeRepeated(value bool) CTCBeamSearchDecoderAttr { + return func(m optionalAttr) { + m["merge_repeated"] = value + } +} + +// Performs beam search decoding on the logits given in input. +// +// A note about the attribute merge_repeated: For the beam search decoder, +// this means that if consecutive entries in a beam are the same, only +// the first of these is emitted. That is, when the top path is "A B B B B", +// "A B" is returned if merge_repeated = True but "A B B B B" is +// returned if merge_repeated = False. +// +// Arguments: +// inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. +// sequence_length: A vector containing sequence lengths, size `(batch)`. +// beam_width: A scalar >= 0 (beam search beam width). +// top_paths: A scalar >= 0, <= beam_width (controls output size). +// +// Returns A list (length: top_paths) of indices matrices. Matrix j, +// size `(total_decoded_outputs[j] x 2)`, has indices of a +// `SparseTensor`. The rows store: [batch, time].A list (length: top_paths) of values vectors. Vector j, +// size `(length total_decoded_outputs[j])`, has the values of a +// `SparseTensor`. The vector stores the decoded classes for beam j.A list (length: top_paths) of shape vector. Vector j, +// size `(2)`, stores the shape of the decoded `SparseTensor[j]`. +// Its values are: `[batch_size, max_decoded_length[j]]`.A matrix, shaped: `(batch_size x top_paths)`. The +// sequence log-probabilities. +func CTCBeamSearchDecoder(scope *Scope, inputs tf.Output, sequence_length tf.Output, beam_width int64, top_paths int64, optional ...CTCBeamSearchDecoderAttr) (decoded_indices []tf.Output, decoded_values []tf.Output, decoded_shape []tf.Output, log_probability tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"beam_width": beam_width, "top_paths": top_paths} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CTCBeamSearchDecoder", + Input: []tf.Input{ + inputs, sequence_length, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if decoded_indices, idx, err = makeOutputList(op, idx, "decoded_indices"); err != nil { + scope.UpdateErr("CTCBeamSearchDecoder", err) + return + } + if decoded_values, idx, err = makeOutputList(op, idx, "decoded_values"); err != nil { + scope.UpdateErr("CTCBeamSearchDecoder", err) + return + } + if decoded_shape, idx, err = makeOutputList(op, idx, "decoded_shape"); err != nil { + scope.UpdateErr("CTCBeamSearchDecoder", err) + return + } + log_probability = op.Output(idx) + return decoded_indices, decoded_values, decoded_shape, log_probability +} + +// Produces a string handle for the given MultiDeviceIterator. +// +// Arguments: +// multi_device_iterator: A MultiDeviceIterator resource. +// +// Returns A string representing the resource. +func MultiDeviceIteratorToStringHandle(scope *Scope, multi_device_iterator tf.Output) (string_handle tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "MultiDeviceIteratorToStringHandle", + Input: []tf.Input{ + multi_device_iterator, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Produces the max pool of the input tensor for quantized types. +// +// Arguments: +// input: The 4D (batch x rows x cols x depth) Tensor to MaxReduce over. +// min_input: The float value that the lowest quantized input value represents. +// max_input: The float value that the highest quantized input value represents. +// ksize: The size of the window for each dimension of the input tensor. +// The length must be 4 to match the number of dimensions of the input. +// strides: The stride of the sliding window for each dimension of the input +// tensor. The length must be 4 to match the number of dimensions of the input. +// padding: The type of padding algorithm to use. +// +// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. +func QuantizedMaxPool(scope *Scope, input tf.Output, min_input tf.Output, max_input tf.Output, ksize []int64, strides []int64, padding string) (output tf.Output, min_output tf.Output, max_output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} + opspec := tf.OpSpec{ + Type: "QuantizedMaxPool", + Input: []tf.Input{ + input, min_input, max_input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// CastAttr is an optional argument to Cast. +type CastAttr func(optionalAttr) + +// CastTruncate sets the optional Truncate attribute to value. +// If not specified, defaults to false +func CastTruncate(value bool) CastAttr { + return func(m optionalAttr) { + m["Truncate"] = value + } +} + +// Cast x of type SrcT to y of DstT. +func Cast(scope *Scope, x tf.Output, DstT tf.DataType, optional ...CastAttr) (y tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"DstT": DstT} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Cast", + Input: []tf.Input{ + x, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns x / y element-wise for real types. +// +// If `x` and `y` are reals, this will return the floating-point division. +// +// *NOTE*: `Div` supports broadcasting. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func RealDiv(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "RealDiv", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Adjust the saturation of one or more images. +// +// `images` is a tensor of at least 3 dimensions. The last dimension is +// interpretted as channels, and must be three. +// +// The input image is considered in the RGB colorspace. Conceptually, the RGB +// colors are first mapped into HSV. A scale is then applied all the saturation +// values, and then remapped back to RGB colorspace. +// +// Arguments: +// images: Images to adjust. At least 3-D. +// scale: A float scale to add to the saturation. +// +// Returns The hue-adjusted image or images. +func AdjustSaturation(scope *Scope, images tf.Output, scale tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "AdjustSaturation", + Input: []tf.Input{ + images, scale, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // TridiagonalSolveAttr is an optional argument to TridiagonalSolve. type TridiagonalSolveAttr func(optionalAttr) @@ -30871,727 +32398,33 @@ func TridiagonalSolve(scope *Scope, diagonals tf.Output, rhs tf.Output, optional return op.Output(0) } -// Returns the truth value of (x == y) element-wise. +// Saves the input tensors to disk. // -// *NOTE*: `Equal` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func Equal(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Equal", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the Gauss error function of `x` element-wise. -func Erf(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Erf", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes inverse hyperbolic sine of x element-wise. -func Asinh(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Asinh", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the complementary error function of `x` element-wise. -func Erfc(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Erfc", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes sigmoid of `x` element-wise. +// The size of `tensor_names` must match the number of tensors in `data`. `data[i]` +// is written to `filename` with name `tensor_names[i]`. // -// Specifically, `y = 1 / (1 + exp(-x))`. -func Sigmoid(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Sigmoid", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the trignometric inverse sine of x element-wise. -// -// The `tf.math.asin` operation returns the inverse of `tf.math.sin`, such that -// if `y = tf.math.sin(x)` then, `x = tf.math.asin(y)`. -// -// **Note**: The output of `tf.math.asin` will lie within the invertible range -// of sine, i.e [-pi/2, pi/2]. -// -// For example: -// -// ```python -// # Note: [1.047, 0.785] ~= [(pi/3), (pi/4)] -// x = tf.constant([1.047, 0.785]) -// y = tf.math.sin(x) # [0.8659266, 0.7068252] -// -// tf.math.asin(y) # [1.047, 0.785] = x -// ``` -// -func Asin(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Asin", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// TryRpcAttr is an optional argument to TryRpc. -type TryRpcAttr func(optionalAttr) - -// TryRpcProtocol sets the optional protocol attribute to value. -// -// value: RPC protocol to use. Empty string means use the default protocol. -// Options include 'grpc'. -// If not specified, defaults to "" -func TryRpcProtocol(value string) TryRpcAttr { - return func(m optionalAttr) { - m["protocol"] = value - } -} - -// TryRpcFailFast sets the optional fail_fast attribute to value. -// -// value: `boolean`. If `true` (default), then failures to connect -// (i.e., the server does not immediately respond) cause an RPC failure. -// If not specified, defaults to true -func TryRpcFailFast(value bool) TryRpcAttr { - return func(m optionalAttr) { - m["fail_fast"] = value - } -} - -// TryRpcTimeoutInMs sets the optional timeout_in_ms attribute to value. -// -// value: `int`. If `0` (default), then the kernel will run the RPC -// request and only time out if the RPC deadline passes or the session times out. -// If this value is greater than `0`, then the op will raise an exception if -// the RPC takes longer than `timeout_in_ms`. -// If not specified, defaults to 0 -func TryRpcTimeoutInMs(value int64) TryRpcAttr { - return func(m optionalAttr) { - m["timeout_in_ms"] = value - } -} - -// Perform batches of RPC requests. -// -// This op asynchronously performs either a single RPC request, or a batch -// of requests. RPC requests are defined by three main parameters: -// -// - `address` (the host+port or BNS address of the request) -// - `method` (the method name for the request) -// - `request` (the serialized proto string, or vector of strings, -// of the RPC request argument). -// -// For example, if you have an RPC service running on port localhost:2345, -// and its interface is configured with the following proto declaration: -// -// ``` -// service MyService { -// rpc MyMethod(MyRequestProto) returns (MyResponseProto) { -// } -// }; -// ``` -// -// then call this op with arguments: -// -// ``` -// address = "localhost:2345" -// method = "MyService/MyMethod" -// ``` -// -// The `request` tensor is a string tensor representing serialized `MyRequestProto` -// strings; and the output string tensor `response` will have the same shape -// and contain (upon successful completion) corresponding serialized -// `MyResponseProto` strings. -// -// For example, to send a single, empty, `MyRequestProto`, call -// this op with `request = ""`. To send 5 **parallel** empty requests, -// call this op with `request = ["", "", "", "", ""]`. -// -// More generally, one can create a batch of `MyRequestProto` serialized protos -// from regular batched tensors using the `encode_proto` op, and convert -// the response `MyResponseProto` serialized protos to batched tensors -// using the `decode_proto` op. -// -// **NOTE** Working with serialized proto strings is faster than instantiating -// actual proto objects in memory, so no performance degradation is expected -// compared to writing custom kernels for this workflow. -// -// Unlike the standard `Rpc` op, if the connection fails or the remote worker -// returns an error status, this op does **not** reraise the exception. -// Instead, the `status_code` and `status_message` entry for the corresponding RPC -// call is set with the error returned from the RPC call. The `response` tensor -// will contain valid response values for those minibatch entries whose RPCs did -// not fail; the rest of the entries will have empty strings. +// See also `SaveSlices`. // // Arguments: -// address: `0-D` or `1-D`. The address (i.e. host_name:port) of the RPC server. -// If this tensor has more than 1 element, then multiple parallel rpc requests -// are sent. This argument broadcasts with `method` and `request`. -// method: `0-D` or `1-D`. The method address on the RPC server. -// If this tensor has more than 1 element, then multiple parallel rpc requests -// are sent. This argument broadcasts with `address` and `request`. -// request: `0-D` or `1-D`. Serialized proto strings: the rpc request argument. -// If this tensor has more than 1 element, then multiple parallel rpc requests -// are sent. This argument broadcasts with `address` and `method`. -// -// Returns Same shape as `request`. Serialized proto strings: the rpc responses.Same shape as `request`. Values correspond to tensorflow Status enum codes.Same shape as `request`. Values correspond to Status messages -// returned from the RPC calls. -func TryRpc(scope *Scope, address tf.Output, method tf.Output, request tf.Output, optional ...TryRpcAttr) (response tf.Output, status_code tf.Output, status_message tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "TryRpc", - Input: []tf.Input{ - address, method, request, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Returns which elements of x are Inf. -// -// @compatibility(numpy) -// Equivalent to np.isinf -// @end_compatibility -func IsInf(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "IsInf", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns which elements of x are finite. -// -// @compatibility(numpy) -// Equivalent to np.isfinite -// @end_compatibility -func IsFinite(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "IsFinite", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns an element-wise indication of the sign of a number. -// -// `y = sign(x) = -1` if `x < 0`; 0 if `x == 0`; 1 if `x > 0`. -// -// For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y = 0`. -func Sign(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Sign", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// SampleDistortedBoundingBoxAttr is an optional argument to SampleDistortedBoundingBox. -type SampleDistortedBoundingBoxAttr func(optionalAttr) - -// SampleDistortedBoundingBoxSeed sets the optional seed attribute to value. -// -// value: If either `seed` or `seed2` are set to non-zero, the random number -// generator is seeded by the given `seed`. Otherwise, it is seeded by a random -// seed. -// If not specified, defaults to 0 -func SampleDistortedBoundingBoxSeed(value int64) SampleDistortedBoundingBoxAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// SampleDistortedBoundingBoxSeed2 sets the optional seed2 attribute to value. -// -// value: A second seed to avoid seed collision. -// If not specified, defaults to 0 -func SampleDistortedBoundingBoxSeed2(value int64) SampleDistortedBoundingBoxAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// SampleDistortedBoundingBoxMinObjectCovered sets the optional min_object_covered attribute to value. -// -// value: The cropped area of the image must contain at least this -// fraction of any bounding box supplied. The value of this parameter should be -// non-negative. In the case of 0, the cropped area does not need to overlap -// any of the bounding boxes supplied. -// If not specified, defaults to 0.1 -func SampleDistortedBoundingBoxMinObjectCovered(value float32) SampleDistortedBoundingBoxAttr { - return func(m optionalAttr) { - m["min_object_covered"] = value - } -} - -// SampleDistortedBoundingBoxAspectRatioRange sets the optional aspect_ratio_range attribute to value. -// -// value: The cropped area of the image must have an aspect ratio = -// width / height within this range. -// If not specified, defaults to -func SampleDistortedBoundingBoxAspectRatioRange(value []float32) SampleDistortedBoundingBoxAttr { - return func(m optionalAttr) { - m["aspect_ratio_range"] = value - } -} - -// SampleDistortedBoundingBoxAreaRange sets the optional area_range attribute to value. -// -// value: The cropped area of the image must contain a fraction of the -// supplied image within this range. -// If not specified, defaults to -func SampleDistortedBoundingBoxAreaRange(value []float32) SampleDistortedBoundingBoxAttr { - return func(m optionalAttr) { - m["area_range"] = value - } -} - -// SampleDistortedBoundingBoxMaxAttempts sets the optional max_attempts attribute to value. -// -// value: Number of attempts at generating a cropped region of the image -// of the specified constraints. After `max_attempts` failures, return the entire -// image. -// If not specified, defaults to 100 -func SampleDistortedBoundingBoxMaxAttempts(value int64) SampleDistortedBoundingBoxAttr { - return func(m optionalAttr) { - m["max_attempts"] = value - } -} - -// SampleDistortedBoundingBoxUseImageIfNoBoundingBoxes sets the optional use_image_if_no_bounding_boxes attribute to value. -// -// value: Controls behavior if no bounding boxes supplied. -// If true, assume an implicit bounding box covering the whole input. If false, -// raise an error. -// If not specified, defaults to false -func SampleDistortedBoundingBoxUseImageIfNoBoundingBoxes(value bool) SampleDistortedBoundingBoxAttr { - return func(m optionalAttr) { - m["use_image_if_no_bounding_boxes"] = value - } -} - -// Generate a single randomly distorted bounding box for an image. -// -// Bounding box annotations are often supplied in addition to ground-truth labels -// in image recognition or object localization tasks. A common technique for -// training such a system is to randomly distort an image while preserving -// its content, i.e. *data augmentation*. This Op outputs a randomly distorted -// localization of an object, i.e. bounding box, given an `image_size`, -// `bounding_boxes` and a series of constraints. -// -// The output of this Op is a single bounding box that may be used to crop the -// original image. The output is returned as 3 tensors: `begin`, `size` and -// `bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the -// image. The latter may be supplied to `tf.image.draw_bounding_boxes` to visualize -// what the bounding box looks like. -// -// Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`. The -// bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and -// height of the underlying image. -// -// For example, -// -// ```python -// # Generate a single distorted bounding box. -// begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box( -// tf.shape(image), -// bounding_boxes=bounding_boxes) -// -// # Draw the bounding box in an image summary. -// image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), -// bbox_for_draw) -// tf.summary.image('images_with_box', image_with_box) -// -// # Employ the bounding box to distort the image. -// distorted_image = tf.slice(image, begin, size) -// ``` -// -// Note that if no bounding box information is available, setting -// `use_image_if_no_bounding_boxes = true` will assume there is a single implicit -// bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is -// false and no bounding boxes are supplied, an error is raised. -// -// Arguments: -// image_size: 1-D, containing `[height, width, channels]`. -// bounding_boxes: 3-D with shape `[batch, N, 4]` describing the N bounding boxes -// associated with the image. -// -// Returns 1-D, containing `[offset_height, offset_width, 0]`. Provide as input to -// `tf.slice`.1-D, containing `[target_height, target_width, -1]`. Provide as input to -// `tf.slice`.3-D with shape `[1, 1, 4]` containing the distorted bounding box. -// Provide as input to `tf.image.draw_bounding_boxes`. -func SampleDistortedBoundingBox(scope *Scope, image_size tf.Output, bounding_boxes tf.Output, optional ...SampleDistortedBoundingBoxAttr) (begin tf.Output, size tf.Output, bboxes tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "SampleDistortedBoundingBox", - Input: []tf.Input{ - image_size, bounding_boxes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Returns x + y element-wise. -// -// *NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func Add(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Add", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns x - y element-wise. -// -// *NOTE*: `Subtract` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func Sub(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Sub", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceApplyProximalGradientDescentAttr is an optional argument to ResourceApplyProximalGradientDescent. -type ResourceApplyProximalGradientDescentAttr func(optionalAttr) - -// ResourceApplyProximalGradientDescentUseLocking sets the optional use_locking attribute to value. -// -// value: If True, the subtraction will be protected by a lock; -// otherwise the behavior is undefined, but may exhibit less contention. -// If not specified, defaults to false -func ResourceApplyProximalGradientDescentUseLocking(value bool) ResourceApplyProximalGradientDescentAttr { - return func(m optionalAttr) { - m["use_locking"] = value - } -} - -// Update '*var' as FOBOS algorithm with fixed learning rate. -// -// prox_v = var - alpha * delta -// var = sign(prox_v)/(1+alpha*l2) * max{|prox_v|-alpha*l1,0} -// -// Arguments: -// var_: Should be from a Variable(). -// alpha: Scaling factor. Must be a scalar. -// l1: L1 regularization. Must be a scalar. -// l2: L2 regularization. Must be a scalar. -// delta: The change. +// filename: Must have a single element. The name of the file to which we write +// the tensor. +// tensor_names: Shape `[N]`. The names of the tensors to be saved. +// data: `N` tensors to save. // // Returns the created operation. -func ResourceApplyProximalGradientDescent(scope *Scope, var_ tf.Output, alpha tf.Output, l1 tf.Output, l2 tf.Output, delta tf.Output, optional ...ResourceApplyProximalGradientDescentAttr) (o *tf.Operation) { +func Save(scope *Scope, filename tf.Output, tensor_names tf.Output, data []tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "ResourceApplyProximalGradientDescent", + Type: "Save", Input: []tf.Input{ - var_, alpha, l1, l2, delta, + filename, tensor_names, tf.OutputList(data), }, - Attrs: attrs, } return scope.AddOperation(opspec) } -// Check if the input matches the regex pattern. -// -// The input is a string tensor of any shape. The pattern is a scalar -// string tensor which is applied to every element of the input tensor. -// The boolean values (True or False) of the output tensor indicate -// if the input matches the regex pattern provided. -// -// The pattern follows the re2 syntax (https://github.com/google/re2/wiki/Syntax) -// -// Arguments: -// input: A string tensor of the text to be processed. -// pattern: A scalar string tensor containing the regular expression to match the input. -// -// Returns A bool tensor with the same shape as `input`. -func RegexFullMatch(scope *Scope, input tf.Output, pattern tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RegexFullMatch", - Input: []tf.Input{ - input, pattern, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Reads and outputs the entire contents of the input filename. -func ReadFile(scope *Scope, filename tf.Output) (contents tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ReadFile", - Input: []tf.Input{ - filename, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns x * y element-wise. Returns zero if y is zero, even if x if infinite or NaN. -// -// *NOTE*: `Mul` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func MulNoNan(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "MulNoNan", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Checks whether a resource handle-based variable has been initialized. -// -// Arguments: -// resource: the input resource handle. -// -// Returns a scalar boolean which is true if the variable has been -// initialized. -func VarIsInitializedOp(scope *Scope, resource tf.Output) (is_initialized tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "VarIsInitializedOp", - Input: []tf.Input{ - resource, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Splits a tensor into a list. -// -// list[i] corresponds to lengths[i] tensors from the input tensor. -// The tensor must have rank at least 1 and contain exactly sum(lengths) elements. -// -// tensor: The input tensor. -// element_shape: A shape compatible with that of elements in the tensor. -// lengths: Vector of sizes of the 0th dimension of tensors in the list. -// output_handle: The list. -func TensorListSplit(scope *Scope, tensor tf.Output, element_shape tf.Output, lengths tf.Output) (output_handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorListSplit", - Input: []tf.Input{ - tensor, element_shape, lengths, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns x / y element-wise. -// -// *NOTE*: `Div` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func Div(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Div", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns x // y element-wise. -// -// *NOTE*: `FloorDiv` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func FloorDiv(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "FloorDiv", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the trignometric inverse tangent of x element-wise. -// -// The `tf.math.atan` operation returns the inverse of `tf.math.tan`, such that -// if `y = tf.math.tan(x)` then, `x = tf.math.atan(y)`. -// -// **Note**: The output of `tf.math.atan` will lie within the invertible range -// of tan, i.e (-pi/2, pi/2). -// -// For example: -// -// ```python -// # Note: [1.047, 0.785] ~= [(pi/3), (pi/4)] -// x = tf.constant([1.047, 0.785]) -// y = tf.math.tan(x) # [1.731261, 0.99920404] -// -// tf.math.atan(y) # [1.047, 0.785] = x -// ``` -// -func Atan(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Atan", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns x / y element-wise for integer types. -// -// Truncation designates that negative numbers will round fractional quantities -// toward zero. I.e. -7 / 5 = -1. This matches C semantics but it is different -// than Python semantics. See `FloorDiv` for a division function that matches -// Python Semantics. -// -// *NOTE*: `TruncateDiv` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func TruncateDiv(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TruncateDiv", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Scatter `updates` into a new tensor according to `indices`. // // Creates a new tensor by applying sparse `updates` to individual values or @@ -31716,122 +32549,19 @@ func SquaredDifference(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { return op.Output(0) } -// Returns 0 if x == 0, and x * log(y) otherwise, elementwise. -func Xlogy(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Xlogy", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns 0 if x == 0, and x / y otherwise, elementwise. -func Xdivy(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Xdivy", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Reshapes a tensor. +// Returns element-wise remainder of division. When `x < 0` xor `y < 0` is // -// Given `tensor`, this operation returns a tensor that has the same values -// as `tensor` with shape `shape`. +// true, this follows Python semantics in that the result here is consistent +// with a flooring divide. E.g. `floor(x / y) * y + mod(x, y) = x`. // -// If one component of `shape` is the special value -1, the size of that dimension -// is computed so that the total size remains constant. In particular, a `shape` -// of `[-1]` flattens into 1-D. At most one component of `shape` can be -1. -// -// If `shape` is 1-D or higher, then the operation returns a tensor with shape -// `shape` filled with the values of `tensor`. In this case, the number of elements -// implied by `shape` must be the same as the number of elements in `tensor`. -// -// For example: -// -// ``` -// # tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9] -// # tensor 't' has shape [9] -// reshape(t, [3, 3]) ==> [[1, 2, 3], -// [4, 5, 6], -// [7, 8, 9]] -// -// # tensor 't' is [[[1, 1], [2, 2]], -// # [[3, 3], [4, 4]]] -// # tensor 't' has shape [2, 2, 2] -// reshape(t, [2, 4]) ==> [[1, 1, 2, 2], -// [3, 3, 4, 4]] -// -// # tensor 't' is [[[1, 1, 1], -// # [2, 2, 2]], -// # [[3, 3, 3], -// # [4, 4, 4]], -// # [[5, 5, 5], -// # [6, 6, 6]]] -// # tensor 't' has shape [3, 2, 3] -// # pass '[-1]' to flatten 't' -// reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6] -// -// # -1 can also be used to infer the shape -// -// # -1 is inferred to be 9: -// reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], -// [4, 4, 4, 5, 5, 5, 6, 6, 6]] -// # -1 is inferred to be 2: -// reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], -// [4, 4, 4, 5, 5, 5, 6, 6, 6]] -// # -1 is inferred to be 3: -// reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1], -// [2, 2, 2], -// [3, 3, 3]], -// [[4, 4, 4], -// [5, 5, 5], -// [6, 6, 6]]] -// -// # tensor 't' is [7] -// # shape `[]` reshapes to a scalar -// reshape(t, []) ==> 7 -// ``` -// -// Arguments: -// -// shape: Defines the shape of the output tensor. -func Reshape(scope *Scope, tensor tf.Output, shape tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Reshape", - Input: []tf.Input{ - tensor, shape, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns the max of x and y (i.e. x > y ? x : y) element-wise. -// -// *NOTE*: `Maximum` supports broadcasting. More about broadcasting +// *NOTE*: `FloorMod` supports broadcasting. More about broadcasting // [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func Maximum(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { +func FloorMod(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Maximum", + Type: "FloorMod", Input: []tf.Input{ x, y, }, @@ -31864,21 +32594,6 @@ func LookupTableExportV2(scope *Scope, table_handle tf.Output, Tkeys tf.DataType return op.Output(0), op.Output(1) } -// Computes acos of x element-wise. -func Acos(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Acos", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Returns element-wise remainder of division. This emulates C semantics in that // // the result here is consistent with a truncating divide. E.g. @@ -31930,108 +32645,21 @@ func SelfAdjointEig(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// PaddingFIFOQueueV2Attr is an optional argument to PaddingFIFOQueueV2. -type PaddingFIFOQueueV2Attr func(optionalAttr) - -// PaddingFIFOQueueV2Shapes sets the optional shapes attribute to value. +// Returns the number of records this Reader has produced. // -// value: The shape of each component in a value. The length of this attr must -// be either 0 or the same as the length of component_types. -// Shapes of fixed rank but variable size are allowed by setting -// any shape dimension to -1. In this case, the inputs' shape may vary along -// the given dimension, and DequeueMany will pad the given dimension with -// zeros up to the maximum shape of all elements in the given batch. -// If the length of this attr is 0, different queue elements may have -// different ranks and shapes, but only one element may be dequeued at a time. -// If not specified, defaults to <> -// -// REQUIRES: len(value) >= 0 -func PaddingFIFOQueueV2Shapes(value []tf.Shape) PaddingFIFOQueueV2Attr { - return func(m optionalAttr) { - m["shapes"] = value - } -} - -// PaddingFIFOQueueV2Capacity sets the optional capacity attribute to value. -// -// value: The upper bound on the number of elements in this queue. -// Negative numbers mean no limit. -// If not specified, defaults to -1 -func PaddingFIFOQueueV2Capacity(value int64) PaddingFIFOQueueV2Attr { - return func(m optionalAttr) { - m["capacity"] = value - } -} - -// PaddingFIFOQueueV2Container sets the optional container attribute to value. -// -// value: If non-empty, this queue is placed in the given container. -// Otherwise, a default container is used. -// If not specified, defaults to "" -func PaddingFIFOQueueV2Container(value string) PaddingFIFOQueueV2Attr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// PaddingFIFOQueueV2SharedName sets the optional shared_name attribute to value. -// -// value: If non-empty, this queue will be shared under the given name -// across multiple sessions. -// If not specified, defaults to "" -func PaddingFIFOQueueV2SharedName(value string) PaddingFIFOQueueV2Attr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// A queue that produces elements in first-in first-out order. -// -// Variable-size shapes are allowed by setting the corresponding shape dimensions -// to 0 in the shape attr. In this case DequeueMany will pad up to the maximum -// size of any given element in the minibatch. See below for details. +// This is the same as the number of ReaderRead executions that have +// succeeded. // // Arguments: -// component_types: The type of each component in a value. -// -// Returns The handle to the queue. -func PaddingFIFOQueueV2(scope *Scope, component_types []tf.DataType, optional ...PaddingFIFOQueueV2Attr) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"component_types": component_types} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "PaddingFIFOQueueV2", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Adds `bias` to `value`. -// -// This is a deprecated version of BiasAdd and will be soon removed. -// -// This is a special case of `tf.add` where `bias` is restricted to be 1-D. -// Broadcasting is supported, so `value` may have any number of dimensions. -// -// Arguments: -// value: Any number of dimensions. -// bias: 1-D with size the last dimension of `value`. -// -// Returns Broadcasted sum of `value` and `bias`. -func BiasAddV1(scope *Scope, value tf.Output, bias tf.Output) (output tf.Output) { +// reader_handle: Handle to a Reader. +func ReaderNumRecordsProducedV2(scope *Scope, reader_handle tf.Output) (records_produced tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "BiasAddV1", + Type: "ReaderNumRecordsProducedV2", Input: []tf.Input{ - value, bias, + reader_handle, }, } op := scope.AddOperation(opspec) @@ -32136,6 +32764,48 @@ func TruncateMod(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { return op.Output(0) } +// Computes the number of elements in the given table. +// +// Arguments: +// table_handle: Handle to the table. +// +// Returns Scalar that contains number of elements in the table. +func LookupTableSizeV2(scope *Scope, table_handle tf.Output) (size tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "LookupTableSizeV2", + Input: []tf.Input{ + table_handle, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Writes contents to the file at input filename. Creates file and recursively +// +// creates directory if not existing. +// +// Arguments: +// filename: scalar. The name of the file to which we write the contents. +// contents: scalar. The content to be written to the output file. +// +// Returns the created operation. +func WriteFile(scope *Scope, filename tf.Output, contents tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "WriteFile", + Input: []tf.Input{ + filename, contents, + }, + } + return scope.AddOperation(opspec) +} + // Computes the power of one value to another. // // Given a tensor `x` and a tensor `y`, this operation computes \\(x^y\\) for @@ -32252,6 +32922,52 @@ func Igamma(scope *Scope, a tf.Output, x tf.Output) (z tf.Output) { return op.Output(0) } +// Greedily selects a subset of bounding boxes in descending order of score, +// +// pruning away boxes that have high intersection-over-union (IOU) overlap +// with previously selected boxes. Bounding boxes are supplied as +// [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any +// diagonal pair of box corners and the coordinates can be provided as normalized +// (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm +// is agnostic to where the origin is in the coordinate system. Note that this +// algorithm is invariant to orthogonal transformations and translations +// of the coordinate system; thus translating or reflections of the coordinate +// system result in the same boxes being selected by the algorithm. +// +// The output of this operation is a set of integers indexing into the input +// collection of bounding boxes representing the selected boxes. The bounding +// box coordinates corresponding to the selected indices can then be obtained +// using the `tf.gather operation`. For example: +// +// selected_indices = tf.image.non_max_suppression_v2( +// boxes, scores, max_output_size, iou_threshold) +// selected_boxes = tf.gather(boxes, selected_indices) +// +// Arguments: +// boxes: A 2-D float tensor of shape `[num_boxes, 4]`. +// scores: A 1-D float tensor of shape `[num_boxes]` representing a single +// score corresponding to each box (each row of boxes). +// max_output_size: A scalar integer tensor representing the maximum number of +// boxes to be selected by non max suppression. +// iou_threshold: A 0-D float tensor representing the threshold for deciding whether +// boxes overlap too much with respect to IOU. +// +// Returns A 1-D integer tensor of shape `[M]` representing the selected +// indices from the boxes tensor, where `M <= max_output_size`. +func NonMaxSuppressionV2(scope *Scope, boxes tf.Output, scores tf.Output, max_output_size tf.Output, iou_threshold tf.Output) (selected_indices tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "NonMaxSuppressionV2", + Input: []tf.Input{ + boxes, scores, max_output_size, iou_threshold, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Computes the gradient of `igamma(a, x)` wrt `a`. func IgammaGradA(scope *Scope, a tf.Output, x tf.Output) (z tf.Output) { if scope.Err() != nil { @@ -32287,179 +33003,20 @@ func Zeta(scope *Scope, x tf.Output, q tf.Output) (z tf.Output) { return op.Output(0) } -// Adds v into specified rows of x. +// Gives a guarantee to the TF runtime that the input tensor is a constant. // -// Computes y = x; y[i, :] += v; return y. +// The runtime is then free to make optimizations based on this. // -// Arguments: -// x: A `Tensor` of type T. -// i: A vector. Indices into the left-most dimension of `x`. -// v: A `Tensor` of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size. +// Only accepts value typed tensors as inputs and rejects resource variable handles +// as input. // -// Returns A `Tensor` of type T. An alias of `x`. The content of `y` is undefined if there are duplicates in `i`. -func InplaceAdd(scope *Scope, x tf.Output, i tf.Output, v tf.Output) (y tf.Output) { +// Returns the input tensor without modification. +func GuaranteeConst(scope *Scope, input tf.Output) (output tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "InplaceAdd", - Input: []tf.Input{ - x, i, v, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// RandomUniformAttr is an optional argument to RandomUniform. -type RandomUniformAttr func(optionalAttr) - -// RandomUniformSeed sets the optional seed attribute to value. -// -// value: If either `seed` or `seed2` are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func RandomUniformSeed(value int64) RandomUniformAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// RandomUniformSeed2 sets the optional seed2 attribute to value. -// -// value: A second seed to avoid seed collision. -// If not specified, defaults to 0 -func RandomUniformSeed2(value int64) RandomUniformAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Outputs random values from a uniform distribution. -// -// The generated values follow a uniform distribution in the range `[0, 1)`. The -// lower bound 0 is included in the range, while the upper bound 1 is excluded. -// -// Arguments: -// shape: The shape of the output tensor. -// dtype: The type of the output. -// -// Returns A tensor of the specified shape filled with uniform random values. -func RandomUniform(scope *Scope, shape tf.Output, dtype tf.DataType, optional ...RandomUniformAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RandomUniform", - Input: []tf.Input{ - shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResizeNearestNeighborAttr is an optional argument to ResizeNearestNeighbor. -type ResizeNearestNeighborAttr func(optionalAttr) - -// ResizeNearestNeighborAlignCorners sets the optional align_corners attribute to value. -// -// value: If true, the centers of the 4 corner pixels of the input and output tensors are -// aligned, preserving the values at the corner pixels. Defaults to false. -// If not specified, defaults to false -func ResizeNearestNeighborAlignCorners(value bool) ResizeNearestNeighborAttr { - return func(m optionalAttr) { - m["align_corners"] = value - } -} - -// ResizeNearestNeighborHalfPixelCenters sets the optional half_pixel_centers attribute to value. -// If not specified, defaults to false -func ResizeNearestNeighborHalfPixelCenters(value bool) ResizeNearestNeighborAttr { - return func(m optionalAttr) { - m["half_pixel_centers"] = value - } -} - -// Resize `images` to `size` using nearest neighbor interpolation. -// -// Arguments: -// images: 4-D with shape `[batch, height, width, channels]`. -// size: = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The -// new size for the images. -// -// Returns 4-D with shape -// `[batch, new_height, new_width, channels]`. -func ResizeNearestNeighbor(scope *Scope, images tf.Output, size tf.Output, optional ...ResizeNearestNeighborAttr) (resized_images tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResizeNearestNeighbor", - Input: []tf.Input{ - images, size, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Compute the regularized incomplete beta integral \\(I_x(a, b)\\). -// -// The regularized incomplete beta integral is defined as: -// -// -// \\(I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}\\) -// -// where -// -// -// \\(B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} dt\\) -// -// -// is the incomplete beta function and \\(B(a, b)\\) is the *complete* -// beta function. -func Betainc(scope *Scope, a tf.Output, b tf.Output, x tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Betainc", - Input: []tf.Input{ - a, b, x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the determinant of one or more square matrices. -// -// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions -// form square matrices. The output is a tensor containing the determinants -// for all input submatrices `[..., :, :]`. -// -// Arguments: -// input: Shape is `[..., M, M]`. -// -// Returns Shape is `[...]`. -func MatrixDeterminant(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "MatrixDeterminant", + Type: "GuaranteeConst", Input: []tf.Input{ input, }, @@ -32468,137 +33025,23 @@ func MatrixDeterminant(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// MaxPoolGradAttr is an optional argument to MaxPoolGrad. -type MaxPoolGradAttr func(optionalAttr) - -// MaxPoolGradDataFormat sets the optional data_format attribute to value. +// Compute the polygamma function \\(\psi^{(n)}(x)\\). // -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the data is stored in the order of: -// [batch, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// If not specified, defaults to "NHWC" -func MaxPoolGradDataFormat(value string) MaxPoolGradAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Computes gradients of the maxpooling function. -// -// Arguments: -// orig_input: The original input tensor. -// orig_output: The original output tensor. -// grad: 4-D. Gradients w.r.t. the output of `max_pool`. -// ksize: The size of the window for each dimension of the input tensor. -// strides: The stride of the sliding window for each dimension of the -// input tensor. -// padding: The type of padding algorithm to use. -// -// Returns Gradients w.r.t. the input to `max_pool`. -func MaxPoolGrad(scope *Scope, orig_input tf.Output, orig_output tf.Output, grad tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolGradAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MaxPoolGrad", - Input: []tf.Input{ - orig_input, orig_output, grad, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// MaxPoolGradV2Attr is an optional argument to MaxPoolGradV2. -type MaxPoolGradV2Attr func(optionalAttr) - -// MaxPoolGradV2DataFormat sets the optional data_format attribute to value. -// -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the data is stored in the order of: -// [batch, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// If not specified, defaults to "NHWC" -func MaxPoolGradV2DataFormat(value string) MaxPoolGradV2Attr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Computes gradients of the maxpooling function. -// -// Arguments: -// orig_input: The original input tensor. -// orig_output: The original output tensor. -// grad: 4-D. Gradients w.r.t. the output of `max_pool`. -// ksize: The size of the window for each dimension of the input tensor. -// strides: The stride of the sliding window for each dimension of the -// input tensor. -// padding: The type of padding algorithm to use. -// -// Returns Gradients w.r.t. the input to `max_pool`. -func MaxPoolGradV2(scope *Scope, orig_input tf.Output, orig_output tf.Output, grad tf.Output, ksize tf.Output, strides tf.Output, padding string, optional ...MaxPoolGradV2Attr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MaxPoolGradV2", - Input: []tf.Input{ - orig_input, orig_output, grad, ksize, strides, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that uses a custom thread pool to compute `input_dataset`. -// -// Arguments: -// -// thread_pool: A resource produced by the ThreadPoolHandle op. +// The polygamma function is defined as: // // -func ExperimentalThreadPoolDataset(scope *Scope, input_dataset tf.Output, thread_pool tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ExperimentalThreadPoolDataset", - Input: []tf.Input{ - input_dataset, thread_pool, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns the truth value of (x < y) element-wise. +// \\(\psi^{(a)}(x) = \frac{d^a}{dx^a} \psi(x)\\) // -// *NOTE*: `Less` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func Less(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { +// where \\(\psi(x)\\) is the digamma function. +// The polygamma function is defined only for non-negative integer orders \\a\\. +func Polygamma(scope *Scope, a tf.Output, x tf.Output) (z tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Less", + Type: "Polygamma", Input: []tf.Input{ - x, y, + a, x, }, } op := scope.AddOperation(opspec) @@ -32623,6 +33066,68 @@ func LessEqual(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { return op.Output(0) } +// FakeQuantWithMinMaxArgsGradientAttr is an optional argument to FakeQuantWithMinMaxArgsGradient. +type FakeQuantWithMinMaxArgsGradientAttr func(optionalAttr) + +// FakeQuantWithMinMaxArgsGradientMin sets the optional min attribute to value. +// If not specified, defaults to -6 +func FakeQuantWithMinMaxArgsGradientMin(value float32) FakeQuantWithMinMaxArgsGradientAttr { + return func(m optionalAttr) { + m["min"] = value + } +} + +// FakeQuantWithMinMaxArgsGradientMax sets the optional max attribute to value. +// If not specified, defaults to 6 +func FakeQuantWithMinMaxArgsGradientMax(value float32) FakeQuantWithMinMaxArgsGradientAttr { + return func(m optionalAttr) { + m["max"] = value + } +} + +// FakeQuantWithMinMaxArgsGradientNumBits sets the optional num_bits attribute to value. +// If not specified, defaults to 8 +func FakeQuantWithMinMaxArgsGradientNumBits(value int64) FakeQuantWithMinMaxArgsGradientAttr { + return func(m optionalAttr) { + m["num_bits"] = value + } +} + +// FakeQuantWithMinMaxArgsGradientNarrowRange sets the optional narrow_range attribute to value. +// If not specified, defaults to false +func FakeQuantWithMinMaxArgsGradientNarrowRange(value bool) FakeQuantWithMinMaxArgsGradientAttr { + return func(m optionalAttr) { + m["narrow_range"] = value + } +} + +// Compute gradients for a FakeQuantWithMinMaxArgs operation. +// +// Arguments: +// gradients: Backpropagated gradients above the FakeQuantWithMinMaxArgs operation. +// inputs: Values passed as inputs to the FakeQuantWithMinMaxArgs operation. +// +// Returns Backpropagated gradients below the FakeQuantWithMinMaxArgs operation: +// `gradients * (inputs >= min && inputs <= max)`. +func FakeQuantWithMinMaxArgsGradient(scope *Scope, gradients tf.Output, inputs tf.Output, optional ...FakeQuantWithMinMaxArgsGradientAttr) (backprops tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "FakeQuantWithMinMaxArgsGradient", + Input: []tf.Input{ + gradients, inputs, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Initializes the multi device iterator with the given dataset. // // Arguments: @@ -32664,24 +33169,6 @@ func GreaterEqual(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { return op.Output(0) } -// Elementwise computes the bitwise OR of `x` and `y`. -// -// The result will have those bits set, that are set in `x`, `y` or both. The -// computation is performed on the underlying representations of `x` and `y`. -func BitwiseOr(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "BitwiseOr", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Records the bytes size of each element of `input_dataset` in a StatsAggregator. func ExperimentalBytesProducedStatsDataset(scope *Scope, input_dataset tf.Output, tag tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { if scope.Err() != nil { @@ -32699,24 +33186,6 @@ func ExperimentalBytesProducedStatsDataset(scope *Scope, input_dataset tf.Output return op.Output(0) } -// Returns the truth value of (x > y) element-wise. -// -// *NOTE*: `Greater` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func Greater(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Greater", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Returns the truth value of (x != y) element-wise. // // *NOTE*: `NotEqual` supports broadcasting. More about broadcasting @@ -32790,38 +33259,45 @@ func ApproximateEqual(scope *Scope, x tf.Output, y tf.Output, optional ...Approx return op.Output(0) } -// Deprecated. Use TensorArrayGradV3 +// DestroyResourceOpAttr is an optional argument to DestroyResourceOp. +type DestroyResourceOpAttr func(optionalAttr) + +// DestroyResourceOpIgnoreLookupError sets the optional ignore_lookup_error attribute to value. // -// DEPRECATED at GraphDef version 26: Use TensorArrayGradV3 -func TensorArrayGradV2(scope *Scope, handle tf.Output, flow_in tf.Output, source string) (grad_handle tf.Output) { +// value: whether to ignore the error when the resource +// doesn't exist. +// If not specified, defaults to true +func DestroyResourceOpIgnoreLookupError(value bool) DestroyResourceOpAttr { + return func(m optionalAttr) { + m["ignore_lookup_error"] = value + } +} + +// Deletes the resource specified by the handle. +// +// All subsequent operations using the resource will result in a NotFound +// error status. +// +// Arguments: +// resource: handle to the resource to delete. +// +// Returns the created operation. +func DestroyResourceOp(scope *Scope, resource tf.Output, optional ...DestroyResourceOpAttr) (o *tf.Operation) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"source": source} + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } opspec := tf.OpSpec{ - Type: "TensorArrayGradV2", + Type: "DestroyResourceOp", Input: []tf.Input{ - handle, flow_in, + resource, }, Attrs: attrs, } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns the truth value of NOT x element-wise. -func LogicalNot(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "LogicalNot", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) + return scope.AddOperation(opspec) } // Returns the truth value of x AND y element-wise. @@ -32879,57 +33355,50 @@ func LogicalOr(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { return op.Output(0) } -// UnbatchAttr is an optional argument to Unbatch. -type UnbatchAttr func(optionalAttr) +// MatMulAttr is an optional argument to MatMul. +type MatMulAttr func(optionalAttr) -// UnbatchContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func UnbatchContainer(value string) UnbatchAttr { +// MatMulTransposeA sets the optional transpose_a attribute to value. +// +// value: If true, "a" is transposed before multiplication. +// If not specified, defaults to false +func MatMulTransposeA(value bool) MatMulAttr { return func(m optionalAttr) { - m["container"] = value + m["transpose_a"] = value } } -// UnbatchSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func UnbatchSharedName(value string) UnbatchAttr { +// MatMulTransposeB sets the optional transpose_b attribute to value. +// +// value: If true, "b" is transposed before multiplication. +// If not specified, defaults to false +func MatMulTransposeB(value bool) MatMulAttr { return func(m optionalAttr) { - m["shared_name"] = value + m["transpose_b"] = value } } -// Reverses the operation of Batch for a single output Tensor. +// Multiply the matrix "a" by the matrix "b". // -// An instance of Unbatch either receives an empty batched_tensor, in which case it -// asynchronously waits until the values become available from a concurrently -// running instance of Unbatch with the same container and shared_name, or receives -// a non-empty batched_tensor in which case it finalizes all other concurrently -// running instances and outputs its own element from the batch. +// The inputs must be two-dimensional matrices and the inner dimension of +// "a" (after being transposed if transpose_a is true) must match the +// outer dimension of "b" (after being transposed if transposed_b is +// true). // -// batched_tensor: The possibly transformed output of Batch. The size of the first -// dimension should remain unchanged by the transformations for the operation to -// work. -// batch_index: The matching batch_index obtained from Batch. -// id: The id scalar emitted by Batch. -// unbatched_tensor: The Tensor corresponding to this execution. -// timeout_micros: Maximum amount of time (in microseconds) to wait to receive the -// batched input tensor associated with a given invocation of the op. -// container: Container to control resource sharing. -// shared_name: Instances of Unbatch with the same container and shared_name are -// assumed to possibly belong to the same batch. If left empty, the op name will -// be used as the shared name. -func Unbatch(scope *Scope, batched_tensor tf.Output, batch_index tf.Output, id tf.Output, timeout_micros int64, optional ...UnbatchAttr) (unbatched_tensor tf.Output) { +// *Note*: The default kernel implementation for MatMul on GPUs uses +// cublas. +func MatMul(scope *Scope, a tf.Output, b tf.Output, optional ...MatMulAttr) (product tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"timeout_micros": timeout_micros} + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "Unbatch", + Type: "MatMul", Input: []tf.Input{ - batched_tensor, batch_index, id, + a, b, }, Attrs: attrs, } @@ -32937,54 +33406,44 @@ func Unbatch(scope *Scope, batched_tensor tf.Output, batch_index tf.Output, id t return op.Output(0) } -// EnterAttr is an optional argument to Enter. -type EnterAttr func(optionalAttr) +// SumAttr is an optional argument to Sum. +type SumAttr func(optionalAttr) -// EnterIsConstant sets the optional is_constant attribute to value. +// SumKeepDims sets the optional keep_dims attribute to value. // -// value: If true, the output is constant within the child frame. +// value: If true, retain reduced dimensions with length 1. // If not specified, defaults to false -func EnterIsConstant(value bool) EnterAttr { +func SumKeepDims(value bool) SumAttr { return func(m optionalAttr) { - m["is_constant"] = value + m["keep_dims"] = value } } -// EnterParallelIterations sets the optional parallel_iterations attribute to value. +// Computes the sum of elements across dimensions of a tensor. // -// value: The number of iterations allowed to run in parallel. -// If not specified, defaults to 10 -func EnterParallelIterations(value int64) EnterAttr { - return func(m optionalAttr) { - m["parallel_iterations"] = value - } -} - -// Creates or finds a child frame, and makes `data` available to the child frame. -// -// This op is used together with `Exit` to create loops in the graph. -// The unique `frame_name` is used by the `Executor` to identify frames. If -// `is_constant` is true, `output` is a constant in the child frame; otherwise -// it may be changed in the child frame. At most `parallel_iterations` iterations -// are run in parallel in the child frame. +// Reduces `input` along the dimensions given in `axis`. Unless +// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in +// `axis`. If `keep_dims` is true, the reduced dimensions are +// retained with length 1. // // Arguments: -// data: The tensor to be made available to the child frame. -// frame_name: The name of the child frame. +// input: The tensor to reduce. +// axis: The dimensions to reduce. Must be in the range +// `[-rank(input), rank(input))`. // -// Returns The same tensor as `data`. -func Enter(scope *Scope, data tf.Output, frame_name string, optional ...EnterAttr) (output tf.Output) { +// Returns The reduced tensor. +func Sum(scope *Scope, input tf.Output, axis tf.Output, optional ...SumAttr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"frame_name": frame_name} + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "Enter", + Type: "Sum", Input: []tf.Input{ - data, + input, axis, }, Attrs: attrs, } @@ -33037,6 +33496,51 @@ func EuclideanNorm(scope *Scope, input tf.Output, axis tf.Output, optional ...Eu return op.Output(0) } +// ProdAttr is an optional argument to Prod. +type ProdAttr func(optionalAttr) + +// ProdKeepDims sets the optional keep_dims attribute to value. +// +// value: If true, retain reduced dimensions with length 1. +// If not specified, defaults to false +func ProdKeepDims(value bool) ProdAttr { + return func(m optionalAttr) { + m["keep_dims"] = value + } +} + +// Computes the product of elements across dimensions of a tensor. +// +// Reduces `input` along the dimensions given in `axis`. Unless +// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in +// `axis`. If `keep_dims` is true, the reduced dimensions are +// retained with length 1. +// +// Arguments: +// input: The tensor to reduce. +// axis: The dimensions to reduce. Must be in the range +// `[-rank(input), rank(input))`. +// +// Returns The reduced tensor. +func Prod(scope *Scope, input tf.Output, axis tf.Output, optional ...ProdAttr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Prod", + Input: []tf.Input{ + input, axis, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // MinAttr is an optional argument to Min. type MinAttr func(optionalAttr) @@ -33082,44 +33586,16 @@ func Min(scope *Scope, input tf.Output, axis tf.Output, optional ...MinAttr) (ou return op.Output(0) } -// MaxAttr is an optional argument to Max. -type MaxAttr func(optionalAttr) - -// MaxKeepDims sets the optional keep_dims attribute to value. -// -// value: If true, retain reduced dimensions with length 1. -// If not specified, defaults to false -func MaxKeepDims(value bool) MaxAttr { - return func(m optionalAttr) { - m["keep_dims"] = value - } -} - -// Computes the maximum of elements across dimensions of a tensor. -// -// Reduces `input` along the dimensions given in `axis`. Unless -// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in -// `axis`. If `keep_dims` is true, the reduced dimensions are -// retained with length 1. -// -// Arguments: -// input: The tensor to reduce. -// axis: The dimensions to reduce. Must be in the range -// `[-rank(input), rank(input))`. -// -// Returns The reduced tensor. -func Max(scope *Scope, input tf.Output, axis tf.Output, optional ...MaxAttr) (output tf.Output) { +// A dataset that splits the elements of its input into multiple elements. +func ExperimentalUnbatchDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} opspec := tf.OpSpec{ - Type: "Max", + Type: "ExperimentalUnbatchDataset", Input: []tf.Input{ - input, axis, + input_dataset, }, Attrs: attrs, } @@ -33223,50 +33699,27 @@ func SegmentSum(scope *Scope, data tf.Output, segment_ids tf.Output) (output tf. return op.Output(0) } -// DecodePngAttr is an optional argument to DecodePng. -type DecodePngAttr func(optionalAttr) +// InfeedEnqueuePrelinearizedBufferAttr is an optional argument to InfeedEnqueuePrelinearizedBuffer. +type InfeedEnqueuePrelinearizedBufferAttr func(optionalAttr) -// DecodePngChannels sets the optional channels attribute to value. +// InfeedEnqueuePrelinearizedBufferDeviceOrdinal sets the optional device_ordinal attribute to value. // -// value: Number of color channels for the decoded image. -// If not specified, defaults to 0 -func DecodePngChannels(value int64) DecodePngAttr { +// value: The TPU device to use. This should be -1 when the Op is running on a TPU device +// and = 0 when the Op is running on the CPU device. +// If not specified, defaults to -1 +func InfeedEnqueuePrelinearizedBufferDeviceOrdinal(value int64) InfeedEnqueuePrelinearizedBufferAttr { return func(m optionalAttr) { - m["channels"] = value + m["device_ordinal"] = value } } -// DecodePngDtype sets the optional dtype attribute to value. -// If not specified, defaults to DT_UINT8 -func DecodePngDtype(value tf.DataType) DecodePngAttr { - return func(m optionalAttr) { - m["dtype"] = value - } -} - -// Decode a PNG-encoded image to a uint8 or uint16 tensor. -// -// The attr `channels` indicates the desired number of color channels for the -// decoded image. -// -// Accepted values are: -// -// * 0: Use the number of channels in the PNG-encoded image. -// * 1: output a grayscale image. -// * 3: output an RGB image. -// * 4: output an RGBA image. -// -// If needed, the PNG-encoded image is transformed to match the requested number -// of color channels. -// -// This op also supports decoding JPEGs and non-animated GIFs since the interface -// is the same, though it is cleaner to use `tf.image.decode_image`. +// An op which enqueues prelinearized buffer into TPU infeed. // // Arguments: -// contents: 0-D. The PNG-encoded image. +// input: A variant tensor representing linearized output. // -// Returns 3-D with shape `[height, width, channels]`. -func DecodePng(scope *Scope, contents tf.Output, optional ...DecodePngAttr) (image tf.Output) { +// Returns the created operation. +func InfeedEnqueuePrelinearizedBuffer(scope *Scope, input tf.Output, optional ...InfeedEnqueuePrelinearizedBufferAttr) (o *tf.Operation) { if scope.Err() != nil { return } @@ -33275,14 +33728,13 @@ func DecodePng(scope *Scope, contents tf.Output, optional ...DecodePngAttr) (ima a(attrs) } opspec := tf.OpSpec{ - Type: "DecodePng", + Type: "InfeedEnqueuePrelinearizedBuffer", Input: []tf.Input{ - contents, + input, }, Attrs: attrs, } - op := scope.AddOperation(opspec) - return op.Output(0) + return scope.AddOperation(opspec) } // Computes the mean along segments of a tensor. @@ -33333,6 +33785,53 @@ func SegmentMean(scope *Scope, data tf.Output, segment_ids tf.Output) (output tf return op.Output(0) } +// Computes the product along segments of a tensor. +// +// Read +// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) +// for an explanation of segments. +// +// Computes a tensor such that +// \\(output_i = \prod_j data_j\\) where the product is over `j` such +// that `segment_ids[j] == i`. +// +// If the product is empty for a given segment ID `i`, `output[i] = 1`. +// +//
+// +//
+// +// For example: +// +// ``` +// c = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]]) +// tf.segment_prod(c, tf.constant([0, 0, 1])) +// # ==> [[4, 6, 6, 4], +// # [5, 6, 7, 8]] +// ``` +// +// +// Arguments: +// +// segment_ids: A 1-D tensor whose size is equal to the size of `data`'s +// first dimension. Values should be sorted and can be repeated. +// +// Returns Has same shape as data, except for dimension 0 which +// has size `k`, the number of segments. +func SegmentProd(scope *Scope, data tf.Output, segment_ids tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SegmentProd", + Input: []tf.Input{ + data, segment_ids, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Computes the minimum along segments of a tensor. // // Read @@ -33379,6 +33878,48 @@ func SegmentMin(scope *Scope, data tf.Output, segment_ids tf.Output) (output tf. return op.Output(0) } +// Computes rectified linear: `max(features, 0)`. +func Relu(scope *Scope, features tf.Output) (activations tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Relu", + Input: []tf.Input{ + features, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset that batches input elements into a SparseTensor. +// +// Arguments: +// input_dataset: A handle to an input dataset. Must have a single component. +// batch_size: A scalar representing the number of elements to accumulate in a +// batch. +// row_shape: A vector representing the dense shape of each row in the produced +// SparseTensor. The shape may be partially specified, using `-1` to indicate +// that a particular dimension should use the maximum size of all batch elements. +// +// +func ExperimentalDenseToSparseBatchDataset(scope *Scope, input_dataset tf.Output, batch_size tf.Output, row_shape tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "ExperimentalDenseToSparseBatchDataset", + Input: []tf.Input{ + input_dataset, batch_size, row_shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Computes the maximum along segments of a tensor. // // Read @@ -33426,61 +33967,6 @@ func SegmentMax(scope *Scope, data tf.Output, segment_ids tf.Output) (output tf. return op.Output(0) } -// LoadTPUEmbeddingRMSPropParametersAttr is an optional argument to LoadTPUEmbeddingRMSPropParameters. -type LoadTPUEmbeddingRMSPropParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingRMSPropParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingRMSPropParametersTableId(value int64) LoadTPUEmbeddingRMSPropParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingRMSPropParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingRMSPropParametersTableName(value string) LoadTPUEmbeddingRMSPropParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load RMSProp embedding parameters. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the RMSProp optimization algorithm. -// ms: Value of ms used in the RMSProp optimization algorithm. -// mom: Value of mom used in the RMSProp optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingRMSPropParameters(scope *Scope, parameters tf.Output, ms tf.Output, mom tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingRMSPropParametersAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingRMSPropParameters", - Input: []tf.Input{ - parameters, ms, mom, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - // Computes the minimum along segments of a tensor. // // Read @@ -33582,640 +34068,6 @@ func UnsortedSegmentProd(scope *Scope, data tf.Output, segment_ids tf.Output, nu return op.Output(0) } -// Computes the sum along sparse segments of a tensor. -// -// Like `SparseSegmentSum`, but allows missing ids in `segment_ids`. If an id is -// misisng, the `output` tensor at that position will be zeroed. -// -// Read -// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/sparse#Segmentation) -// for an explanation of segments. -// -// For example: -// -// ```python -// c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]]) -// -// tf.sparse_segment_sum_with_num_segments( -// c, tf.constant([0, 1]), tf.constant([0, 0]), num_segments=3) -// # => [[0 0 0 0] -// # [0 0 0 0] -// # [0 0 0 0]] -// -// tf.sparse_segment_sum_with_num_segments(c, -// tf.constant([0, 1]), -// tf.constant([0, 2], -// num_segments=4)) -// # => [[ 1 2 3 4] -// # [ 0 0 0 0] -// # [-1 -2 -3 -4] -// # [ 0 0 0 0]] -// ``` -// -// Arguments: -// -// indices: A 1-D tensor. Has same rank as `segment_ids`. -// segment_ids: A 1-D tensor. Values should be sorted and can be repeated. -// num_segments: Should equal the number of distinct segment IDs. -// -// Returns Has same shape as data, except for dimension 0 which -// has size `num_segments`. -func SparseSegmentSumWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSegmentSumWithNumSegments", - Input: []tf.Input{ - data, indices, segment_ids, num_segments, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// TFRecordReaderV2Attr is an optional argument to TFRecordReaderV2. -type TFRecordReaderV2Attr func(optionalAttr) - -// TFRecordReaderV2Container sets the optional container attribute to value. -// -// value: If non-empty, this reader is placed in the given container. -// Otherwise, a default container is used. -// If not specified, defaults to "" -func TFRecordReaderV2Container(value string) TFRecordReaderV2Attr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// TFRecordReaderV2SharedName sets the optional shared_name attribute to value. -// -// value: If non-empty, this reader is named in the given bucket -// with this shared_name. Otherwise, the node name is used instead. -// If not specified, defaults to "" -func TFRecordReaderV2SharedName(value string) TFRecordReaderV2Attr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// TFRecordReaderV2CompressionType sets the optional compression_type attribute to value. -// If not specified, defaults to "" -func TFRecordReaderV2CompressionType(value string) TFRecordReaderV2Attr { - return func(m optionalAttr) { - m["compression_type"] = value - } -} - -// A Reader that outputs the records from a TensorFlow Records file. -// -// Returns The handle to reference the Reader. -func TFRecordReaderV2(scope *Scope, optional ...TFRecordReaderV2Attr) (reader_handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "TFRecordReaderV2", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// StringLengthAttr is an optional argument to StringLength. -type StringLengthAttr func(optionalAttr) - -// StringLengthUnit sets the optional unit attribute to value. -// -// value: The unit that is counted to compute string length. One of: `"BYTE"` (for -// the number of bytes in each string) or `"UTF8_CHAR"` (for the number of UTF-8 -// encoded Unicode code points in each string). Results are undefined -// if `unit=UTF8_CHAR` and the `input` strings do not contain structurally -// valid UTF-8. -// If not specified, defaults to "BYTE" -func StringLengthUnit(value string) StringLengthAttr { - return func(m optionalAttr) { - m["unit"] = value - } -} - -// String lengths of `input`. -// -// Computes the length of each string given in the input tensor. -// -// Arguments: -// input: The string for which to compute the length. -// -// Returns Integer tensor that has the same shape as `input`. The output contains the -// element-wise string lengths of `input`. -func StringLength(scope *Scope, input tf.Output, optional ...StringLengthAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StringLength", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes gradients for SparseSegmentMean. -// -// Returns tensor "output" with same shape as grad, except for dimension 0 whose -// value is output_dim0. -// -// Arguments: -// grad: gradient propagated to the SparseSegmentMean op. -// indices: indices passed to the corresponding SparseSegmentMean op. -// segment_ids: segment_ids passed to the corresponding SparseSegmentMean op. -// output_dim0: dimension 0 of "data" passed to SparseSegmentMean op. -func SparseSegmentMeanGrad(scope *Scope, grad tf.Output, indices tf.Output, segment_ids tf.Output, output_dim0 tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSegmentMeanGrad", - Input: []tf.Input{ - grad, indices, segment_ids, output_dim0, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// PackAttr is an optional argument to Pack. -type PackAttr func(optionalAttr) - -// PackAxis sets the optional axis attribute to value. -// -// value: Dimension along which to pack. Negative values wrap around, so the -// valid range is `[-(R+1), R+1)`. -// If not specified, defaults to 0 -func PackAxis(value int64) PackAttr { - return func(m optionalAttr) { - m["axis"] = value - } -} - -// Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. -// -// Packs the `N` tensors in `values` into a tensor with rank one higher than each -// tensor in `values`, by packing them along the `axis` dimension. -// Given a list of tensors of shape `(A, B, C)`; -// -// if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`. -// if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`. -// Etc. -// -// For example: -// -// ``` -// # 'x' is [1, 4] -// # 'y' is [2, 5] -// # 'z' is [3, 6] -// pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim. -// pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]] -// ``` -// -// This is the opposite of `unpack`. -// -// Arguments: -// values: Must be of same shape and type. -// -// Returns The packed tensor. -func Pack(scope *Scope, values []tf.Output, optional ...PackAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Pack", - Input: []tf.Input{ - tf.OutputList(values), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Conv3DBackpropFilterAttr is an optional argument to Conv3DBackpropFilter. -type Conv3DBackpropFilterAttr func(optionalAttr) - -// Conv3DBackpropFilterDilations sets the optional dilations attribute to value. -// If not specified, defaults to -func Conv3DBackpropFilterDilations(value []int64) Conv3DBackpropFilterAttr { - return func(m optionalAttr) { - m["dilations"] = value - } -} - -// Computes the gradients of 3-D convolution with respect to the filter. -// -// DEPRECATED at GraphDef version 10: Use Conv3DBackpropFilterV2 -// -// Arguments: -// input: Shape `[batch, depth, rows, cols, in_channels]`. -// filter: Shape `[depth, rows, cols, in_channels, out_channels]`. -// `in_channels` must match between `input` and `filter`. -// out_backprop: Backprop signal of shape `[batch, out_depth, out_rows, out_cols, -// out_channels]`. -// strides: 1-D tensor of length 5. The stride of the sliding window for each -// dimension of `input`. Must have `strides[0] = strides[4] = 1`. -// padding: The type of padding algorithm to use. -func Conv3DBackpropFilter(scope *Scope, input tf.Output, filter tf.Output, out_backprop tf.Output, strides []int64, padding string, optional ...Conv3DBackpropFilterAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "Conv3DBackpropFilter", - Input: []tf.Input{ - input, filter, out_backprop, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// MaxPoolGradGradAttr is an optional argument to MaxPoolGradGrad. -type MaxPoolGradGradAttr func(optionalAttr) - -// MaxPoolGradGradDataFormat sets the optional data_format attribute to value. -// -// value: Specify the data format of the input and output data. With the -// default format "NHWC", the data is stored in the order of: -// [batch, in_height, in_width, in_channels]. -// Alternatively, the format could be "NCHW", the data storage order of: -// [batch, in_channels, in_height, in_width]. -// If not specified, defaults to "NHWC" -func MaxPoolGradGradDataFormat(value string) MaxPoolGradGradAttr { - return func(m optionalAttr) { - m["data_format"] = value - } -} - -// Computes second-order gradients of the maxpooling function. -// -// Arguments: -// orig_input: The original input tensor. -// orig_output: The original output tensor. -// grad: 4-D. Gradients of gradients w.r.t. the input of `max_pool`. -// ksize: The size of the window for each dimension of the input tensor. -// strides: The stride of the sliding window for each dimension of the -// input tensor. -// padding: The type of padding algorithm to use. -// -// Returns Gradients of gradients w.r.t. the input to `max_pool`. -func MaxPoolGradGrad(scope *Scope, orig_input tf.Output, orig_output tf.Output, grad tf.Output, ksize []int64, strides []int64, padding string, optional ...MaxPoolGradGradAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MaxPoolGradGrad", - Input: []tf.Input{ - orig_input, orig_output, grad, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Pads a tensor. -// -// This operation pads `input` according to the `paddings` and `constant_values` -// you specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is -// the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates -// how many padding values to add before the contents of `input` in that dimension, -// and `paddings[D, 1]` indicates how many padding values to add after the contents -// of `input` in that dimension. `constant_values` is a scalar tensor of the same -// type as `input` that indicates the value to use for padding `input`. -// -// The padded size of each dimension D of the output is: -// -// `paddings(D, 0) + input.dim_size(D) + paddings(D, 1)` -// -// For example: -// -// ``` -// # 't' is [[1, 1], [2, 2]] -// # 'paddings' is [[1, 1], [2, 2]] -// # 'constant_values' is 0 -// # rank of 't' is 2 -// pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0] -// [0, 0, 1, 1, 0, 0] -// [0, 0, 2, 2, 0, 0] -// [0, 0, 0, 0, 0, 0]] -// ``` -func PadV2(scope *Scope, input tf.Output, paddings tf.Output, constant_values tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "PadV2", - Input: []tf.Input{ - input, paddings, constant_values, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// UnicodeDecodeAttr is an optional argument to UnicodeDecode. -type UnicodeDecodeAttr func(optionalAttr) - -// UnicodeDecodeErrors sets the optional errors attribute to value. -// -// value: Error handling policy when there is invalid formatting found in the input. -// The value of 'strict' will cause the operation to produce a InvalidArgument -// error on any invalid input formatting. A value of 'replace' (the default) will -// cause the operation to replace any invalid formatting in the input with the -// `replacement_char` codepoint. A value of 'ignore' will cause the operation to -// skip any invalid formatting in the input and produce no corresponding output -// character. -// If not specified, defaults to "replace" -func UnicodeDecodeErrors(value string) UnicodeDecodeAttr { - return func(m optionalAttr) { - m["errors"] = value - } -} - -// UnicodeDecodeReplacementChar sets the optional replacement_char attribute to value. -// -// value: The replacement character codepoint to be used in place of any invalid -// formatting in the input when `errors='replace'`. Any valid unicode codepoint may -// be used. The default value is the default unicode replacement character is -// 0xFFFD or U+65533.) -// If not specified, defaults to 65533 -func UnicodeDecodeReplacementChar(value int64) UnicodeDecodeAttr { - return func(m optionalAttr) { - m["replacement_char"] = value - } -} - -// UnicodeDecodeReplaceControlCharacters sets the optional replace_control_characters attribute to value. -// -// value: Whether to replace the C0 control characters (00-1F) with the -// `replacement_char`. Default is false. -// If not specified, defaults to false -func UnicodeDecodeReplaceControlCharacters(value bool) UnicodeDecodeAttr { - return func(m optionalAttr) { - m["replace_control_characters"] = value - } -} - -// UnicodeDecodeTsplits sets the optional Tsplits attribute to value. -// If not specified, defaults to DT_INT64 -func UnicodeDecodeTsplits(value tf.DataType) UnicodeDecodeAttr { - return func(m optionalAttr) { - m["Tsplits"] = value - } -} - -// Decodes each string in `input` into a sequence of Unicode code points. -// -// The character codepoints for all strings are returned using a single vector -// `char_values`, with strings expanded to characters in row-major order. -// -// The `row_splits` tensor indicates where the codepoints for -// each input string begin and end within the `char_values` tensor. -// In particular, the values for the `i`th -// string (in row-major order) are stored in the slice -// `[row_splits[i]:row_splits[i+1]]`. Thus: -// -// * `char_values[row_splits[i]+j]` is the Unicode codepoint for the `j`th -// character in the `i`th string (in row-major order). -// * `row_splits[i+1] - row_splits[i]` is the number of characters in the `i`th -// string (in row-major order). -// -// Arguments: -// input: The text to be decoded. Can have any shape. Note that the output is flattened -// to a vector of char values. -// input_encoding: Text encoding of the input strings. This is any of the encodings supported -// by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`. -// -// Returns A 1D int32 tensor containing the row splits.A 1D int32 Tensor containing the decoded codepoints. -func UnicodeDecode(scope *Scope, input tf.Output, input_encoding string, optional ...UnicodeDecodeAttr) (row_splits tf.Output, char_values tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"input_encoding": input_encoding} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "UnicodeDecode", - Input: []tf.Input{ - input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// Computes gradients for SparseSegmentSqrtN. -// -// Returns tensor "output" with same shape as grad, except for dimension 0 whose -// value is output_dim0. -// -// Arguments: -// grad: gradient propagated to the SparseSegmentSqrtN op. -// indices: indices passed to the corresponding SparseSegmentSqrtN op. -// segment_ids: segment_ids passed to the corresponding SparseSegmentSqrtN op. -// output_dim0: dimension 0 of "data" passed to SparseSegmentSqrtN op. -func SparseSegmentSqrtNGrad(scope *Scope, grad tf.Output, indices tf.Output, segment_ids tf.Output, output_dim0 tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSegmentSqrtNGrad", - Input: []tf.Input{ - grad, indices, segment_ids, output_dim0, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// AllAttr is an optional argument to All. -type AllAttr func(optionalAttr) - -// AllKeepDims sets the optional keep_dims attribute to value. -// -// value: If true, retain reduced dimensions with length 1. -// If not specified, defaults to false -func AllKeepDims(value bool) AllAttr { - return func(m optionalAttr) { - m["keep_dims"] = value - } -} - -// Computes the "logical and" of elements across dimensions of a tensor. -// -// Reduces `input` along the dimensions given in `axis`. Unless -// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in -// `axis`. If `keep_dims` is true, the reduced dimensions are -// retained with length 1. -// -// Arguments: -// input: The tensor to reduce. -// axis: The dimensions to reduce. Must be in the range -// `[-rank(input), rank(input))`. -// -// Returns The reduced tensor. -func All(scope *Scope, input tf.Output, axis tf.Output, optional ...AllAttr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "All", - Input: []tf.Input{ - input, axis, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that splits a SparseTensor into elements row-wise. -func SparseTensorSliceDataset(scope *Scope, indices tf.Output, values tf.Output, dense_shape tf.Output) (handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseTensorSliceDataset", - Input: []tf.Input{ - indices, values, dense_shape, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ResourceStridedSliceAssignAttr is an optional argument to ResourceStridedSliceAssign. -type ResourceStridedSliceAssignAttr func(optionalAttr) - -// ResourceStridedSliceAssignBeginMask sets the optional begin_mask attribute to value. -// If not specified, defaults to 0 -func ResourceStridedSliceAssignBeginMask(value int64) ResourceStridedSliceAssignAttr { - return func(m optionalAttr) { - m["begin_mask"] = value - } -} - -// ResourceStridedSliceAssignEndMask sets the optional end_mask attribute to value. -// If not specified, defaults to 0 -func ResourceStridedSliceAssignEndMask(value int64) ResourceStridedSliceAssignAttr { - return func(m optionalAttr) { - m["end_mask"] = value - } -} - -// ResourceStridedSliceAssignEllipsisMask sets the optional ellipsis_mask attribute to value. -// If not specified, defaults to 0 -func ResourceStridedSliceAssignEllipsisMask(value int64) ResourceStridedSliceAssignAttr { - return func(m optionalAttr) { - m["ellipsis_mask"] = value - } -} - -// ResourceStridedSliceAssignNewAxisMask sets the optional new_axis_mask attribute to value. -// If not specified, defaults to 0 -func ResourceStridedSliceAssignNewAxisMask(value int64) ResourceStridedSliceAssignAttr { - return func(m optionalAttr) { - m["new_axis_mask"] = value - } -} - -// ResourceStridedSliceAssignShrinkAxisMask sets the optional shrink_axis_mask attribute to value. -// If not specified, defaults to 0 -func ResourceStridedSliceAssignShrinkAxisMask(value int64) ResourceStridedSliceAssignAttr { - return func(m optionalAttr) { - m["shrink_axis_mask"] = value - } -} - -// Assign `value` to the sliced l-value reference of `ref`. -// -// The values of `value` are assigned to the positions in the variable -// `ref` that are selected by the slice parameters. The slice parameters -// `begin, `end`, `strides`, etc. work exactly as in `StridedSlice`. -// -// NOTE this op currently does not support broadcasting and so `value`'s -// shape must be exactly the shape produced by the slice of `ref`. -// -// Returns the created operation. -func ResourceStridedSliceAssign(scope *Scope, ref tf.Output, begin tf.Output, end tf.Output, strides tf.Output, value tf.Output, optional ...ResourceStridedSliceAssignAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ResourceStridedSliceAssign", - Input: []tf.Input{ - ref, begin, end, strides, value, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Exits the current frame to its parent frame. -// -// Exit makes its input `data` available to the parent frame. -// -// Arguments: -// data: The tensor to be made available to the parent frame. -// -// Returns The same tensor as `data`. -func Exit(scope *Scope, data tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Exit", - Input: []tf.Input{ - data, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // ComplexAttr is an optional argument to Complex. type ComplexAttr func(optionalAttr) @@ -34262,6 +34114,163 @@ func Complex(scope *Scope, real tf.Output, imag tf.Output, optional ...ComplexAt return op.Output(0) } +// SerializeManySparseAttr is an optional argument to SerializeManySparse. +type SerializeManySparseAttr func(optionalAttr) + +// SerializeManySparseOutType sets the optional out_type attribute to value. +// +// value: The `dtype` to use for serialization; the supported types are `string` +// (default) and `variant`. +// If not specified, defaults to DT_STRING +func SerializeManySparseOutType(value tf.DataType) SerializeManySparseAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object. +// +// The `SparseTensor` must have rank `R` greater than 1, and the first dimension +// is treated as the minibatch dimension. Elements of the `SparseTensor` +// must be sorted in increasing order of this first dimension. The serialized +// `SparseTensor` objects going into each row of `serialized_sparse` will have +// rank `R-1`. +// +// The minibatch size `N` is extracted from `sparse_shape[0]`. +// +// Arguments: +// sparse_indices: 2-D. The `indices` of the minibatch `SparseTensor`. +// sparse_values: 1-D. The `values` of the minibatch `SparseTensor`. +// sparse_shape: 1-D. The `shape` of the minibatch `SparseTensor`. +func SerializeManySparse(scope *Scope, sparse_indices tf.Output, sparse_values tf.Output, sparse_shape tf.Output, optional ...SerializeManySparseAttr) (serialized_sparse tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "SerializeManySparse", + Input: []tf.Input{ + sparse_indices, sparse_values, sparse_shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the mean along sparse segments of a tensor. +// +// Like `SparseSegmentMean`, but allows missing ids in `segment_ids`. If an id is +// misisng, the `output` tensor at that position will be zeroed. +// +// Read +// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) +// for an explanation of segments. +// +// Arguments: +// +// indices: A 1-D tensor. Has same rank as `segment_ids`. +// segment_ids: A 1-D tensor. Values should be sorted and can be repeated. +// num_segments: Should equal the number of distinct segment IDs. +// +// Returns Has same shape as data, except for dimension 0 which has size +// `num_segments`. +func SparseSegmentMeanWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSegmentMeanWithNumSegments", + Input: []tf.Input{ + data, indices, segment_ids, num_segments, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes rectified linear gradients for a Relu operation. +// +// Arguments: +// gradients: The backpropagated gradients to the corresponding Relu operation. +// features: The features passed as input to the corresponding Relu operation, OR +// the outputs of that operation (both work equivalently). +// +// Returns `gradients * (features > 0)`. +func ReluGrad(scope *Scope, gradients tf.Output, features tf.Output) (backprops tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ReluGrad", + Input: []tf.Input{ + gradients, features, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the sum along sparse segments of a tensor divided by the sqrt of N. +// +// N is the size of the segment being reduced. +// +// Like `SparseSegmentSqrtN`, but allows missing ids in `segment_ids`. If an id is +// misisng, the `output` tensor at that position will be zeroed. +// +// Read +// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) +// for an explanation of segments. +// +// Arguments: +// +// indices: A 1-D tensor. Has same rank as `segment_ids`. +// segment_ids: A 1-D tensor. Values should be sorted and can be repeated. +// num_segments: Should equal the number of distinct segment IDs. +// +// Returns Has same shape as data, except for dimension 0 which +// has size `k`, the number of segments. +func SparseSegmentSqrtNWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSegmentSqrtNWithNumSegments", + Input: []tf.Input{ + data, indices, segment_ids, num_segments, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes gradients for SparseSegmentSqrtN. +// +// Returns tensor "output" with same shape as grad, except for dimension 0 whose +// value is output_dim0. +// +// Arguments: +// grad: gradient propagated to the SparseSegmentSqrtN op. +// indices: indices passed to the corresponding SparseSegmentSqrtN op. +// segment_ids: segment_ids passed to the corresponding SparseSegmentSqrtN op. +// output_dim0: dimension 0 of "data" passed to SparseSegmentSqrtN op. +func SparseSegmentSqrtNGrad(scope *Scope, grad tf.Output, indices tf.Output, segment_ids tf.Output, output_dim0 tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSegmentSqrtNGrad", + Input: []tf.Input{ + grad, indices, segment_ids, output_dim0, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // AngleAttr is an optional argument to Angle. type AngleAttr func(optionalAttr) @@ -34311,47 +34320,102 @@ func Angle(scope *Scope, input tf.Output, optional ...AngleAttr) (output tf.Outp return op.Output(0) } -// Creates a tensor filled with a scalar value. +// Converts the quantized `input` tensor into a lower-precision `output`. // -// This operation creates a tensor of shape `dims` and fills it with `value`. +// Converts the quantized `input` tensor into a lower-precision `output`, using the +// output range specified with `requested_output_min` and `requested_output_max`. // -// For example: -// -// ``` -// # Output tensor has shape [2, 3]. -// fill([2, 3], 9) ==> [[9, 9, 9] -// [9, 9, 9]] -// ``` -// -// `tf.fill` differs from `tf.constant` in a few ways: -// -// * `tf.fill` only supports scalar contents, whereas `tf.constant` supports -// Tensor values. -// * `tf.fill` creates an Op in the computation graph that constructs the actual -// Tensor value at runtime. This is in contrast to `tf.constant` which embeds -// the entire Tensor into the graph with a `Const` node. -// * Because `tf.fill` evaluates at graph runtime, it supports dynamic shapes -// based on other runtime Tensors, unlike `tf.constant`. +// `[input_min, input_max]` are scalar floats that specify the range for the float +// interpretation of the `input` data. For example, if `input_min` is -1.0f and +// `input_max` is 1.0f, and we are dealing with `quint16` quantized data, then a 0 +// value in the 16-bit data should be interpreted as -1.0f, and a 65535 means 1.0f. // // Arguments: -// dims: 1-D. Represents the shape of the output tensor. -// value: 0-D (scalar). Value to fill the returned tensor. // -// @compatibility(numpy) -// Equivalent to np.full -// @end_compatibility -func Fill(scope *Scope, dims tf.Output, value tf.Output) (output tf.Output) { +// input_min: The float value that the minimum quantized input value represents. +// input_max: The float value that the maximum quantized input value represents. +// requested_output_min: The float value that the minimum quantized output value represents. +// requested_output_max: The float value that the maximum quantized output value represents. +// out_type: The type of the output. Should be a lower bit depth than Tinput. +// +// Returns The requested_output_min value is copied into this output.The requested_output_max value is copied into this output. +func Requantize(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output, requested_output_min tf.Output, requested_output_max tf.Output, out_type tf.DataType) (output tf.Output, output_min tf.Output, output_max tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"out_type": out_type} + opspec := tf.OpSpec{ + Type: "Requantize", + Input: []tf.Input{ + input, input_min, input_max, requested_output_min, requested_output_max, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Gradients for batch normalization. +// +// DEPRECATED at GraphDef version 9: Use tf.nn.batch_normalization() +// +// This op is deprecated. See `tf.nn.batch_normalization`. +// +// Arguments: +// t: A 4D input Tensor. +// m: A 1D mean Tensor with size matching the last dimension of t. +// This is the first output from tf.nn.moments, +// or a saved moving average thereof. +// v: A 1D variance Tensor with size matching the last dimension of t. +// This is the second output from tf.nn.moments, +// or a saved moving average thereof. +// gamma: A 1D gamma Tensor with size matching the last dimension of t. +// If "scale_after_normalization" is true, this Tensor will be multiplied +// with the normalized Tensor. +// backprop: 4D backprop Tensor. +// variance_epsilon: A small float number to avoid dividing by 0. +// scale_after_normalization: A bool indicating whether the resulted tensor +// needs to be multiplied with gamma. +// +// Returns 4D backprop tensor for input.1D backprop tensor for mean.1D backprop tensor for variance.1D backprop tensor for beta.1D backprop tensor for gamma. +func BatchNormWithGlobalNormalizationGrad(scope *Scope, t tf.Output, m tf.Output, v tf.Output, gamma tf.Output, backprop tf.Output, variance_epsilon float32, scale_after_normalization bool) (dx tf.Output, dm tf.Output, dv tf.Output, db tf.Output, dg tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"variance_epsilon": variance_epsilon, "scale_after_normalization": scale_after_normalization} + opspec := tf.OpSpec{ + Type: "BatchNormWithGlobalNormalizationGrad", + Input: []tf.Input{ + t, m, v, gamma, backprop, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) +} + +// Replaces the contents of the table with the specified keys and values. +// +// The tensor `keys` must be of the same type as the keys of the table. +// The tensor `values` must be of the type of the table values. +// +// Arguments: +// table_handle: Handle to the table. +// keys: Any shape. Keys to look up. +// values: Values to associate with keys. +// +// Returns the created operation. +func LookupTableImportV2(scope *Scope, table_handle tf.Output, keys tf.Output, values tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "Fill", + Type: "LookupTableImportV2", Input: []tf.Input{ - dims, value, + table_handle, keys, values, }, } - op := scope.AddOperation(opspec) - return op.Output(0) + return scope.AddOperation(opspec) } // HistogramFixedWidthAttr is an optional argument to HistogramFixedWidth. @@ -34522,46 +34586,162 @@ func Cumprod(scope *Scope, x tf.Output, axis tf.Output, optional ...CumprodAttr) return op.Output(0) } -// RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr is an optional argument to RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug. -type RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr func(optionalAttr) +// QuantizedMatMulAttr is an optional argument to QuantizedMatMul. +type QuantizedMatMulAttr func(optionalAttr) -// RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugTableId(value int64) RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr { +// QuantizedMatMulToutput sets the optional Toutput attribute to value. +// If not specified, defaults to DT_QINT32 +func QuantizedMatMulToutput(value tf.DataType) QuantizedMatMulAttr { return func(m optionalAttr) { - m["table_id"] = value + m["Toutput"] = value } } -// RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugTableName(value string) RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr { +// QuantizedMatMulTransposeA sets the optional transpose_a attribute to value. +// +// value: If true, `a` is transposed before multiplication. +// If not specified, defaults to false +func QuantizedMatMulTransposeA(value bool) QuantizedMatMulAttr { return func(m optionalAttr) { - m["table_name"] = value + m["transpose_a"] = value } } -// Retrieve Adadelta embedding parameters with debug support. +// QuantizedMatMulTransposeB sets the optional transpose_b attribute to value. // -// An op that retrieves optimization parameters from embedding to host -// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up -// the correct embedding table configuration. For example, this op is -// used to retrieve updated parameters before saving a checkpoint. +// value: If true, `b` is transposed before multiplication. +// If not specified, defaults to false +func QuantizedMatMulTransposeB(value bool) QuantizedMatMulAttr { + return func(m optionalAttr) { + m["transpose_b"] = value + } +} + +// QuantizedMatMulTactivation sets the optional Tactivation attribute to value. // -// Returns Parameter parameters updated by the Adadelta optimization algorithm.Parameter accumulators updated by the Adadelta optimization algorithm.Parameter updates updated by the Adadelta optimization algorithm.Parameter gradient_accumulators updated by the Adadelta optimization algorithm. -func RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebugAttr) (parameters tf.Output, accumulators tf.Output, updates tf.Output, gradient_accumulators tf.Output) { +// value: The type of output produced by activation function +// following this operation. +// If not specified, defaults to DT_QUINT8 +func QuantizedMatMulTactivation(value tf.DataType) QuantizedMatMulAttr { + return func(m optionalAttr) { + m["Tactivation"] = value + } +} + +// Perform a quantized matrix multiplication of `a` by the matrix `b`. +// +// The inputs must be two-dimensional matrices and the inner dimension of +// `a` (after being transposed if `transpose_a` is non-zero) must match the +// outer dimension of `b` (after being transposed if `transposed_b` is +// non-zero). +// +// Arguments: +// a: Must be a two-dimensional tensor. +// b: Must be a two-dimensional tensor. +// min_a: The float value that the lowest quantized `a` value represents. +// max_a: The float value that the highest quantized `a` value represents. +// min_b: The float value that the lowest quantized `b` value represents. +// max_b: The float value that the highest quantized `b` value represents. +// +// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. +func QuantizedMatMul(scope *Scope, a tf.Output, b tf.Output, min_a tf.Output, max_a tf.Output, min_b tf.Output, max_b tf.Output, optional ...QuantizedMatMulAttr) (out tf.Output, min_out tf.Output, max_out tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug", + Type: "QuantizedMatMul", + Input: []tf.Input{ + a, b, min_a, max_a, min_b, max_b, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} +// CombinedNonMaxSuppressionAttr is an optional argument to CombinedNonMaxSuppression. +type CombinedNonMaxSuppressionAttr func(optionalAttr) + +// CombinedNonMaxSuppressionPadPerClass sets the optional pad_per_class attribute to value. +// +// value: If false, the output nmsed boxes, scores and classes +// are padded/clipped to `max_total_size`. If true, the +// output nmsed boxes, scores and classes are padded to be of length +// `max_size_per_class`*`num_classes`, unless it exceeds `max_total_size` in +// which case it is clipped to `max_total_size`. Defaults to false. +// If not specified, defaults to false +func CombinedNonMaxSuppressionPadPerClass(value bool) CombinedNonMaxSuppressionAttr { + return func(m optionalAttr) { + m["pad_per_class"] = value + } +} + +// CombinedNonMaxSuppressionClipBoxes sets the optional clip_boxes attribute to value. +// +// value: If true, assume the box coordinates are between [0, 1] and clip the output boxes +// if they fall beyond [0, 1]. If false, do not do clipping and output the box +// coordinates as it is. +// If not specified, defaults to true +func CombinedNonMaxSuppressionClipBoxes(value bool) CombinedNonMaxSuppressionAttr { + return func(m optionalAttr) { + m["clip_boxes"] = value + } +} + +// Greedily selects a subset of bounding boxes in descending order of score, +// +// This operation performs non_max_suppression on the inputs per batch, across +// all classes. +// Prunes away boxes that have high intersection-over-union (IOU) overlap +// with previously selected boxes. Bounding boxes are supplied as +// [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any +// diagonal pair of box corners and the coordinates can be provided as normalized +// (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm +// is agnostic to where the origin is in the coordinate system. Also note that +// this algorithm is invariant to orthogonal transformations and translations +// of the coordinate system; thus translating or reflections of the coordinate +// system result in the same boxes being selected by the algorithm. +// The output of this operation is the final boxes, scores and classes tensor +// returned after performing non_max_suppression. +// +// Arguments: +// boxes: A 4-D float tensor of shape `[batch_size, num_boxes, q, 4]`. If `q` is 1 then +// same boxes are used for all classes otherwise, if `q` is equal to number of +// classes, class-specific boxes are used. +// scores: A 3-D float tensor of shape `[batch_size, num_boxes, num_classes]` +// representing a single score corresponding to each box (each row of boxes). +// max_output_size_per_class: A scalar integer tensor representing the maximum number of +// boxes to be selected by non max suppression per class +// max_total_size: A scalar representing maximum number of boxes retained over all classes. +// iou_threshold: A 0-D float tensor representing the threshold for deciding whether +// boxes overlap too much with respect to IOU. +// score_threshold: A 0-D float tensor representing the threshold for deciding when to remove +// boxes based on score. +// +// Returns A [batch_size, max_detections, 4] float32 tensor +// containing the non-max suppressed boxes.A [batch_size, max_detections] float32 tensor +// containing the scores for the boxes.A [batch_size, max_detections] float32 tensor +// containing the classes for the boxes.A [batch_size] int32 tensor indicating the number of +// valid detections per batch item. Only the top num_detections[i] entries in +// nms_boxes[i], nms_scores[i] and nms_class[i] are valid. The rest of the +// entries are zero paddings. +func CombinedNonMaxSuppression(scope *Scope, boxes tf.Output, scores tf.Output, max_output_size_per_class tf.Output, max_total_size tf.Output, iou_threshold tf.Output, score_threshold tf.Output, optional ...CombinedNonMaxSuppressionAttr) (nmsed_boxes tf.Output, nmsed_scores tf.Output, nmsed_classes tf.Output, valid_detections tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CombinedNonMaxSuppression", + Input: []tf.Input{ + boxes, scores, max_output_size_per_class, max_total_size, iou_threshold, score_threshold, + }, Attrs: attrs, } op := scope.AddOperation(opspec) @@ -34612,45 +34792,6 @@ func QuantizedMul(scope *Scope, x tf.Output, y tf.Output, min_x tf.Output, max_x return op.Output(0), op.Output(1), op.Output(2) } -// Returns the diagonal part of the tensor. -// -// This operation returns a tensor with the `diagonal` part -// of the `input`. The `diagonal` part is computed as follows: -// -// Assume `input` has dimensions `[D1,..., Dk, D1,..., Dk]`, then the output is a -// tensor of rank `k` with dimensions `[D1,..., Dk]` where: -// -// `diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik]`. -// -// For example: -// -// ``` -// # 'input' is [[1, 0, 0, 0] -// [0, 2, 0, 0] -// [0, 0, 3, 0] -// [0, 0, 0, 4]] -// -// tf.diag_part(input) ==> [1, 2, 3, 4] -// ``` -// -// Arguments: -// input: Rank k tensor where k is even and not zero. -// -// Returns The extracted diagonal. -func DiagPart(scope *Scope, input tf.Output) (diagonal tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "DiagPart", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Computes the sum along sparse segments of a tensor. // // Read @@ -34846,68 +34987,56 @@ func QuantizeDownAndShrinkRange(scope *Scope, input tf.Output, input_min tf.Outp return op.Output(0), op.Output(1), op.Output(2) } -// A placeholder op for a value that will be fed into the computation. -// -// DEPRECATED at GraphDef version 23: Placeholder now behaves the same as PlaceholderV2. -// -// N.B. This operation will fail with an error if it is executed. It is -// intended as a way to represent a value that will always be fed, and to -// provide attrs that enable the fed value to be checked at runtime. -// -// Arguments: -// dtype: The type of elements in the tensor. -// shape: The shape of the tensor. The shape can be any partially-specified -// shape. To be unconstrained, pass in a shape with unknown rank. -// -// Returns A placeholder tensor that must be replaced using the feed mechanism. -func PlaceholderV2(scope *Scope, dtype tf.DataType, shape tf.Shape) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtype": dtype, "shape": shape} - opspec := tf.OpSpec{ - Type: "PlaceholderV2", +// StageSizeAttr is an optional argument to StageSize. +type StageSizeAttr func(optionalAttr) - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// PlaceholderAttr is an optional argument to Placeholder. -type PlaceholderAttr func(optionalAttr) - -// PlaceholderShape sets the optional shape attribute to value. +// StageSizeCapacity sets the optional capacity attribute to value. +// If not specified, defaults to 0 // -// value: (Optional) The shape of the tensor. If the shape has 0 dimensions, the -// shape is unconstrained. -// If not specified, defaults to -func PlaceholderShape(value tf.Shape) PlaceholderAttr { +// REQUIRES: value >= 0 +func StageSizeCapacity(value int64) StageSizeAttr { return func(m optionalAttr) { - m["shape"] = value + m["capacity"] = value } } -// A placeholder op for a value that will be fed into the computation. +// StageSizeMemoryLimit sets the optional memory_limit attribute to value. +// If not specified, defaults to 0 // -// N.B. This operation will fail with an error if it is executed. It is -// intended as a way to represent a value that will always be fed, and to -// provide attrs that enable the fed value to be checked at runtime. -// -// Arguments: -// dtype: The type of elements in the tensor. -// -// Returns A placeholder tensor that must be replaced using the feed mechanism. -func Placeholder(scope *Scope, dtype tf.DataType, optional ...PlaceholderAttr) (output tf.Output) { +// REQUIRES: value >= 0 +func StageSizeMemoryLimit(value int64) StageSizeAttr { + return func(m optionalAttr) { + m["memory_limit"] = value + } +} + +// StageSizeContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func StageSizeContainer(value string) StageSizeAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// StageSizeSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func StageSizeSharedName(value string) StageSizeAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Op returns the number of elements in the underlying container. +func StageSize(scope *Scope, dtypes []tf.DataType, optional ...StageSizeAttr) (size tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"dtype": dtype} + attrs := map[string]interface{}{"dtypes": dtypes} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "Placeholder", + Type: "StageSize", Attrs: attrs, } @@ -34915,103 +35044,244 @@ func Placeholder(scope *Scope, dtype tf.DataType, optional ...PlaceholderAttr) ( return op.Output(0) } -// Bucketizes 'input' based on 'boundaries'. +// Delete the TensorArray from its resource container. // -// For example, if the inputs are -// boundaries = [0, 10, 100] -// input = [[-5, 10000] -// [150, 10] -// [5, 100]] -// -// then the output will be -// output = [[0, 3] -// [3, 2] -// [1, 3]] +// This enables the user to close and release the resource in the middle +// of a step/run. // // Arguments: -// input: Any shape of Tensor contains with int or float type. -// boundaries: A sorted list of floats gives the boundary of the buckets. +// handle: The handle to a TensorArray (output of TensorArray or TensorArrayGrad). // -// Returns Same shape with 'input', each value of input replaced with bucket index. -// -// @compatibility(numpy) -// Equivalent to np.digitize. -// @end_compatibility -func Bucketize(scope *Scope, input tf.Output, boundaries []float32) (output tf.Output) { +// Returns the created operation. +func TensorArrayCloseV3(scope *Scope, handle tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"boundaries": boundaries} opspec := tf.OpSpec{ - Type: "Bucketize", + Type: "TensorArrayCloseV3", Input: []tf.Input{ - input, + handle, + }, + } + return scope.AddOperation(opspec) +} + +// Computes the absolute value of a tensor. +// +// Given a tensor `x`, this operation returns a tensor containing the absolute +// value of each element in `x`. For example, if x is an input element and y is +// an output element, this operation computes \\(y = |x|\\). +func Abs(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Abs", + Input: []tf.Input{ + x, }, - Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } -// L2 Loss. +// Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. // -// Computes half the L2 norm of a tensor without the `sqrt`: +// Each comparison returns a boolean `true` (if `input_value > threshold`) +// or and `false` otherwise. // -// output = sum(t ** 2) / 2 +// This operation is useful for Locality-Sensitive-Hashing (LSH) and other +// algorithms that use hashing approximations of cosine and `L2` distances; +// codes can be generated from an input via: +// +// ```python +// codebook_size = 50 +// codebook_bits = codebook_size * 32 +// codebook = tf.get_variable('codebook', [x.shape[-1].value, codebook_bits], +// dtype=x.dtype, +// initializer=tf.orthogonal_initializer()) +// codes = compare_and_threshold(tf.matmul(x, codebook), threshold=0.) +// codes = tf.bitcast(codes, tf.int32) # go from uint8 to int32 +// # now codes has shape x.shape[:-1] + [codebook_size] +// ``` +// +// **NOTE**: Currently, the innermost dimension of the tensor must be divisible +// by 8. +// +// Given an `input` shaped `[s0, s1, ..., s_n]`, the output is +// a `uint8` tensor shaped `[s0, s1, ..., s_n / 8]`. // // Arguments: -// t: Typically 2-D, but may have any dimensions. +// input: Values to compare against `threshold` and bitpack. +// threshold: Threshold to compare against. // -// Returns 0-D. -func L2Loss(scope *Scope, t tf.Output) (output tf.Output) { +// Returns The bitpacked comparisons. +func CompareAndBitpack(scope *Scope, input tf.Output, threshold tf.Output) (output tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "L2Loss", + Type: "CompareAndBitpack", Input: []tf.Input{ - t, + input, threshold, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// Creates a dataset that contains the unique elements of `input_dataset`. -func ExperimentalUniqueDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { +// RequantizePerChannelAttr is an optional argument to RequantizePerChannel. +type RequantizePerChannelAttr func(optionalAttr) + +// RequantizePerChannelOutType sets the optional out_type attribute to value. +// +// value: The quantized type of output tensor that needs to be converted. +// If not specified, defaults to DT_QUINT8 +func RequantizePerChannelOutType(value tf.DataType) RequantizePerChannelAttr { + return func(m optionalAttr) { + m["out_type"] = value + } +} + +// Requantizes input with min and max values known per channel. +// +// Arguments: +// input: The original input tensor. +// input_min: The minimum value of the input tensor +// input_max: The maximum value of the input tensor. +// requested_output_min: The minimum value of the output tensor requested. +// requested_output_max: The maximum value of the output tensor requested. +// +// Returns Output tensor.The minimum value of the final output tensorThe maximum value of the final output tensor. +func RequantizePerChannel(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output, requested_output_min tf.Output, requested_output_max tf.Output, optional ...RequantizePerChannelAttr) (output tf.Output, output_min tf.Output, output_max tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } opspec := tf.OpSpec{ - Type: "ExperimentalUniqueDataset", + Type: "RequantizePerChannel", Input: []tf.Input{ - input_dataset, + input, input_min, input_max, requested_output_min, requested_output_max, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1), op.Output(2) } -// Returns the next representable value of `x1` in the direction of `x2`, element-wise. +// DecodeJpegAttr is an optional argument to DecodeJpeg. +type DecodeJpegAttr func(optionalAttr) + +// DecodeJpegChannels sets the optional channels attribute to value. // -// This operation returns the same result as the C++ std::nextafter function. +// value: Number of color channels for the decoded image. +// If not specified, defaults to 0 +func DecodeJpegChannels(value int64) DecodeJpegAttr { + return func(m optionalAttr) { + m["channels"] = value + } +} + +// DecodeJpegRatio sets the optional ratio attribute to value. // -// It can also return a subnormal number. +// value: Downscaling ratio. +// If not specified, defaults to 1 +func DecodeJpegRatio(value int64) DecodeJpegAttr { + return func(m optionalAttr) { + m["ratio"] = value + } +} + +// DecodeJpegFancyUpscaling sets the optional fancy_upscaling attribute to value. // -// @compatibility(cpp) -// Equivalent to C++ std::nextafter function. -// @end_compatibility -func NextAfter(scope *Scope, x1 tf.Output, x2 tf.Output) (output tf.Output) { +// value: If true use a slower but nicer upscaling of the +// chroma planes (yuv420/422 only). +// If not specified, defaults to true +func DecodeJpegFancyUpscaling(value bool) DecodeJpegAttr { + return func(m optionalAttr) { + m["fancy_upscaling"] = value + } +} + +// DecodeJpegTryRecoverTruncated sets the optional try_recover_truncated attribute to value. +// +// value: If true try to recover an image from truncated input. +// If not specified, defaults to false +func DecodeJpegTryRecoverTruncated(value bool) DecodeJpegAttr { + return func(m optionalAttr) { + m["try_recover_truncated"] = value + } +} + +// DecodeJpegAcceptableFraction sets the optional acceptable_fraction attribute to value. +// +// value: The minimum required fraction of lines before a truncated +// input is accepted. +// If not specified, defaults to 1 +func DecodeJpegAcceptableFraction(value float32) DecodeJpegAttr { + return func(m optionalAttr) { + m["acceptable_fraction"] = value + } +} + +// DecodeJpegDctMethod sets the optional dct_method attribute to value. +// +// value: string specifying a hint about the algorithm used for +// decompression. Defaults to "" which maps to a system-specific +// default. Currently valid values are ["INTEGER_FAST", +// "INTEGER_ACCURATE"]. The hint may be ignored (e.g., the internal +// jpeg library changes to a version that does not have that specific +// option.) +// If not specified, defaults to "" +func DecodeJpegDctMethod(value string) DecodeJpegAttr { + return func(m optionalAttr) { + m["dct_method"] = value + } +} + +// Decode a JPEG-encoded image to a uint8 tensor. +// +// The attr `channels` indicates the desired number of color channels for the +// decoded image. +// +// Accepted values are: +// +// * 0: Use the number of channels in the JPEG-encoded image. +// * 1: output a grayscale image. +// * 3: output an RGB image. +// +// If needed, the JPEG-encoded image is transformed to match the requested number +// of color channels. +// +// The attr `ratio` allows downscaling the image by an integer factor during +// decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than +// downscaling the image later. +// +// +// This op also supports decoding PNGs and non-animated GIFs since the interface is +// the same, though it is cleaner to use `tf.image.decode_image`. +// +// Arguments: +// contents: 0-D. The JPEG-encoded image. +// +// Returns 3-D with shape `[height, width, channels]`.. +func DecodeJpeg(scope *Scope, contents tf.Output, optional ...DecodeJpegAttr) (image tf.Output) { if scope.Err() != nil { return } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } opspec := tf.OpSpec{ - Type: "NextAfter", + Type: "DecodeJpeg", Input: []tf.Input{ - x1, x2, + contents, }, + Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) @@ -35068,6 +35338,54 @@ func Roll(scope *Scope, input tf.Output, shift tf.Output, axis tf.Output) (outpu return op.Output(0) } +// WholeFileReaderV2Attr is an optional argument to WholeFileReaderV2. +type WholeFileReaderV2Attr func(optionalAttr) + +// WholeFileReaderV2Container sets the optional container attribute to value. +// +// value: If non-empty, this reader is placed in the given container. +// Otherwise, a default container is used. +// If not specified, defaults to "" +func WholeFileReaderV2Container(value string) WholeFileReaderV2Attr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// WholeFileReaderV2SharedName sets the optional shared_name attribute to value. +// +// value: If non-empty, this reader is named in the given bucket +// with this shared_name. Otherwise, the node name is used instead. +// If not specified, defaults to "" +func WholeFileReaderV2SharedName(value string) WholeFileReaderV2Attr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// A Reader that outputs the entire contents of a file as a value. +// +// To use, enqueue filenames in a Queue. The output of ReaderRead will +// be a filename (key) and the contents of that file (value). +// +// Returns The handle to reference the Reader. +func WholeFileReaderV2(scope *Scope, optional ...WholeFileReaderV2Attr) (reader_handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "WholeFileReaderV2", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Looks up keys in a table, outputs the corresponding values. // // The tensor `keys` must of the same type as the keys of the table. @@ -35097,30 +35415,91 @@ func LookupTableFindV2(scope *Scope, table_handle tf.Output, keys tf.Output, def return op.Output(0) } -// Updates the table to associates keys with values. +// Flips all bits elementwise. // -// The tensor `keys` must be of the same type as the keys of the table. -// The tensor `values` must be of the type of the table values. -// -// Arguments: -// table_handle: Handle to the table. -// keys: Any shape. Keys to look up. -// values: Values to associate with keys. -// -// Returns the created operation. -func LookupTableInsertV2(scope *Scope, table_handle tf.Output, keys tf.Output, values tf.Output) (o *tf.Operation) { +// The result will have exactly those bits set, that are not set in `x`. The +// computation is performed on the underlying representation of x. +func Invert(scope *Scope, x tf.Output) (y tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "LookupTableInsertV2", + Type: "Invert", Input: []tf.Input{ - table_handle, keys, values, + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Restore a reader to a previously saved state. +// +// Not all Readers support being restored, so this can produce an +// Unimplemented error. +// +// Arguments: +// reader_handle: Handle to a Reader. +// state: Result of a ReaderSerializeState of a Reader with type +// matching reader_handle. +// +// Returns the created operation. +func ReaderRestoreStateV2(scope *Scope, reader_handle tf.Output, state tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ReaderRestoreStateV2", + Input: []tf.Input{ + reader_handle, state, }, } return scope.AddOperation(opspec) } +// Removes keys and its associated values from a table. +// +// The tensor `keys` must of the same type as the keys of the table. Keys not +// already in the table are silently ignored. +// +// Arguments: +// table_handle: Handle to the table. +// keys: Any shape. Keys of the elements to remove. +// +// Returns the created operation. +func LookupTableRemoveV2(scope *Scope, table_handle tf.Output, keys tf.Output) (o *tf.Operation) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "LookupTableRemoveV2", + Input: []tf.Input{ + table_handle, keys, + }, + } + return scope.AddOperation(opspec) +} + +// Creates a TensorList which, when stacked, has the value of `tensor`. +// +// Each tensor in the result list corresponds to one row of the input tensor. +// +// tensor: The input tensor. +// output_handle: The list. +func TensorListFromTensor(scope *Scope, tensor tf.Output, element_shape tf.Output) (output_handle tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorListFromTensor", + Input: []tf.Input{ + tensor, element_shape, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // HashTableV2Attr is an optional argument to HashTableV2. type HashTableV2Attr func(optionalAttr) @@ -35185,44 +35564,192 @@ func HashTableV2(scope *Scope, key_dtype tf.DataType, value_dtype tf.DataType, o return op.Output(0) } -// SizeAttr is an optional argument to Size. -type SizeAttr func(optionalAttr) +// MutableHashTableV2Attr is an optional argument to MutableHashTableV2. +type MutableHashTableV2Attr func(optionalAttr) -// SizeOutType sets the optional out_type attribute to value. -// If not specified, defaults to DT_INT32 -func SizeOutType(value tf.DataType) SizeAttr { +// MutableHashTableV2Container sets the optional container attribute to value. +// +// value: If non-empty, this table is placed in the given container. +// Otherwise, a default container is used. +// If not specified, defaults to "" +func MutableHashTableV2Container(value string) MutableHashTableV2Attr { return func(m optionalAttr) { - m["out_type"] = value + m["container"] = value } } -// Returns the size of a tensor. +// MutableHashTableV2SharedName sets the optional shared_name attribute to value. // -// This operation returns an integer representing the number of elements in -// `input`. +// value: If non-empty, this table is shared under the given name across +// multiple sessions. +// If not specified, defaults to "" +func MutableHashTableV2SharedName(value string) MutableHashTableV2Attr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// MutableHashTableV2UseNodeNameSharing sets the optional use_node_name_sharing attribute to value. // -// For example: +// value: If true and shared_name is empty, the table is shared +// using the node name. +// If not specified, defaults to false +func MutableHashTableV2UseNodeNameSharing(value bool) MutableHashTableV2Attr { + return func(m optionalAttr) { + m["use_node_name_sharing"] = value + } +} + +// Creates an empty hash table. // -// ``` -// # 't' is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]] -// size(t) ==> 12 -// ``` -func Size(scope *Scope, input tf.Output, optional ...SizeAttr) (output tf.Output) { +// This op creates a mutable hash table, specifying the type of its keys and +// values. Each value must be a scalar. Data can be inserted into the table using +// the insert operations. It does not support the initialization operation. +// +// Arguments: +// key_dtype: Type of the table keys. +// value_dtype: Type of the table values. +// +// Returns Handle to a table. +func MutableHashTableV2(scope *Scope, key_dtype tf.DataType, value_dtype tf.DataType, optional ...MutableHashTableV2Attr) (table_handle tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + attrs := map[string]interface{}{"key_dtype": key_dtype, "value_dtype": value_dtype} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "Size", + Type: "MutableHashTableV2", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Concatenates a list of `SparseTensor` along the specified dimension. +// +// Concatenation is with respect to the dense versions of these sparse tensors. +// It is assumed that each input is a `SparseTensor` whose elements are ordered +// along increasing dimension number. +// +// All inputs' shapes must match, except for the concat dimension. The +// `indices`, `values`, and `shapes` lists must have the same length. +// +// The output shape is identical to the inputs', except along the concat +// dimension, where it is the sum of the inputs' sizes along that dimension. +// +// The output elements will be resorted to preserve the sort order along +// increasing dimension number. +// +// This op runs in `O(M log M)` time, where `M` is the total number of non-empty +// values across all inputs. This is due to the need for an internal sort in +// order to concatenate efficiently across an arbitrary dimension. +// +// For example, if `concat_dim = 1` and the inputs are +// +// sp_inputs[0]: shape = [2, 3] +// [0, 2]: "a" +// [1, 0]: "b" +// [1, 1]: "c" +// +// sp_inputs[1]: shape = [2, 4] +// [0, 1]: "d" +// [0, 2]: "e" +// +// then the output will be +// +// shape = [2, 7] +// [0, 2]: "a" +// [0, 4]: "d" +// [0, 5]: "e" +// [1, 0]: "b" +// [1, 1]: "c" +// +// Graphically this is equivalent to doing +// +// [ a] concat [ d e ] = [ a d e ] +// [b c ] [ ] [b c ] +// +// Arguments: +// indices: 2-D. Indices of each input `SparseTensor`. +// values: 1-D. Non-empty values of each `SparseTensor`. +// shapes: 1-D. Shapes of each `SparseTensor`. +// concat_dim: Dimension to concatenate along. Must be in range [-rank, rank), +// where rank is the number of dimensions in each input `SparseTensor`. +// +// Returns 2-D. Indices of the concatenated `SparseTensor`.1-D. Non-empty values of the concatenated `SparseTensor`.1-D. Shape of the concatenated `SparseTensor`. +func SparseConcat(scope *Scope, indices []tf.Output, values []tf.Output, shapes []tf.Output, concat_dim int64) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"concat_dim": concat_dim} + opspec := tf.OpSpec{ + Type: "SparseConcat", Input: []tf.Input{ - input, + tf.OutputList(indices), tf.OutputList(values), tf.OutputList(shapes), }, Attrs: attrs, } op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// Computes softmax cross entropy cost and gradients to backpropagate. +// +// Unlike `SoftmaxCrossEntropyWithLogits`, this operation does not accept +// a matrix of label probabilities, but rather a single label per row +// of features. This label is considered to have probability 1.0 for the +// given row. +// +// Inputs are the logits, not probabilities. +// +// Arguments: +// features: batch_size x num_classes matrix +// labels: batch_size vector with values in [0, num_classes). +// This is the label for the given minibatch entry. +// +// Returns Per example loss (batch_size vector).backpropagated gradients (batch_size x num_classes matrix). +func SparseSoftmaxCrossEntropyWithLogits(scope *Scope, features tf.Output, labels tf.Output) (loss tf.Output, backprop tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSoftmaxCrossEntropyWithLogits", + Input: []tf.Input{ + features, labels, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// Adjust the hue of one or more images. +// +// `images` is a tensor of at least 3 dimensions. The last dimension is +// interpretted as channels, and must be three. +// +// The input image is considered in the RGB colorspace. Conceptually, the RGB +// colors are first mapped into HSV. A delta is then applied all the hue values, +// and then remapped back to RGB colorspace. +// +// Arguments: +// images: Images to adjust. At least 3-D. +// delta: A float delta to add to the hue. +// +// Returns The hue-adjusted image or images. +func AdjustHue(scope *Scope, images tf.Output, delta tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "AdjustHue", + Input: []tf.Input{ + images, delta, + }, + } + op := scope.AddOperation(opspec) return op.Output(0) } @@ -35256,17 +35783,115 @@ func StringToHashBucket(scope *Scope, string_tensor tf.Output, num_buckets int64 return op.Output(0) } -// Generate a glob pattern matching all sharded file names. -func ShardedFilespec(scope *Scope, basename tf.Output, num_shards tf.Output) (filename tf.Output) { +// Deserializes a serialized tree ensemble config and replaces current tree +// +// ensemble. +// +// Arguments: +// tree_ensemble_handle: Handle to the tree ensemble. +// stamp_token: Token to use as the new value of the resource stamp. +// tree_ensemble_serialized: Serialized proto of the ensemble. +// +// Returns the created operation. +func BoostedTreesDeserializeEnsemble(scope *Scope, tree_ensemble_handle tf.Output, stamp_token tf.Output, tree_ensemble_serialized tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "ShardedFilespec", + Type: "BoostedTreesDeserializeEnsemble", Input: []tf.Input{ - basename, num_shards, + tree_ensemble_handle, stamp_token, tree_ensemble_serialized, }, } + return scope.AddOperation(opspec) +} + +// LoadAndRemapMatrixAttr is an optional argument to LoadAndRemapMatrix. +type LoadAndRemapMatrixAttr func(optionalAttr) + +// LoadAndRemapMatrixMaxRowsInMemory sets the optional max_rows_in_memory attribute to value. +// +// value: The maximum number of rows to load from the checkpoint at +// once. If less than or equal to 0, the entire matrix will be loaded into +// memory. Setting this arg trades increased disk reads for lower memory usage. +// If not specified, defaults to -1 +func LoadAndRemapMatrixMaxRowsInMemory(value int64) LoadAndRemapMatrixAttr { + return func(m optionalAttr) { + m["max_rows_in_memory"] = value + } +} + +// Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint +// +// at `ckpt_path` and potentially reorders its rows and columns using the +// specified remappings. +// +// Most users should use one of the wrapper initializers (such as +// `tf.contrib.framework.load_and_remap_matrix_initializer`) instead of this +// function directly. +// +// The remappings are 1-D tensors with the following properties: +// +// * `row_remapping` must have exactly `num_rows` entries. Row `i` of the output +// matrix will be initialized from the row corresponding to index +// `row_remapping[i]` in the old `Tensor` from the checkpoint. +// * `col_remapping` must have either 0 entries (indicating that no column +// reordering is needed) or `num_cols` entries. If specified, column `j` of the +// output matrix will be initialized from the column corresponding to index +// `col_remapping[j]` in the old `Tensor` from the checkpoint. +// * A value of -1 in either of the remappings signifies a "missing" entry. In that +// case, values from the `initializing_values` tensor will be used to fill that +// missing row or column. If `row_remapping` has `r` missing entries and +// `col_remapping` has `c` missing entries, then the following condition must be +// true: +// +// `(r * num_cols) + (c * num_rows) - (r * c) == len(initializing_values)` +// +// The remapping tensors can be generated using the GenerateVocabRemapping op. +// +// As an example, with row_remapping = [1, 0, -1], col_remapping = [0, 2, -1], +// initializing_values = [0.5, -0.5, 0.25, -0.25, 42], and w(i, j) representing +// the value from row i, column j of the old tensor in the checkpoint, the output +// matrix will look like the following: +// +// [[w(1, 0), w(1, 2), 0.5], +// [w(0, 0), w(0, 2), -0.5], +// [0.25, -0.25, 42]] +// +// Arguments: +// ckpt_path: Path to the TensorFlow checkpoint (version 2, `TensorBundle`) from +// which the old matrix `Tensor` will be loaded. +// old_tensor_name: Name of the 2-D `Tensor` to load from checkpoint. +// row_remapping: An int `Tensor` of row remappings (generally created by +// `generate_vocab_remapping`). Even if no row remapping is needed, this must +// still be an index-valued Tensor (e.g. [0, 1, 2, ...]), or a shifted +// index-valued `Tensor` (e.g. [8, 9, 10, ...], for partitioned `Variables`). +// col_remapping: An int `Tensor` of column remappings (generally created by +// `generate_vocab_remapping`). May be a size-0 `Tensor` if only row remapping +// is to be done (e.g. column ordering is the same). +// initializing_values: A float `Tensor` containing values to fill in for cells +// in the output matrix that are not loaded from the checkpoint. Length must be +// exactly the same as the number of missing / new cells. +// num_rows: Number of rows (length of the 1st dimension) in the output matrix. +// num_cols: Number of columns (length of the 2nd dimension) in the output matrix. +// +// Returns Output matrix containing existing values loaded from the +// checkpoint, and with any missing values filled in from initializing_values. +func LoadAndRemapMatrix(scope *Scope, ckpt_path tf.Output, old_tensor_name tf.Output, row_remapping tf.Output, col_remapping tf.Output, initializing_values tf.Output, num_rows int64, num_cols int64, optional ...LoadAndRemapMatrixAttr) (output_matrix tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_rows": num_rows, "num_cols": num_cols} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "LoadAndRemapMatrix", + Input: []tf.Input{ + ckpt_path, old_tensor_name, row_remapping, col_remapping, initializing_values, + }, + Attrs: attrs, + } op := scope.AddOperation(opspec) return op.Output(0) } @@ -35371,98 +35996,59 @@ func MutableDenseHashTableV2(scope *Scope, empty_key tf.Output, deleted_key tf.O return op.Output(0) } -// Locks a mutex resource. The output is the lock. So long as the lock tensor -// -// is alive, any other request to use `MutexLock` with this mutex will wait. -// -// This is particularly useful for creating a critical section when used in -// conjunction with `MutexLockIdentity`: -// -// ```python -// -// mutex = mutex_v2( -// shared_name=handle_name, container=container, name=name) -// -// def execute_in_critical_section(fn, *args, **kwargs): -// lock = gen_resource_variable_ops.mutex_lock(mutex) -// -// with ops.control_dependencies([lock]): -// r = fn(*args, **kwargs) -// -// with ops.control_dependencies(nest.flatten(r)): -// with ops.colocate_with(mutex): -// ensure_lock_exists = mutex_lock_identity(lock) -// -// # Make sure that if any element of r is accessed, all of -// # them are executed together. -// r = nest.map_structure(tf.identity, r) -// -// with ops.control_dependencies([ensure_lock_exists]): -// return nest.map_structure(tf.identity, r) -// ``` -// -// While `fn` is running in the critical section, no other functions which wish to -// use this critical section may run. -// -// Often the use case is that two executions of the same graph, in parallel, -// wish to run `fn`; and we wish to ensure that only one of them executes -// at a time. This is especially important if `fn` modifies one or more -// variables at a time. -// -// It is also useful if two separate functions must share a resource, but we -// wish to ensure the usage is exclusive. -// -// Arguments: -// mutex: The mutex resource to lock. -// -// Returns A tensor that keeps a shared pointer to a lock on the mutex; -// when the Tensor is destroyed, the use count on the shared pointer is decreased -// by 1. When it reaches 0, the lock is released. -func MutexLock(scope *Scope, mutex tf.Output) (mutex_lock tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "MutexLock", - Input: []tf.Input{ - mutex, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} +// FakeQuantWithMinMaxVarsPerChannelAttr is an optional argument to FakeQuantWithMinMaxVarsPerChannel. +type FakeQuantWithMinMaxVarsPerChannelAttr func(optionalAttr) -// TensorListStackAttr is an optional argument to TensorListStack. -type TensorListStackAttr func(optionalAttr) - -// TensorListStackNumElements sets the optional num_elements attribute to value. -// If not specified, defaults to -1 -func TensorListStackNumElements(value int64) TensorListStackAttr { +// FakeQuantWithMinMaxVarsPerChannelNumBits sets the optional num_bits attribute to value. +// If not specified, defaults to 8 +func FakeQuantWithMinMaxVarsPerChannelNumBits(value int64) FakeQuantWithMinMaxVarsPerChannelAttr { return func(m optionalAttr) { - m["num_elements"] = value + m["num_bits"] = value } } -// Stacks all tensors in the list. +// FakeQuantWithMinMaxVarsPerChannelNarrowRange sets the optional narrow_range attribute to value. +// If not specified, defaults to false +func FakeQuantWithMinMaxVarsPerChannelNarrowRange(value bool) FakeQuantWithMinMaxVarsPerChannelAttr { + return func(m optionalAttr) { + m["narrow_range"] = value + } +} + +// Fake-quantize the 'inputs' tensor of type float and one of the shapes: `[d]`, // -// Requires that all tensors have the same shape. +// `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max` of shape `[d]` +// to 'outputs' tensor of same shape as `inputs`. // -// input_handle: the input list -// tensor: the gathered result -// num_elements: optional. If not -1, the number of elements in the list. +// `[min; max]` define the clamping range for the `inputs` data. +// `inputs` values are quantized into the quantization range (`[0; 2^num_bits - 1]` +// when `narrow_range` is false and `[1; 2^num_bits - 1]` when it is true) and +// then de-quantized and output as floats in `[min; max]` interval. +// `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive. // -func TensorListStack(scope *Scope, input_handle tf.Output, element_shape tf.Output, element_dtype tf.DataType, optional ...TensorListStackAttr) (tensor tf.Output) { +// Before quantization, `min` and `max` values are adjusted with the following +// logic. +// It is suggested to have `min <= 0 <= max`. If `0` is not in the range of values, +// the behavior can be unexpected: +// If `0 < min < max`: `min_adj = 0` and `max_adj = max - min`. +// If `min < max < 0`: `min_adj = min - max` and `max_adj = 0`. +// If `min <= 0 <= max`: `scale = (max - min) / (2^num_bits - 1) `, +// `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`. +// +// This operation has a gradient and thus allows for training `min` and `max` +// values. +func FakeQuantWithMinMaxVarsPerChannel(scope *Scope, inputs tf.Output, min tf.Output, max tf.Output, optional ...FakeQuantWithMinMaxVarsPerChannelAttr) (outputs tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"element_dtype": element_dtype} + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "TensorListStack", + Type: "FakeQuantWithMinMaxVarsPerChannel", Input: []tf.Input{ - input_handle, element_shape, + inputs, min, max, }, Attrs: attrs, } @@ -35470,156 +36056,47 @@ func TensorListStack(scope *Scope, input_handle tf.Output, element_shape tf.Outp return op.Output(0) } -// Produces a string handle for the given MultiDeviceIterator. -// -// Arguments: -// multi_device_iterator: A MultiDeviceIterator resource. -// -// Returns A string representing the resource. -func MultiDeviceIteratorToStringHandle(scope *Scope, multi_device_iterator tf.Output) (string_handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "MultiDeviceIteratorToStringHandle", - Input: []tf.Input{ - multi_device_iterator, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} +// StaticRegexReplaceAttr is an optional argument to StaticRegexReplace. +type StaticRegexReplaceAttr func(optionalAttr) -// Returns x / y element-wise for real types. +// StaticRegexReplaceReplaceGlobal sets the optional replace_global attribute to value. // -// If `x` and `y` are reals, this will return the floating-point division. -// -// *NOTE*: `Div` supports broadcasting. More about broadcasting -// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) -func RealDiv(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "RealDiv", - Input: []tf.Input{ - x, y, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Produces the max pool of the input tensor for quantized types. -// -// Arguments: -// input: The 4D (batch x rows x cols x depth) Tensor to MaxReduce over. -// min_input: The float value that the lowest quantized input value represents. -// max_input: The float value that the highest quantized input value represents. -// ksize: The size of the window for each dimension of the input tensor. -// The length must be 4 to match the number of dimensions of the input. -// strides: The stride of the sliding window for each dimension of the input -// tensor. The length must be 4 to match the number of dimensions of the input. -// padding: The type of padding algorithm to use. -// -// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents. -func QuantizedMaxPool(scope *Scope, input tf.Output, min_input tf.Output, max_input tf.Output, ksize []int64, strides []int64, padding string) (output tf.Output, min_output tf.Output, max_output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"ksize": ksize, "strides": strides, "padding": padding} - opspec := tf.OpSpec{ - Type: "QuantizedMaxPool", - Input: []tf.Input{ - input, min_input, max_input, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Makes a new iterator from the given `dataset` and stores it in `iterator`. -// -// This operation may be executed multiple times. Each execution will reset the -// iterator in `iterator` to the first element of `dataset`. -// -// Returns the created operation. -func MakeIterator(scope *Scope, dataset tf.Output, iterator tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "MakeIterator", - Input: []tf.Input{ - dataset, iterator, - }, - } - return scope.AddOperation(opspec) -} - -// InitializeTableFromTextFileV2Attr is an optional argument to InitializeTableFromTextFileV2. -type InitializeTableFromTextFileV2Attr func(optionalAttr) - -// InitializeTableFromTextFileV2VocabSize sets the optional vocab_size attribute to value. -// -// value: Number of elements of the file, use -1 if unknown. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func InitializeTableFromTextFileV2VocabSize(value int64) InitializeTableFromTextFileV2Attr { +// value: If True, the replacement is global, otherwise the replacement +// is done only on the first match. +// If not specified, defaults to true +func StaticRegexReplaceReplaceGlobal(value bool) StaticRegexReplaceAttr { return func(m optionalAttr) { - m["vocab_size"] = value + m["replace_global"] = value } } -// InitializeTableFromTextFileV2Delimiter sets the optional delimiter attribute to value. +// Replaces the match of pattern in input with rewrite. // -// value: Delimiter to separate fields in a line. -// If not specified, defaults to "\t" -func InitializeTableFromTextFileV2Delimiter(value string) InitializeTableFromTextFileV2Attr { - return func(m optionalAttr) { - m["delimiter"] = value - } -} - -// Initializes a table from a text file. -// -// It inserts one key-value pair into the table for each line of the file. -// The key and value is extracted from the whole line content, elements from the -// split line based on `delimiter` or the line number (starting from zero). -// Where to extract the key and value from a line is specified by `key_index` and -// `value_index`. -// -// - A value of -1 means use the line number(starting from zero), expects `int64`. -// - A value of -2 means use the whole line content, expects `string`. -// - A value >= 0 means use the index (starting at zero) of the split line based -// on `delimiter`. +// It follows the re2 syntax (https://github.com/google/re2/wiki/Syntax) // // Arguments: -// table_handle: Handle to a table which will be initialized. -// filename: Filename of a vocabulary text file. -// key_index: Column index in a line to get the table `key` values from. -// value_index: Column index that represents information of a line to get the table -// `value` values from. +// input: The text to be processed. +// pattern: The regular expression to match the input. +// rewrite: The rewrite to be applied to the matched expression. // -// Returns the created operation. -func InitializeTableFromTextFileV2(scope *Scope, table_handle tf.Output, filename tf.Output, key_index int64, value_index int64, optional ...InitializeTableFromTextFileV2Attr) (o *tf.Operation) { +// Returns The text after applying pattern and rewrite. +func StaticRegexReplace(scope *Scope, input tf.Output, pattern string, rewrite string, optional ...StaticRegexReplaceAttr) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"key_index": key_index, "value_index": value_index} + attrs := map[string]interface{}{"pattern": pattern, "rewrite": rewrite} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "InitializeTableFromTextFileV2", + Type: "StaticRegexReplace", Input: []tf.Input{ - table_handle, filename, + input, }, Attrs: attrs, } - return scope.AddOperation(opspec) + op := scope.AddOperation(opspec) + return op.Output(0) } // AssertAttr is an optional argument to Assert. @@ -35663,6 +36140,34 @@ func Assert(scope *Scope, condition tf.Output, data []tf.Output, optional ...Ass return scope.AddOperation(opspec) } +// Computes the sum along sparse segments of a tensor divided by the sqrt of N. +// +// N is the size of the segment being reduced. +// +// See `tf.sparse.segment_sum` for usage examples. +// +// +// Arguments: +// +// indices: A 1-D tensor. Has same rank as `segment_ids`. +// segment_ids: A 1-D tensor. Values should be sorted and can be repeated. +// +// Returns Has same shape as data, except for dimension 0 which +// has size `k`, the number of segments. +func SparseSegmentSqrtN(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSegmentSqrtN", + Input: []tf.Input{ + data, indices, segment_ids, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // PrintV2Attr is an optional argument to PrintV2. type PrintV2Attr func(optionalAttr) @@ -35702,160 +36207,29 @@ func PrintV2(scope *Scope, input tf.Output, optional ...PrintV2Attr) (o *tf.Oper return scope.AddOperation(opspec) } -// TensorSummaryAttr is an optional argument to TensorSummary. -type TensorSummaryAttr func(optionalAttr) - -// TensorSummaryDescription sets the optional description attribute to value. +// Reshapes a quantized tensor as per the Reshape op. // -// value: A json-encoded SummaryDescription proto. -// If not specified, defaults to "" -func TensorSummaryDescription(value string) TensorSummaryAttr { - return func(m optionalAttr) { - m["description"] = value - } -} - -// TensorSummaryLabels sets the optional labels attribute to value. -// -// value: An unused list of strings. -// If not specified, defaults to <> -func TensorSummaryLabels(value []string) TensorSummaryAttr { - return func(m optionalAttr) { - m["labels"] = value - } -} - -// TensorSummaryDisplayName sets the optional display_name attribute to value. -// -// value: An unused string. -// If not specified, defaults to "" -func TensorSummaryDisplayName(value string) TensorSummaryAttr { - return func(m optionalAttr) { - m["display_name"] = value - } -} - -// Outputs a `Summary` protocol buffer with a tensor. -// -// This op is being phased out in favor of TensorSummaryV2, which lets callers pass -// a tag as well as a serialized SummaryMetadata proto string that contains -// plugin-specific data. We will keep this op to maintain backwards compatibility. +// ``` // // Arguments: -// tensor: A tensor to serialize. -func TensorSummary(scope *Scope, tensor tf.Output, optional ...TensorSummaryAttr) (summary tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "TensorSummary", - Input: []tf.Input{ - tensor, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Constructs an Optional variant from a tuple of tensors. -func OptionalFromValue(scope *Scope, components []tf.Output) (optional tf.Output) { +// +// shape: Defines the shape of the output tensor. +// input_min: The minimum value of the input. +// input_max: The maximum value of the input. +// +// Returns This value is copied from input_min.This value is copied from input_max. +func QuantizedReshape(scope *Scope, tensor tf.Output, shape tf.Output, input_min tf.Output, input_max tf.Output) (output tf.Output, output_min tf.Output, output_max tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "OptionalFromValue", + Type: "QuantizedReshape", Input: []tf.Input{ - tf.OutputList(components), + tensor, shape, input_min, input_max, }, } op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Resizes the list. -// -// -// input_handle: the input list -// size: size of the output list -// -func TensorListResize(scope *Scope, input_handle tf.Output, size tf.Output) (output_handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorListResize", - Input: []tf.Input{ - input_handle, size, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns a tensor of zeros with the same shape and type as x. -// -// Arguments: -// x: a tensor of type T. -// -// Returns a tensor of the same shape and type as x but filled with zeros. -func ZerosLike(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ZerosLike", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Outputs a `Summary` protocol buffer with scalar values. -// -// The input `tags` and `values` must have the same shape. The generated summary -// has a summary value for each tag-value pair in `tags` and `values`. -// -// Arguments: -// tags: Tags for the summary. -// values: Same shape as `tags. Values for the summary. -// -// Returns Scalar. Serialized `Summary` protocol buffer. -func ScalarSummary(scope *Scope, tags tf.Output, values tf.Output) (summary tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ScalarSummary", - Input: []tf.Input{ - tags, values, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset containing elements of first component of `input_dataset` having true in the last component. -func FilterByLastComponentDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "FilterByLastComponentDataset", - Input: []tf.Input{ - input_dataset, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1), op.Output(2) } // Outputs a `Summary` protocol buffer with a histogram. @@ -35971,6 +36345,119 @@ func ImageSummary(scope *Scope, tag tf.Output, tensor tf.Output, optional ...Ima return op.Output(0) } +// ResourceApplyAdagradAttr is an optional argument to ResourceApplyAdagrad. +type ResourceApplyAdagradAttr func(optionalAttr) + +// ResourceApplyAdagradUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var and accum tensors will be protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceApplyAdagradUseLocking(value bool) ResourceApplyAdagradAttr { + return func(m optionalAttr) { + m["use_locking"] = value + } +} + +// ResourceApplyAdagradUpdateSlots sets the optional update_slots attribute to value. +// If not specified, defaults to true +func ResourceApplyAdagradUpdateSlots(value bool) ResourceApplyAdagradAttr { + return func(m optionalAttr) { + m["update_slots"] = value + } +} + +// Update '*var' according to the adagrad scheme. +// +// accum += grad * grad +// var -= lr * grad * (1 / sqrt(accum)) +// +// Arguments: +// var_: Should be from a Variable(). +// accum: Should be from a Variable(). +// lr: Scaling factor. Must be a scalar. +// grad: The gradient. +// +// Returns the created operation. +func ResourceApplyAdagrad(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, grad tf.Output, optional ...ResourceApplyAdagradAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceApplyAdagrad", + Input: []tf.Input{ + var_, accum, lr, grad, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// RestoreAttr is an optional argument to Restore. +type RestoreAttr func(optionalAttr) + +// RestorePreferredShard sets the optional preferred_shard attribute to value. +// +// value: Index of file to open first if multiple files match +// `file_pattern`. +// If not specified, defaults to -1 +func RestorePreferredShard(value int64) RestoreAttr { + return func(m optionalAttr) { + m["preferred_shard"] = value + } +} + +// Restores a tensor from checkpoint files. +// +// Reads a tensor stored in one or several files. If there are several files (for +// instance because a tensor was saved as slices), `file_pattern` may contain +// wildcard symbols (`*` and `?`) in the filename portion only, not in the +// directory portion. +// +// If a `file_pattern` matches several files, `preferred_shard` can be used to hint +// in which file the requested tensor is likely to be found. This op will first +// open the file at index `preferred_shard` in the list of matching files and try +// to restore tensors from that file. Only if some tensors or tensor slices are +// not found in that first file, then the Op opens all the files. Setting +// `preferred_shard` to match the value passed as the `shard` input +// of a matching `Save` Op may speed up Restore. This attribute only affects +// performance, not correctness. The default value -1 means files are processed in +// order. +// +// See also `RestoreSlice`. +// +// Arguments: +// file_pattern: Must have a single element. The pattern of the files from +// which we read the tensor. +// tensor_name: Must have a single element. The name of the tensor to be +// restored. +// dt: The type of the tensor to be restored. +// +// Returns The restored tensor. +func Restore(scope *Scope, file_pattern tf.Output, tensor_name tf.Output, dt tf.DataType, optional ...RestoreAttr) (tensor tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dt": dt} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Restore", + Input: []tf.Input{ + file_pattern, tensor_name, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Merges summaries. // // This op creates a @@ -36000,24 +36487,82 @@ func MergeSummary(scope *Scope, inputs []tf.Output) (summary tf.Output) { return op.Output(0) } -// Returns the number of work units this Reader has finished processing. +// Provides the time since epoch in seconds. // -// Arguments: -// reader_handle: Handle to a Reader. -func ReaderNumWorkUnitsCompletedV2(scope *Scope, reader_handle tf.Output) (units_completed tf.Output) { +// Returns the timestamp as a `float64` for seconds since the Unix epoch. +// +// Note: the timestamp is computed when the op is executed, not when it is added +// to the graph. +func Timestamp(scope *Scope) (ts tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "ReaderNumWorkUnitsCompletedV2", + Type: "Timestamp", + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Deprecated. Disallowed in GraphDef version >= 2. +// +// DEPRECATED at GraphDef version 2: Use AdjustContrastv2 instead +func AdjustContrast(scope *Scope, images tf.Output, contrast_factor tf.Output, min_value tf.Output, max_value tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "AdjustContrast", Input: []tf.Input{ - reader_handle, + images, contrast_factor, min_value, max_value, }, } op := scope.AddOperation(opspec) return op.Output(0) } +// Return the shape of s0 op s1 with broadcast. +// +// Given `s0` and `s1`, tensors that represent shapes, compute `r0`, the +// broadcasted shape. `s0`, `s1` and `r0` are all integer vectors. +func BroadcastArgs(scope *Scope, s0 tf.Output, s1 tf.Output) (r0 tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "BroadcastArgs", + Input: []tf.Input{ + s0, s1, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates and returns an empty tensor list. +// +// All list elements must be tensors of dtype element_dtype and shape compatible +// with element_shape. +// +// handle: an empty tensor list. +// element_dtype: the type of elements in the list. +// element_shape: a shape compatible with that of elements in the list. +func EmptyTensorList(scope *Scope, element_shape tf.Output, max_num_elements tf.Output, element_dtype tf.DataType) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"element_dtype": element_dtype} + opspec := tf.OpSpec{ + Type: "EmptyTensorList", + Input: []tf.Input{ + element_shape, max_num_elements, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Returns a list list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. // // tensor: The tensor to put on the list. @@ -36039,24 +36584,105 @@ func TensorListPushBack(scope *Scope, input_handle tf.Output, tensor tf.Output) return op.Output(0) } -// Returns the number of tensors in the input tensor list. +// Locks a mutex resource. The output is the lock. So long as the lock tensor // -// input_handle: the input list -// length: the number of tensors in the list -func TensorListLength(scope *Scope, input_handle tf.Output) (length tf.Output) { +// is alive, any other request to use `MutexLock` with this mutex will wait. +// +// This is particularly useful for creating a critical section when used in +// conjunction with `MutexLockIdentity`: +// +// ```python +// +// mutex = mutex_v2( +// shared_name=handle_name, container=container, name=name) +// +// def execute_in_critical_section(fn, *args, **kwargs): +// lock = gen_resource_variable_ops.mutex_lock(mutex) +// +// with ops.control_dependencies([lock]): +// r = fn(*args, **kwargs) +// +// with ops.control_dependencies(nest.flatten(r)): +// with ops.colocate_with(mutex): +// ensure_lock_exists = mutex_lock_identity(lock) +// +// # Make sure that if any element of r is accessed, all of +// # them are executed together. +// r = nest.map_structure(tf.identity, r) +// +// with ops.control_dependencies([ensure_lock_exists]): +// return nest.map_structure(tf.identity, r) +// ``` +// +// While `fn` is running in the critical section, no other functions which wish to +// use this critical section may run. +// +// Often the use case is that two executions of the same graph, in parallel, +// wish to run `fn`; and we wish to ensure that only one of them executes +// at a time. This is especially important if `fn` modifies one or more +// variables at a time. +// +// It is also useful if two separate functions must share a resource, but we +// wish to ensure the usage is exclusive. +// +// Arguments: +// mutex: The mutex resource to lock. +// +// Returns A tensor that keeps a shared pointer to a lock on the mutex; +// when the Tensor is destroyed, the use count on the shared pointer is decreased +// by 1. When it reaches 0, the lock is released. +func MutexLock(scope *Scope, mutex tf.Output) (mutex_lock tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "TensorListLength", + Type: "MutexLock", Input: []tf.Input{ - input_handle, + mutex, }, } op := scope.AddOperation(opspec) return op.Output(0) } +// TensorListStackAttr is an optional argument to TensorListStack. +type TensorListStackAttr func(optionalAttr) + +// TensorListStackNumElements sets the optional num_elements attribute to value. +// If not specified, defaults to -1 +func TensorListStackNumElements(value int64) TensorListStackAttr { + return func(m optionalAttr) { + m["num_elements"] = value + } +} + +// Stacks all tensors in the list. +// +// Requires that all tensors have the same shape. +// +// input_handle: the input list +// tensor: the gathered result +// num_elements: optional. If not -1, the number of elements in the list. +// +func TensorListStack(scope *Scope, input_handle tf.Output, element_shape tf.Output, element_dtype tf.DataType, optional ...TensorListStackAttr) (tensor tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"element_dtype": element_dtype} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "TensorListStack", + Input: []tf.Input{ + input_handle, element_shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Computes natural logarithm of x element-wise. // // I.e., \\(y = \log_e x\\). @@ -36112,311 +36738,34 @@ func TensorListConcat(scope *Scope, input_handle tf.Output, element_dtype tf.Dat return op.Output(0), op.Output(1) } -// CudnnRNNV3Attr is an optional argument to CudnnRNNV3. -type CudnnRNNV3Attr func(optionalAttr) - -// CudnnRNNV3RnnMode sets the optional rnn_mode attribute to value. -// If not specified, defaults to "lstm" -func CudnnRNNV3RnnMode(value string) CudnnRNNV3Attr { - return func(m optionalAttr) { - m["rnn_mode"] = value - } -} - -// CudnnRNNV3InputMode sets the optional input_mode attribute to value. -// If not specified, defaults to "linear_input" -func CudnnRNNV3InputMode(value string) CudnnRNNV3Attr { - return func(m optionalAttr) { - m["input_mode"] = value - } -} - -// CudnnRNNV3Direction sets the optional direction attribute to value. -// If not specified, defaults to "unidirectional" -func CudnnRNNV3Direction(value string) CudnnRNNV3Attr { - return func(m optionalAttr) { - m["direction"] = value - } -} - -// CudnnRNNV3Dropout sets the optional dropout attribute to value. -// If not specified, defaults to 0 -func CudnnRNNV3Dropout(value float32) CudnnRNNV3Attr { - return func(m optionalAttr) { - m["dropout"] = value - } -} - -// CudnnRNNV3Seed sets the optional seed attribute to value. -// If not specified, defaults to 0 -func CudnnRNNV3Seed(value int64) CudnnRNNV3Attr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// CudnnRNNV3Seed2 sets the optional seed2 attribute to value. -// If not specified, defaults to 0 -func CudnnRNNV3Seed2(value int64) CudnnRNNV3Attr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// CudnnRNNV3IsTraining sets the optional is_training attribute to value. -// If not specified, defaults to true -func CudnnRNNV3IsTraining(value bool) CudnnRNNV3Attr { - return func(m optionalAttr) { - m["is_training"] = value - } -} - -// CudnnRNNV3TimeMajor sets the optional time_major attribute to value. -// If not specified, defaults to true -func CudnnRNNV3TimeMajor(value bool) CudnnRNNV3Attr { - return func(m optionalAttr) { - m["time_major"] = value - } -} - -// A RNN backed by cuDNN. +// Concats all tensors in the list along the 0th dimension. // -// Computes the RNN from the input and initial states, with respect to the params -// buffer. Accepts one extra input "sequence_lengths" than CudnnRNN. +// Requires that all tensors have the same shape except the first dimension. // -// rnn_mode: Indicates the type of the RNN model. -// input_mode: Indicates whether there is a linear projection between the input and -// the actual computation before the first layer. 'skip_input' is only allowed -// when input_size == num_units; 'auto_select' implies 'skip_input' when -// input_size == num_units; otherwise, it implies 'linear_input'. -// direction: Indicates whether a bidirectional model will be used. Should be -// "unidirectional" or "bidirectional". -// dropout: Dropout probability. When set to 0., dropout is disabled. -// seed: The 1st part of a seed to initialize dropout. -// seed2: The 2nd part of a seed to initialize dropout. -// input: If time_major is true, this is a 3-D tensor with the shape of -// [seq_length, batch_size, input_size]. If time_major is false, the shape is -// [batch_size, seq_length, input_size]. -// input_h: If time_major is true, this is a 3-D tensor with the shape of -// [num_layer * dir, batch_size, num_units]. If time_major is false, the shape -// is [batch_size, num_layer * dir, num_units]. -// input_c: For LSTM, a 3-D tensor with the shape of -// [num_layer * dir, batch, num_units]. For other models, it is ignored. -// params: A 1-D tensor that contains the weights and biases in an opaque layout. -// The size must be created through CudnnRNNParamsSize, and initialized -// separately. Note that they might not be compatible across different -// generations. So it is a good idea to save and restore -// sequence_lengths: a vector of lengths of each input sequence. -// output: If time_major is true, this is a 3-D tensor with the shape of -// [seq_length, batch_size, dir * num_units]. If time_major is false, the -// shape is [batch_size, seq_length, dir * num_units]. -// output_h: The same shape has input_h. -// output_c: The same shape as input_c for LSTM. An empty tensor for other models. -// is_training: Indicates whether this operation is used for inferenece or -// training. -// time_major: Indicates whether the input/output format is time major or batch -// major. -// reserve_space: An opaque tensor that can be used in backprop calculation. It -// is only produced if is_training is true. -func CudnnRNNV3(scope *Scope, input tf.Output, input_h tf.Output, input_c tf.Output, params tf.Output, sequence_lengths tf.Output, optional ...CudnnRNNV3Attr) (output tf.Output, output_h tf.Output, output_c tf.Output, reserve_space tf.Output, host_reserved tf.Output) { +// input_handle: The input list. +// element_shape: The shape of the uninitialized elements in the list. If the first +// dimension is not -1, it is assumed that all list elements have the same +// leading dim. +// leading_dims: The list of leading dims of uninitialized list elements. Used if +// the leading dim of input_handle.element_shape or the element_shape input arg +// is not already set. +// tensor: The concated result. +// lengths: Output tensor containing sizes of the 0th dimension of tensors in the list, used for computing the gradient. +// +func TensorListConcatV2(scope *Scope, input_handle tf.Output, element_shape tf.Output, leading_dims tf.Output, element_dtype tf.DataType) (tensor tf.Output, lengths tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } + attrs := map[string]interface{}{"element_dtype": element_dtype} opspec := tf.OpSpec{ - Type: "CudnnRNNV3", + Type: "TensorListConcatV2", Input: []tf.Input{ - input, input_h, input_c, params, sequence_lengths, + input_handle, element_shape, leading_dims, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4) -} - -// An op enabling differentiation of TPU Embeddings. -// -// This op simply returns its first input, which is assumed to have been sliced -// from the Tensors returned by TPUEmbeddingDequeueActivations. The presence of -// this op, and its first argument being a trainable Variable, enables automatic -// differentiation of graphs containing embeddings via the TPU Embedding Python -// libraries. -// -// Arguments: -// embedding_variable: A trainable variable, enabling optimizers to find this op. -// sliced_activations: The embedding activations Tensor to return. -// table_id: The id of the table in the embedding layer configuration from which -// these activations were computed. -// lookup_id: Identifier of the set of embedding indices which produced these -// activations. -func TPUEmbeddingActivations(scope *Scope, embedding_variable tf.Output, sliced_activations tf.Output, table_id int64, lookup_id int64) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"table_id": table_id, "lookup_id": lookup_id} - opspec := tf.OpSpec{ - Type: "TPUEmbeddingActivations", - Input: []tf.Input{ - embedding_variable, sliced_activations, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// DecodeAndCropJpegAttr is an optional argument to DecodeAndCropJpeg. -type DecodeAndCropJpegAttr func(optionalAttr) - -// DecodeAndCropJpegChannels sets the optional channels attribute to value. -// -// value: Number of color channels for the decoded image. -// If not specified, defaults to 0 -func DecodeAndCropJpegChannels(value int64) DecodeAndCropJpegAttr { - return func(m optionalAttr) { - m["channels"] = value - } -} - -// DecodeAndCropJpegRatio sets the optional ratio attribute to value. -// -// value: Downscaling ratio. -// If not specified, defaults to 1 -func DecodeAndCropJpegRatio(value int64) DecodeAndCropJpegAttr { - return func(m optionalAttr) { - m["ratio"] = value - } -} - -// DecodeAndCropJpegFancyUpscaling sets the optional fancy_upscaling attribute to value. -// -// value: If true use a slower but nicer upscaling of the -// chroma planes (yuv420/422 only). -// If not specified, defaults to true -func DecodeAndCropJpegFancyUpscaling(value bool) DecodeAndCropJpegAttr { - return func(m optionalAttr) { - m["fancy_upscaling"] = value - } -} - -// DecodeAndCropJpegTryRecoverTruncated sets the optional try_recover_truncated attribute to value. -// -// value: If true try to recover an image from truncated input. -// If not specified, defaults to false -func DecodeAndCropJpegTryRecoverTruncated(value bool) DecodeAndCropJpegAttr { - return func(m optionalAttr) { - m["try_recover_truncated"] = value - } -} - -// DecodeAndCropJpegAcceptableFraction sets the optional acceptable_fraction attribute to value. -// -// value: The minimum required fraction of lines before a truncated -// input is accepted. -// If not specified, defaults to 1 -func DecodeAndCropJpegAcceptableFraction(value float32) DecodeAndCropJpegAttr { - return func(m optionalAttr) { - m["acceptable_fraction"] = value - } -} - -// DecodeAndCropJpegDctMethod sets the optional dct_method attribute to value. -// -// value: string specifying a hint about the algorithm used for -// decompression. Defaults to "" which maps to a system-specific -// default. Currently valid values are ["INTEGER_FAST", -// "INTEGER_ACCURATE"]. The hint may be ignored (e.g., the internal -// jpeg library changes to a version that does not have that specific -// option.) -// If not specified, defaults to "" -func DecodeAndCropJpegDctMethod(value string) DecodeAndCropJpegAttr { - return func(m optionalAttr) { - m["dct_method"] = value - } -} - -// Decode and Crop a JPEG-encoded image to a uint8 tensor. -// -// The attr `channels` indicates the desired number of color channels for the -// decoded image. -// -// Accepted values are: -// -// * 0: Use the number of channels in the JPEG-encoded image. -// * 1: output a grayscale image. -// * 3: output an RGB image. -// -// If needed, the JPEG-encoded image is transformed to match the requested number -// of color channels. -// -// The attr `ratio` allows downscaling the image by an integer factor during -// decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than -// downscaling the image later. -// -// -// It is equivalent to a combination of decode and crop, but much faster by only -// decoding partial jpeg image. -// -// Arguments: -// contents: 0-D. The JPEG-encoded image. -// crop_window: 1-D. The crop window: [crop_y, crop_x, crop_height, crop_width]. -// -// Returns 3-D with shape `[height, width, channels]`.. -func DecodeAndCropJpeg(scope *Scope, contents tf.Output, crop_window tf.Output, optional ...DecodeAndCropJpegAttr) (image tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "DecodeAndCropJpeg", - Input: []tf.Input{ - contents, crop_window, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Computes the log of the absolute value of `Gamma(x)` element-wise. -func Lgamma(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Lgamma", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a TensorList which, when stacked, has the value of `tensor`. -// -// Each tensor in the result list corresponds to one row of the input tensor. -// -// tensor: The input tensor. -// output_handle: The list. -func TensorListFromTensor(scope *Scope, tensor tf.Output, element_shape tf.Output) (output_handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorListFromTensor", - Input: []tf.Input{ - tensor, element_shape, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1) } // The shape of the elements of the given list, as a tensor. @@ -36439,54 +36788,21 @@ func TensorListElementShape(scope *Scope, input_handle tf.Output, shape_type tf. return op.Output(0) } -// CropAndResizeGradImageAttr is an optional argument to CropAndResizeGradImage. -type CropAndResizeGradImageAttr func(optionalAttr) - -// CropAndResizeGradImageMethod sets the optional method attribute to value. +// List of the given size with empty elements. // -// value: A string specifying the interpolation method. Only 'bilinear' is -// supported for now. -// If not specified, defaults to "bilinear" -func CropAndResizeGradImageMethod(value string) CropAndResizeGradImageAttr { - return func(m optionalAttr) { - m["method"] = value - } -} - -// Computes the gradient of the crop_and_resize op wrt the input image tensor. -// -// Arguments: -// grads: A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`. -// boxes: A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor -// specifies the coordinates of a box in the `box_ind[i]` image and is specified -// in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of -// `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the -// `[0, 1]` interval of normalized image height is mapped to -// `[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in -// which case the sampled crop is an up-down flipped version of the original -// image. The width dimension is treated similarly. Normalized coordinates -// outside the `[0, 1]` range are allowed, in which case we use -// `extrapolation_value` to extrapolate the input image values. -// box_ind: A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`. -// The value of `box_ind[i]` specifies the image that the `i`-th box refers to. -// image_size: A 1-D tensor with value `[batch, image_height, image_width, depth]` -// containing the original image size. Both `image_height` and `image_width` need -// to be positive. -// -// -// Returns A 4-D tensor of shape `[batch, image_height, image_width, depth]`. -func CropAndResizeGradImage(scope *Scope, grads tf.Output, boxes tf.Output, box_ind tf.Output, image_size tf.Output, T tf.DataType, optional ...CropAndResizeGradImageAttr) (output tf.Output) { +// element_shape: the shape of the future elements of the list +// num_elements: the number of elements to reserve +// handle: the output list +// element_dtype: the desired type of elements in the list. +func TensorListReserve(scope *Scope, element_shape tf.Output, num_elements tf.Output, element_dtype tf.DataType) (handle tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"T": T} - for _, a := range optional { - a(attrs) - } + attrs := map[string]interface{}{"element_dtype": element_dtype} opspec := tf.OpSpec{ - Type: "CropAndResizeGradImage", + Type: "TensorListReserve", Input: []tf.Input{ - grads, boxes, box_ind, image_size, + element_shape, num_elements, }, Attrs: attrs, } @@ -36517,73 +36833,33 @@ func TensorListGetItem(scope *Scope, input_handle tf.Output, index tf.Output, el return op.Output(0) } -// Returns the element-wise max of two SparseTensors. +// EncodeBase64Attr is an optional argument to EncodeBase64. +type EncodeBase64Attr func(optionalAttr) + +// EncodeBase64Pad sets the optional pad attribute to value. // -// Assumes the two SparseTensors have the same shape, i.e., no broadcasting. +// value: Bool whether padding is applied at the ends. +// If not specified, defaults to false +func EncodeBase64Pad(value bool) EncodeBase64Attr { + return func(m optionalAttr) { + m["pad"] = value + } +} + +// Encode strings into web-safe base64 format. +// +// Refer to the following article for more information on base64 format: +// en.wikipedia.org/wiki/Base64. Base64 strings may have padding with '=' at the +// end so that the encoded has length multiple of 4. See Padding section of the +// link above. +// +// Web-safe means that the encoder uses - and _ instead of + and /. // // Arguments: -// a_indices: 2-D. `N x R` matrix with the indices of non-empty values in a -// SparseTensor, in the canonical lexicographic ordering. -// a_values: 1-D. `N` non-empty values corresponding to `a_indices`. -// a_shape: 1-D. Shape of the input SparseTensor. -// b_indices: counterpart to `a_indices` for the other operand. -// b_values: counterpart to `a_values` for the other operand; must be of the same dtype. -// b_shape: counterpart to `a_shape` for the other operand; the two shapes must be equal. +// input: Strings to be encoded. // -// Returns 2-D. The indices of the output SparseTensor.1-D. The values of the output SparseTensor. -func SparseSparseMaximum(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b_indices tf.Output, b_values tf.Output, b_shape tf.Output) (output_indices tf.Output, output_values tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSparseMaximum", - Input: []tf.Input{ - a_indices, a_values, a_shape, b_indices, b_values, b_shape, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1) -} - -// TextLineReaderV2Attr is an optional argument to TextLineReaderV2. -type TextLineReaderV2Attr func(optionalAttr) - -// TextLineReaderV2SkipHeaderLines sets the optional skip_header_lines attribute to value. -// -// value: Number of lines to skip from the beginning of every file. -// If not specified, defaults to 0 -func TextLineReaderV2SkipHeaderLines(value int64) TextLineReaderV2Attr { - return func(m optionalAttr) { - m["skip_header_lines"] = value - } -} - -// TextLineReaderV2Container sets the optional container attribute to value. -// -// value: If non-empty, this reader is placed in the given container. -// Otherwise, a default container is used. -// If not specified, defaults to "" -func TextLineReaderV2Container(value string) TextLineReaderV2Attr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// TextLineReaderV2SharedName sets the optional shared_name attribute to value. -// -// value: If non-empty, this reader is named in the given bucket -// with this shared_name. Otherwise, the node name is used instead. -// If not specified, defaults to "" -func TextLineReaderV2SharedName(value string) TextLineReaderV2Attr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// A Reader that outputs the lines of a file delimited by '\n'. -// -// Returns The handle to reference the Reader. -func TextLineReaderV2(scope *Scope, optional ...TextLineReaderV2Attr) (reader_handle tf.Output) { +// Returns Input strings encoded in base64. +func EncodeBase64(scope *Scope, input tf.Output, optional ...EncodeBase64Attr) (output tf.Output) { if scope.Err() != nil { return } @@ -36592,14 +36868,67 @@ func TextLineReaderV2(scope *Scope, optional ...TextLineReaderV2Attr) (reader_ha a(attrs) } opspec := tf.OpSpec{ - Type: "TextLineReaderV2", - + Type: "EncodeBase64", + Input: []tf.Input{ + input, + }, Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } +// Creates a Tensor by indexing into the TensorList. +// +// Each row in the produced Tensor corresponds to the element in the TensorList +// specified by the given index (see `tf.gather`). +// +// input_handle: The input tensor list. +// indices: The indices used to index into the list. +// values: The tensor. +func TensorListGather(scope *Scope, input_handle tf.Output, indices tf.Output, element_shape tf.Output, element_dtype tf.DataType) (values tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"element_dtype": element_dtype} + opspec := tf.OpSpec{ + Type: "TensorListGather", + Input: []tf.Input{ + input_handle, indices, element_shape, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a TensorList by indexing into a Tensor. +// +// Each member of the TensorList corresponds to one row of the input tensor, +// specified by the given index (see `tf.gather`). +// +// tensor: The input tensor. +// indices: The indices used to index into the list. +// element_shape: The shape of the elements in the list (can be less specified than +// the shape of the tensor). +// num_elements: The size of the output list. Must be large enough to accommodate +// the largest index in indices. If -1, the list is just large enough to include +// the largest index in indices. +// output_handle: The TensorList. +func TensorListScatterV2(scope *Scope, tensor tf.Output, indices tf.Output, element_shape tf.Output, num_elements tf.Output) (output_handle tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "TensorListScatterV2", + Input: []tf.Input{ + tensor, indices, element_shape, num_elements, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Pads a tensor with mirrored values. // // This operation pads a `input` with mirrored values according to the `paddings` @@ -36678,6 +37007,71 @@ func TensorListScatterIntoExistingList(scope *Scope, input_handle tf.Output, ten return op.Output(0) } +// Computes the determinant of one or more square matrices. +// +// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions +// form square matrices. The output is a tensor containing the determinants +// for all input submatrices `[..., :, :]`. +// +// Arguments: +// input: Shape is `[..., M, M]`. +// +// Returns Shape is `[...]`. +func MatrixDeterminant(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "MatrixDeterminant", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Shuffle dimensions of x according to a permutation. +// +// The output `y` has the same rank as `x`. The shapes of `x` and `y` satisfy: +// `y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]` +func Transpose(scope *Scope, x tf.Output, perm tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Transpose", + Input: []tf.Input{ + x, perm, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset that uses a custom thread pool to compute `input_dataset`. +// +// Arguments: +// +// thread_pool: A resource produced by the ThreadPoolHandle op. +// +// +func ExperimentalThreadPoolDataset(scope *Scope, input_dataset tf.Output, thread_pool tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "ExperimentalThreadPoolDataset", + Input: []tf.Input{ + input_dataset, thread_pool, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // MatrixInverseAttr is an optional argument to MatrixInverse. type MatrixInverseAttr func(optionalAttr) @@ -36761,33 +37155,6 @@ func TensorArrayConcatV2(scope *Scope, handle tf.Output, flow_in tf.Output, dtyp return op.Output(0), op.Output(1) } -// Creates a TensorList by indexing into a Tensor. -// -// Each member of the TensorList corresponds to one row of the input tensor, -// specified by the given index (see `tf.gather`). -// -// tensor: The input tensor. -// indices: The indices used to index into the list. -// element_shape: The shape of the elements in the list (can be less specified than -// the shape of the tensor). -// num_elements: The size of the output list. Must be large enough to accommodate -// the largest index in indices. If -1, the list is just large enough to include -// the largest index in indices. -// output_handle: The TensorList. -func TensorListScatterV2(scope *Scope, tensor tf.Output, indices tf.Output, element_shape tf.Output, num_elements tf.Output) (output_handle tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "TensorListScatterV2", - Input: []tf.Input{ - tensor, indices, element_shape, num_elements, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Deprecated, use python implementation tf.linalg.matrix_exponential. // // DEPRECATED at GraphDef version 27: Use Python implementation tf.linalg.matrix_exponential instead. @@ -36805,63 +37172,16 @@ func MatrixExponential(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// Computes the matrix logarithm of one or more square matrices: -// -// -// \\(log(exp(A)) = A\\) -// -// This op is only defined for complex matrices. If A is positive-definite and -// real, then casting to a complex matrix, taking the logarithm and casting back -// to a real matrix will give the correct result. -// -// This function computes the matrix logarithm using the Schur-Parlett algorithm. -// Details of the algorithm can be found in Section 11.6.2 of: -// Nicholas J. Higham, Functions of Matrices: Theory and Computation, SIAM 2008. -// ISBN 978-0-898716-46-7. -// -// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions -// form square matrices. The output is a tensor of the same shape as the input -// containing the exponential for all input submatrices `[..., :, :]`. -// -// Arguments: -// input: Shape is `[..., M, M]`. -// -// Returns Shape is `[..., M, M]`. -// -// @compatibility(scipy) -// Equivalent to scipy.linalg.logm -// @end_compatibility -func MatrixLogarithm(scope *Scope, input tf.Output) (output tf.Output) { +// Creates a dataset that zips together `input_datasets`. +func ZipDataset(scope *Scope, input_datasets []tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { if scope.Err() != nil { return } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} opspec := tf.OpSpec{ - Type: "MatrixLogarithm", + Type: "ZipDataset", Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Transforms a serialized tensorflow.TensorProto proto into a Tensor. -// -// Arguments: -// serialized: A scalar string containing a serialized TensorProto proto. -// out_type: The type of the serialized tensor. The provided type must match the -// type of the serialized tensor and no implicit conversion will take place. -// -// Returns A Tensor of type `out_type`. -func ParseTensor(scope *Scope, serialized tf.Output, out_type tf.DataType) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"out_type": out_type} - opspec := tf.OpSpec{ - Type: "ParseTensor", - Input: []tf.Input{ - serialized, + tf.OutputList(input_datasets), }, Attrs: attrs, } @@ -36869,34 +37189,6 @@ func ParseTensor(scope *Scope, serialized tf.Output, out_type tf.DataType) (outp return op.Output(0) } -// Computes the reverse mode backpropagated gradient of the Cholesky algorithm. -// -// For an explanation see "Differentiation of the Cholesky algorithm" by -// Iain Murray http://arxiv.org/abs/1602.07527. -// -// Arguments: -// l: Output of batch Cholesky algorithm l = cholesky(A). Shape is `[..., M, M]`. -// Algorithm depends only on lower triangular part of the innermost matrices of -// this tensor. -// grad: df/dl where f is some scalar function. Shape is `[..., M, M]`. -// Algorithm depends only on lower triangular part of the innermost matrices of -// this tensor. -// -// Returns Symmetrized version of df/dA . Shape is `[..., M, M]` -func CholeskyGrad(scope *Scope, l tf.Output, grad tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "CholeskyGrad", - Input: []tf.Input{ - l, grad, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // SelfAdjointEigV2Attr is an optional argument to SelfAdjointEigV2. type SelfAdjointEigV2Attr func(optionalAttr) @@ -36948,6 +37240,142 @@ func SelfAdjointEigV2(scope *Scope, input tf.Output, optional ...SelfAdjointEigV return op.Output(0), op.Output(1) } +// Elementwise computes the bitwise left-shift of `x` and `y`. +// +// If `y` is negative, or greater than or equal to the width of `x` in bits the +// result is implementation defined. +func LeftShift(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "LeftShift", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// IteratorFromStringHandleAttr is an optional argument to IteratorFromStringHandle. +type IteratorFromStringHandleAttr func(optionalAttr) + +// IteratorFromStringHandleOutputTypes sets the optional output_types attribute to value. +// +// value: If specified, defines the type of each tuple component in an +// element produced by the resulting iterator. +// If not specified, defaults to <> +// +// REQUIRES: len(value) >= 0 +func IteratorFromStringHandleOutputTypes(value []tf.DataType) IteratorFromStringHandleAttr { + return func(m optionalAttr) { + m["output_types"] = value + } +} + +// IteratorFromStringHandleOutputShapes sets the optional output_shapes attribute to value. +// +// value: If specified, defines the shape of each tuple component in an +// element produced by the resulting iterator. +// If not specified, defaults to <> +// +// REQUIRES: len(value) >= 0 +func IteratorFromStringHandleOutputShapes(value []tf.Shape) IteratorFromStringHandleAttr { + return func(m optionalAttr) { + m["output_shapes"] = value + } +} + +// Converts the given string representing a handle to an iterator to a resource. +// +// Arguments: +// string_handle: A string representation of the given handle. +// +// Returns A handle to an iterator resource. +func IteratorFromStringHandle(scope *Scope, string_handle tf.Output, optional ...IteratorFromStringHandleAttr) (resource_handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "IteratorFromStringHandle", + Input: []tf.Input{ + string_handle, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// LuAttr is an optional argument to Lu. +type LuAttr func(optionalAttr) + +// LuOutputIdxType sets the optional output_idx_type attribute to value. +// If not specified, defaults to DT_INT32 +func LuOutputIdxType(value tf.DataType) LuAttr { + return func(m optionalAttr) { + m["output_idx_type"] = value + } +} + +// Computes the LU decomposition of one or more square matrices. +// +// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions +// form square matrices. +// +// The input has to be invertible. +// +// The output consists of two tensors LU and P containing the LU decomposition +// of all input submatrices `[..., :, :]`. LU encodes the lower triangular and +// upper triangular factors. +// +// For each input submatrix of shape `[M, M]`, L is a lower triangular matrix of +// shape `[M, M]` with unit diagonal whose entries correspond to the strictly lower +// triangular part of LU. U is a upper triangular matrix of shape `[M, M]` whose +// entries correspond to the upper triangular part, including the diagonal, of LU. +// +// P represents a permutation matrix encoded as a list of indices each between `0` +// and `M-1`, inclusive. If P_mat denotes the permutation matrix corresponding to +// P, then the L, U and P satisfies P_mat * input = L * U. +// +// Arguments: +// input: A tensor of shape `[..., M, M]` whose inner-most 2 dimensions form matrices of +// size `[M, M]`. +// +// Returns A tensor of shape `[..., M, M]` whose strictly lower triangular part denotes the +// lower triangular factor `L` with unit diagonal, and whose upper triangular part +// denotes the upper triangular factor `U`.Permutation of the rows encoded as a list of indices in `0..M-1`. Shape is +// `[..., M]`. +// @compatibility(scipy) +// Similar to `scipy.linalg.lu`, except the triangular factors `L` and `U` are +// packed into a single tensor, the permutation is applied to `input` instead of +// the right hand side and the permutation `P` is returned as a list of indices +// instead of a permutation matrix. +// @end_compatibility +func Lu(scope *Scope, input tf.Output, optional ...LuAttr) (lu tf.Output, p tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Lu", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + // MatrixSolveAttr is an optional argument to MatrixSolve. type MatrixSolveAttr func(optionalAttr) @@ -37072,39 +37500,6 @@ func MatrixSolveLs(scope *Scope, matrix tf.Output, rhs tf.Output, l2_regularizer return op.Output(0) } -// Computes the sum along sparse segments of a tensor divided by the sqrt of N. -// -// N is the size of the segment being reduced. -// -// Like `SparseSegmentSqrtN`, but allows missing ids in `segment_ids`. If an id is -// misisng, the `output` tensor at that position will be zeroed. -// -// Read -// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) -// for an explanation of segments. -// -// Arguments: -// -// indices: A 1-D tensor. Has same rank as `segment_ids`. -// segment_ids: A 1-D tensor. Values should be sorted and can be repeated. -// num_segments: Should equal the number of distinct segment IDs. -// -// Returns Has same shape as data, except for dimension 0 which -// has size `k`, the number of segments. -func SparseSegmentSqrtNWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SparseSegmentSqrtNWithNumSegments", - Input: []tf.Input{ - data, indices, segment_ids, num_segments, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Computes the matrix square root of one or more square matrices: // // matmul(sqrtm(A), sqrtm(A)) = A @@ -37145,6 +37540,60 @@ func MatrixSquareRoot(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } +// QrAttr is an optional argument to Qr. +type QrAttr func(optionalAttr) + +// QrFullMatrices sets the optional full_matrices attribute to value. +// +// value: If true, compute full-sized `q` and `r`. If false +// (the default), compute only the leading `P` columns of `q`. +// If not specified, defaults to false +func QrFullMatrices(value bool) QrAttr { + return func(m optionalAttr) { + m["full_matrices"] = value + } +} + +// Computes the QR decompositions of one or more matrices. +// +// Computes the QR decomposition of each inner matrix in `tensor` such that +// `tensor[..., :, :] = q[..., :, :] * r[..., :,:])` +// +// ```python +// # a is a tensor. +// # q is a tensor of orthonormal matrices. +// # r is a tensor of upper triangular matrices. +// q, r = qr(a) +// q_full, r_full = qr(a, full_matrices=True) +// ``` +// +// Arguments: +// input: A tensor of shape `[..., M, N]` whose inner-most 2 dimensions +// form matrices of size `[M, N]`. Let `P` be the minimum of `M` and `N`. +// +// Returns Orthonormal basis for range of `a`. If `full_matrices` is `False` then +// shape is `[..., M, P]`; if `full_matrices` is `True` then shape is +// `[..., M, M]`.Triangular factor. If `full_matrices` is `False` then shape is +// `[..., P, N]`. If `full_matrices` is `True` then shape is `[..., M, N]`. +func Qr(scope *Scope, input tf.Output, optional ...QrAttr) (q tf.Output, r tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "Qr", + Input: []tf.Input{ + input, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + // SvdAttr is an optional argument to Svd. type SvdAttr func(optionalAttr) @@ -37214,152 +37663,30 @@ func Svd(scope *Scope, input tf.Output, optional ...SvdAttr) (s tf.Output, u tf. return op.Output(0), op.Output(1), op.Output(2) } -// Returns a constant tensor on the host. Only for writing C++ tests. +// Computes requantization range per channel. // // Arguments: -// value: Attr `value` is the tensor to return. +// input: The original input tensor. +// input_min: The minimum value of the input tensor +// input_max: The maximum value of the input tensor. +// clip_value_max: The maximum value of the output that needs to be clipped. +// Example: set this to 6 for Relu6. // -func HostConst(scope *Scope, value tf.Tensor, dtype tf.DataType) (output tf.Output) { +// Returns The minimum value of the final output tensorThe maximum value of the final output tensor. +func RequantizationRangePerChannel(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output, clip_value_max float32) (output_min tf.Output, output_max tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"value": value, "dtype": dtype} + attrs := map[string]interface{}{"clip_value_max": clip_value_max} opspec := tf.OpSpec{ - Type: "HostConst", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// ThreadUnsafeUnigramCandidateSamplerAttr is an optional argument to ThreadUnsafeUnigramCandidateSampler. -type ThreadUnsafeUnigramCandidateSamplerAttr func(optionalAttr) - -// ThreadUnsafeUnigramCandidateSamplerSeed sets the optional seed attribute to value. -// -// value: If either seed or seed2 are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func ThreadUnsafeUnigramCandidateSamplerSeed(value int64) ThreadUnsafeUnigramCandidateSamplerAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// ThreadUnsafeUnigramCandidateSamplerSeed2 sets the optional seed2 attribute to value. -// -// value: An second seed to avoid seed collision. -// If not specified, defaults to 0 -func ThreadUnsafeUnigramCandidateSamplerSeed2(value int64) ThreadUnsafeUnigramCandidateSamplerAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Generates labels for candidate sampling with a learned unigram distribution. -// -// See explanations of candidate sampling and the data formats at -// go/candidate-sampling. -// -// For each batch, this op picks a single set of sampled candidate labels. -// -// The advantages of sampling candidates per-batch are simplicity and the -// possibility of efficient dense matrix multiplication. The disadvantage is that -// the sampled candidates must be chosen independently of the context and of the -// true labels. -// -// Arguments: -// true_classes: A batch_size * num_true matrix, in which each row contains the -// IDs of the num_true target_classes in the corresponding original label. -// num_true: Number of true labels per context. -// num_sampled: Number of candidates to randomly sample. -// unique: If unique is true, we sample with rejection, so that all sampled -// candidates in a batch are unique. This requires some approximation to -// estimate the post-rejection sampling probabilities. -// range_max: The sampler will sample integers from the interval [0, range_max). -// -// Returns A vector of length num_sampled, in which each element is -// the ID of a sampled candidate.A batch_size * num_true matrix, representing -// the number of times each candidate is expected to occur in a batch -// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled -// candidate representing the number of times the candidate is expected -// to occur in a batch of sampled candidates. If unique=true, then this is a -// probability. -func ThreadUnsafeUnigramCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, range_max int64, optional ...ThreadUnsafeUnigramCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique, "range_max": range_max} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ThreadUnsafeUnigramCandidateSampler", + Type: "RequantizationRangePerChannel", Input: []tf.Input{ - true_classes, + input, input_min, input_max, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - -// Creates a dataset that passes a sliding window over `input_dataset`. -// -// Arguments: -// -// window_size: A scalar representing the number of elements in the -// sliding window. -// window_shift: A scalar representing the steps moving the sliding window -// forward in one iteration. It must be positive. -// window_stride: A scalar representing the stride of the input elements of the sliding window. -// It must be positive. -// -// -func ExperimentalSlidingWindowDataset(scope *Scope, input_dataset tf.Output, window_size tf.Output, window_shift tf.Output, window_stride tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ExperimentalSlidingWindowDataset", - Input: []tf.Input{ - input_dataset, window_size, window_shift, window_stride, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Saves tensors in V2 checkpoint format. -// -// By default, saves the named tensors in full. If the caller wishes to save -// specific slices of full tensors, "shape_and_slices" should be non-empty strings -// and correspondingly well-formed. -// -// Arguments: -// prefix: Must have a single element. The prefix of the V2 checkpoint to which we -// write the tensors. -// tensor_names: shape {N}. The names of the tensors to be saved. -// shape_and_slices: shape {N}. The slice specs of the tensors to be saved. -// Empty strings indicate that they are non-partitioned tensors. -// tensors: `N` tensors to save. -// -// Returns the created operation. -func SaveV2(scope *Scope, prefix tf.Output, tensor_names tf.Output, shape_and_slices tf.Output, tensors []tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SaveV2", - Input: []tf.Input{ - prefix, tensor_names, shape_and_slices, tf.OutputList(tensors), - }, - } - return scope.AddOperation(opspec) + return op.Output(0), op.Output(1) } // MergeV2CheckpointsAttr is an optional argument to MergeV2Checkpoints. @@ -37410,105 +37737,136 @@ func MergeV2Checkpoints(scope *Scope, checkpoint_prefixes tf.Output, destination return scope.AddOperation(opspec) } -// RestoreSliceAttr is an optional argument to RestoreSlice. -type RestoreSliceAttr func(optionalAttr) - -// RestoreSlicePreferredShard sets the optional preferred_shard attribute to value. +// Saves tensors in V2 checkpoint format. // -// value: Index of file to open first if multiple files match -// `file_pattern`. See the documentation for `Restore`. -// If not specified, defaults to -1 -func RestoreSlicePreferredShard(value int64) RestoreSliceAttr { - return func(m optionalAttr) { - m["preferred_shard"] = value - } -} - -// Restores a tensor from checkpoint files. -// -// This is like `Restore` except that restored tensor can be listed as filling -// only a slice of a larger tensor. `shape_and_slice` specifies the shape of the -// larger tensor and the slice that the restored tensor covers. -// -// The `shape_and_slice` input has the same format as the -// elements of the `shapes_and_slices` input of the `SaveSlices` op. +// By default, saves the named tensors in full. If the caller wishes to save +// specific slices of full tensors, "shape_and_slices" should be non-empty strings +// and correspondingly well-formed. // // Arguments: -// file_pattern: Must have a single element. The pattern of the files from -// which we read the tensor. -// tensor_name: Must have a single element. The name of the tensor to be -// restored. -// shape_and_slice: Scalar. The shapes and slice specifications to use when -// restoring a tensors. -// dt: The type of the tensor to be restored. +// prefix: Must have a single element. The prefix of the V2 checkpoint to which we +// write the tensors. +// tensor_names: shape {N}. The names of the tensors to be saved. +// shape_and_slices: shape {N}. The slice specs of the tensors to be saved. +// Empty strings indicate that they are non-partitioned tensors. +// tensors: `N` tensors to save. // -// Returns The restored tensor. -func RestoreSlice(scope *Scope, file_pattern tf.Output, tensor_name tf.Output, shape_and_slice tf.Output, dt tf.DataType, optional ...RestoreSliceAttr) (tensor tf.Output) { +// Returns the created operation. +func SaveV2(scope *Scope, prefix tf.Output, tensor_names tf.Output, shape_and_slices tf.Output, tensors []tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"dt": dt} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "RestoreSlice", + Type: "SaveV2", Input: []tf.Input{ - file_pattern, tensor_name, shape_and_slice, + prefix, tensor_names, shape_and_slices, tf.OutputList(tensors), }, - Attrs: attrs, } - op := scope.AddOperation(opspec) - return op.Output(0) + return scope.AddOperation(opspec) } -// Checks whether a quantile stream has been initialized. -// -// An Op that checks if quantile stream resource is initialized. -// -// Arguments: -// quantile_stream_resource_handle: resource; The reference to quantile stream resource handle. -// -// Returns bool; True if the resource is initialized, False otherwise. -func IsBoostedTreesQuantileStreamResourceInitialized(scope *Scope, quantile_stream_resource_handle tf.Output) (is_initialized tf.Output) { +// Generate a glob pattern matching all sharded file names. +func ShardedFilespec(scope *Scope, basename tf.Output, num_shards tf.Output) (filename tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "IsBoostedTreesQuantileStreamResourceInitialized", + Type: "ShardedFilespec", Input: []tf.Input{ - quantile_stream_resource_handle, + basename, num_shards, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// StatefulStandardNormalAttr is an optional argument to StatefulStandardNormal. -type StatefulStandardNormalAttr func(optionalAttr) - -// StatefulStandardNormalDtype sets the optional dtype attribute to value. +// Checks whether a tree ensemble has been initialized. // -// value: The type of the output. -// If not specified, defaults to DT_FLOAT -func StatefulStandardNormalDtype(value tf.DataType) StatefulStandardNormalAttr { +// Arguments: +// tree_ensemble_handle: Handle to the tree ensemble resouce. +// +// Returns output boolean on whether it is initialized or not. +func IsBoostedTreesEnsembleInitialized(scope *Scope, tree_ensemble_handle tf.Output) (is_initialized tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "IsBoostedTreesEnsembleInitialized", + Input: []tf.Input{ + tree_ensemble_handle, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Returns the element-wise max of two SparseTensors. +// +// Assumes the two SparseTensors have the same shape, i.e., no broadcasting. +// +// Arguments: +// a_indices: 2-D. `N x R` matrix with the indices of non-empty values in a +// SparseTensor, in the canonical lexicographic ordering. +// a_values: 1-D. `N` non-empty values corresponding to `a_indices`. +// a_shape: 1-D. Shape of the input SparseTensor. +// b_indices: counterpart to `a_indices` for the other operand. +// b_values: counterpart to `a_values` for the other operand; must be of the same dtype. +// b_shape: counterpart to `a_shape` for the other operand; the two shapes must be equal. +// +// Returns 2-D. The indices of the output SparseTensor.1-D. The values of the output SparseTensor. +func SparseSparseMaximum(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf.Output, b_indices tf.Output, b_values tf.Output, b_shape tf.Output) (output_indices tf.Output, output_values tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseSparseMaximum", + Input: []tf.Input{ + a_indices, a_values, a_shape, b_indices, b_values, b_shape, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1) +} + +// TextLineReaderV2Attr is an optional argument to TextLineReaderV2. +type TextLineReaderV2Attr func(optionalAttr) + +// TextLineReaderV2SkipHeaderLines sets the optional skip_header_lines attribute to value. +// +// value: Number of lines to skip from the beginning of every file. +// If not specified, defaults to 0 +func TextLineReaderV2SkipHeaderLines(value int64) TextLineReaderV2Attr { return func(m optionalAttr) { - m["dtype"] = value + m["skip_header_lines"] = value } } -// Outputs random values from a normal distribution. This op is deprecated in favor of op 'StatefulStandardNormalV2' +// TextLineReaderV2Container sets the optional container attribute to value. // -// DEPRECATED at GraphDef version 29: Use StatefulStandardNormalV2 instead +// value: If non-empty, this reader is placed in the given container. +// Otherwise, a default container is used. +// If not specified, defaults to "" +func TextLineReaderV2Container(value string) TextLineReaderV2Attr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// TextLineReaderV2SharedName sets the optional shared_name attribute to value. // -// The generated values will have mean 0 and standard deviation 1. +// value: If non-empty, this reader is named in the given bucket +// with this shared_name. Otherwise, the node name is used instead. +// If not specified, defaults to "" +func TextLineReaderV2SharedName(value string) TextLineReaderV2Attr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// A Reader that outputs the lines of a file delimited by '\n'. // -// Arguments: -// resource: The handle of the resource variable that stores the state of the RNG. -// shape: The shape of the output tensor. -// -// Returns A tensor of the specified shape filled with random normal values. -func StatefulStandardNormal(scope *Scope, resource tf.Output, shape tf.Output, optional ...StatefulStandardNormalAttr) (output tf.Output) { +// Returns The handle to reference the Reader. +func TextLineReaderV2(scope *Scope, optional ...TextLineReaderV2Attr) (reader_handle tf.Output) { if scope.Err() != nil { return } @@ -37517,9 +37875,31 @@ func StatefulStandardNormal(scope *Scope, resource tf.Output, shape tf.Output, o a(attrs) } opspec := tf.OpSpec{ - Type: "StatefulStandardNormal", + Type: "TextLineReaderV2", + + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset that executes a SQL query and emits rows of the result set. +// +// Arguments: +// driver_name: The database type. Currently, the only supported type is 'sqlite'. +// data_source_name: A connection string to connect to the database. +// query: A SQL query to execute. +// +// +func ExperimentalSqlDataset(scope *Scope, driver_name tf.Output, data_source_name tf.Output, query tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "ExperimentalSqlDataset", Input: []tf.Input{ - resource, shape, + driver_name, data_source_name, query, }, Attrs: attrs, } @@ -37527,150 +37907,42 @@ func StatefulStandardNormal(scope *Scope, resource tf.Output, shape tf.Output, o return op.Output(0) } -// FixedLengthRecordReaderV2Attr is an optional argument to FixedLengthRecordReaderV2. -type FixedLengthRecordReaderV2Attr func(optionalAttr) +// QuantizedRelu6Attr is an optional argument to QuantizedRelu6. +type QuantizedRelu6Attr func(optionalAttr) -// FixedLengthRecordReaderV2HeaderBytes sets the optional header_bytes attribute to value. -// -// value: Number of bytes in the header, defaults to 0. -// If not specified, defaults to 0 -func FixedLengthRecordReaderV2HeaderBytes(value int64) FixedLengthRecordReaderV2Attr { +// QuantizedRelu6OutType sets the optional out_type attribute to value. +// If not specified, defaults to DT_QUINT8 +func QuantizedRelu6OutType(value tf.DataType) QuantizedRelu6Attr { return func(m optionalAttr) { - m["header_bytes"] = value + m["out_type"] = value } } -// FixedLengthRecordReaderV2FooterBytes sets the optional footer_bytes attribute to value. -// -// value: Number of bytes in the footer, defaults to 0. -// If not specified, defaults to 0 -func FixedLengthRecordReaderV2FooterBytes(value int64) FixedLengthRecordReaderV2Attr { - return func(m optionalAttr) { - m["footer_bytes"] = value - } -} - -// FixedLengthRecordReaderV2HopBytes sets the optional hop_bytes attribute to value. -// -// value: Number of bytes to hop before each read. Default of 0 means using -// record_bytes. -// If not specified, defaults to 0 -func FixedLengthRecordReaderV2HopBytes(value int64) FixedLengthRecordReaderV2Attr { - return func(m optionalAttr) { - m["hop_bytes"] = value - } -} - -// FixedLengthRecordReaderV2Container sets the optional container attribute to value. -// -// value: If non-empty, this reader is placed in the given container. -// Otherwise, a default container is used. -// If not specified, defaults to "" -func FixedLengthRecordReaderV2Container(value string) FixedLengthRecordReaderV2Attr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// FixedLengthRecordReaderV2SharedName sets the optional shared_name attribute to value. -// -// value: If non-empty, this reader is named in the given bucket -// with this shared_name. Otherwise, the node name is used instead. -// If not specified, defaults to "" -func FixedLengthRecordReaderV2SharedName(value string) FixedLengthRecordReaderV2Attr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// FixedLengthRecordReaderV2Encoding sets the optional encoding attribute to value. -// -// value: The type of encoding for the file. Currently ZLIB and GZIP -// are supported. Defaults to none. -// If not specified, defaults to "" -func FixedLengthRecordReaderV2Encoding(value string) FixedLengthRecordReaderV2Attr { - return func(m optionalAttr) { - m["encoding"] = value - } -} - -// A Reader that outputs fixed-length records from a file. +// Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` // // Arguments: -// record_bytes: Number of bytes in the record. // -// Returns The handle to reference the Reader. -func FixedLengthRecordReaderV2(scope *Scope, record_bytes int64, optional ...FixedLengthRecordReaderV2Attr) (reader_handle tf.Output) { +// min_features: The float value that the lowest quantized value represents. +// max_features: The float value that the highest quantized value represents. +// +// Returns Has the same output shape as "features".The float value that the lowest quantized value represents.The float value that the highest quantized value represents. +func QuantizedRelu6(scope *Scope, features tf.Output, min_features tf.Output, max_features tf.Output, optional ...QuantizedRelu6Attr) (activations tf.Output, min_activations tf.Output, max_activations tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"record_bytes": record_bytes} + attrs := map[string]interface{}{} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "FixedLengthRecordReaderV2", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that changes the batch size. -// -// Creates a dataset that changes the batch size of the dataset to current batch -// size // num_workers. -// -// Arguments: -// input_dataset: A variant tensor representing the input dataset. -// num_workers: A scalar representing the number of workers to distribute this batch across. As -// a result of this transformation the current batch size would end up being -// divided by this parameter. -// -// -func ExperimentalRebatchDataset(scope *Scope, input_dataset tf.Output, num_workers tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ExperimentalRebatchDataset", + Type: "QuantizedRelu6", Input: []tf.Input{ - input_dataset, num_workers, + features, min_features, max_features, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that will write to / read from a snapshot. -// -// This dataset attempts to determine whether a valid snapshot exists at the -// `snapshot_path`, and reads from the snapshot in lieu of using `input_dataset`. -// If not, it will run the preprocessing pipeline as usual, and write out a -// snapshot of the data processed for future use. -// -// Arguments: -// input_dataset: A variant tensor representing the input dataset. -// path: The path we should write snapshots to / read snapshots from. -// -// -func SnapshotDataset(scope *Scope, input_dataset tf.Output, path tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "SnapshotDataset", - Input: []tf.Input{ - input_dataset, path, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1), op.Output(2) } // Returns the next record (key, value pair) produced by a Reader. @@ -37727,102 +37999,6 @@ func BoostedTreesPredict(scope *Scope, tree_ensemble_handle tf.Output, bucketize return op.Output(0) } -// Produce a string tensor that encodes the state of a Reader. -// -// Not all Readers support being serialized, so this can produce an -// Unimplemented error. -// -// Arguments: -// reader_handle: Handle to a Reader. -func ReaderSerializeStateV2(scope *Scope, reader_handle tf.Output) (state tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ReaderSerializeStateV2", - Input: []tf.Input{ - reader_handle, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Restore a reader to a previously saved state. -// -// Not all Readers support being restored, so this can produce an -// Unimplemented error. -// -// Arguments: -// reader_handle: Handle to a Reader. -// state: Result of a ReaderSerializeState of a Reader with type -// matching reader_handle. -// -// Returns the created operation. -func ReaderRestoreStateV2(scope *Scope, reader_handle tf.Output, state tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ReaderRestoreStateV2", - Input: []tf.Input{ - reader_handle, state, - }, - } - return scope.AddOperation(opspec) -} - -// MatMulAttr is an optional argument to MatMul. -type MatMulAttr func(optionalAttr) - -// MatMulTransposeA sets the optional transpose_a attribute to value. -// -// value: If true, "a" is transposed before multiplication. -// If not specified, defaults to false -func MatMulTransposeA(value bool) MatMulAttr { - return func(m optionalAttr) { - m["transpose_a"] = value - } -} - -// MatMulTransposeB sets the optional transpose_b attribute to value. -// -// value: If true, "b" is transposed before multiplication. -// If not specified, defaults to false -func MatMulTransposeB(value bool) MatMulAttr { - return func(m optionalAttr) { - m["transpose_b"] = value - } -} - -// Multiply the matrix "a" by the matrix "b". -// -// The inputs must be two-dimensional matrices and the inner dimension of -// "a" (after being transposed if transpose_a is true) must match the -// outer dimension of "b" (after being transposed if transposed_b is -// true). -// -// *Note*: The default kernel implementation for MatMul on GPUs uses -// cublas. -func MatMul(scope *Scope, a tf.Output, b tf.Output, optional ...MatMulAttr) (product tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MatMul", - Input: []tf.Input{ - a, b, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Restore a Reader to its initial clean state. // // Arguments: @@ -37842,6 +38018,49 @@ func ReaderResetV2(scope *Scope, reader_handle tf.Output) (o *tf.Operation) { return scope.AddOperation(opspec) } +// Check if the input matches the regex pattern. +// +// The input is a string tensor of any shape. The pattern is a scalar +// string tensor which is applied to every element of the input tensor. +// The boolean values (True or False) of the output tensor indicate +// if the input matches the regex pattern provided. +// +// The pattern follows the re2 syntax (https://github.com/google/re2/wiki/Syntax) +// +// Arguments: +// input: A string tensor of the text to be processed. +// pattern: A scalar string tensor containing the regular expression to match the input. +// +// Returns A bool tensor with the same shape as `input`. +func RegexFullMatch(scope *Scope, input tf.Output, pattern tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "RegexFullMatch", + Input: []tf.Input{ + input, pattern, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Reads and outputs the entire contents of the input filename. +func ReadFile(scope *Scope, filename tf.Output) (contents tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ReadFile", + Input: []tf.Input{ + filename, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // Returns the set of files matching one or more glob patterns. // // Note that this routine only supports wildcard characters in the @@ -37920,100 +38139,29 @@ func ResizeArea(scope *Scope, images tf.Output, size tf.Output, optional ...Resi return op.Output(0) } -// MapUnstageAttr is an optional argument to MapUnstage. -type MapUnstageAttr func(optionalAttr) +// ResizeBicubicAttr is an optional argument to ResizeBicubic. +type ResizeBicubicAttr func(optionalAttr) -// MapUnstageCapacity sets the optional capacity attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func MapUnstageCapacity(value int64) MapUnstageAttr { - return func(m optionalAttr) { - m["capacity"] = value - } -} - -// MapUnstageMemoryLimit sets the optional memory_limit attribute to value. -// If not specified, defaults to 0 -// -// REQUIRES: value >= 0 -func MapUnstageMemoryLimit(value int64) MapUnstageAttr { - return func(m optionalAttr) { - m["memory_limit"] = value - } -} - -// MapUnstageContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func MapUnstageContainer(value string) MapUnstageAttr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// MapUnstageSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func MapUnstageSharedName(value string) MapUnstageAttr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// Op removes and returns the values associated with the key -// -// from the underlying container. If the underlying container -// does not contain this key, the op will block until it does. -func MapUnstage(scope *Scope, key tf.Output, indices tf.Output, dtypes []tf.DataType, optional ...MapUnstageAttr) (values []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"dtypes": dtypes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MapUnstage", - Input: []tf.Input{ - key, indices, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if values, idx, err = makeOutputList(op, idx, "values"); err != nil { - scope.UpdateErr("MapUnstage", err) - return - } - return values -} - -// ResizeBilinearAttr is an optional argument to ResizeBilinear. -type ResizeBilinearAttr func(optionalAttr) - -// ResizeBilinearAlignCorners sets the optional align_corners attribute to value. +// ResizeBicubicAlignCorners sets the optional align_corners attribute to value. // // value: If true, the centers of the 4 corner pixels of the input and output tensors are // aligned, preserving the values at the corner pixels. Defaults to false. // If not specified, defaults to false -func ResizeBilinearAlignCorners(value bool) ResizeBilinearAttr { +func ResizeBicubicAlignCorners(value bool) ResizeBicubicAttr { return func(m optionalAttr) { m["align_corners"] = value } } -// ResizeBilinearHalfPixelCenters sets the optional half_pixel_centers attribute to value. +// ResizeBicubicHalfPixelCenters sets the optional half_pixel_centers attribute to value. // If not specified, defaults to false -func ResizeBilinearHalfPixelCenters(value bool) ResizeBilinearAttr { +func ResizeBicubicHalfPixelCenters(value bool) ResizeBicubicAttr { return func(m optionalAttr) { m["half_pixel_centers"] = value } } -// Resize `images` to `size` using bilinear interpolation. +// Resize `images` to `size` using bicubic interpolation. // // Input images can be of different types but output images are always float. // @@ -38024,7 +38172,7 @@ func ResizeBilinearHalfPixelCenters(value bool) ResizeBilinearAttr { // // Returns 4-D with shape // `[batch, new_height, new_width, channels]`. -func ResizeBilinear(scope *Scope, images tf.Output, size tf.Output, optional ...ResizeBilinearAttr) (resized_images tf.Output) { +func ResizeBicubic(scope *Scope, images tf.Output, size tf.Output, optional ...ResizeBicubicAttr) (resized_images tf.Output) { if scope.Err() != nil { return } @@ -38033,7 +38181,7 @@ func ResizeBilinear(scope *Scope, images tf.Output, size tf.Output, optional ... a(attrs) } opspec := tf.OpSpec{ - Type: "ResizeBilinear", + Type: "ResizeBicubic", Input: []tf.Input{ images, size, }, @@ -38043,118 +38191,39 @@ func ResizeBilinear(scope *Scope, images tf.Output, size tf.Output, optional ... return op.Output(0) } -// ExperimentalParseExampleDatasetAttr is an optional argument to ExperimentalParseExampleDataset. -type ExperimentalParseExampleDatasetAttr func(optionalAttr) +// ResizeBicubicGradAttr is an optional argument to ResizeBicubicGrad. +type ResizeBicubicGradAttr func(optionalAttr) -// ExperimentalParseExampleDatasetSloppy sets the optional sloppy attribute to value. +// ResizeBicubicGradAlignCorners sets the optional align_corners attribute to value. +// +// value: If true, the centers of the 4 corner pixels of the input and grad tensors are +// aligned. Defaults to false. // If not specified, defaults to false -func ExperimentalParseExampleDatasetSloppy(value bool) ExperimentalParseExampleDatasetAttr { - return func(m optionalAttr) { - m["sloppy"] = value - } -} - -// Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. -// -// Arguments: -// -// -// dense_defaults: A dict mapping string keys to `Tensor`s. -// The keys of the dict must match the dense_keys of the feature. -// sparse_keys: A list of string keys in the examples features. -// The results for these keys will be returned as `SparseTensor` objects. -// dense_keys: A list of Ndense string Tensors (scalars). -// The keys expected in the Examples features associated with dense values. -// sparse_types: A list of `DTypes` of the same length as `sparse_keys`. -// Only `tf.float32` (`FloatList`), `tf.int64` (`Int64List`), -// and `tf.string` (`BytesList`) are supported. -// dense_shapes: List of tuples with the same length as `dense_keys`. -// The shape of the data for each dense feature referenced by `dense_keys`. -// Required for any input tensors identified by `dense_keys`. Must be -// either fully defined, or may contain an unknown first dimension. -// An unknown first dimension means the feature is treated as having -// a variable number of blocks, and the output shape along this dimension -// is considered unknown at graph build time. Padding is applied for -// minibatch elements smaller than the maximum number of blocks for the -// given feature along this dimension. -// output_types: The type list for the return values. -// output_shapes: The list of shapes being produced. -func ExperimentalParseExampleDataset(scope *Scope, input_dataset tf.Output, num_parallel_calls tf.Output, dense_defaults []tf.Output, sparse_keys []string, dense_keys []string, sparse_types []tf.DataType, dense_shapes []tf.Shape, output_types []tf.DataType, output_shapes []tf.Shape, optional ...ExperimentalParseExampleDatasetAttr) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"sparse_keys": sparse_keys, "dense_keys": dense_keys, "sparse_types": sparse_types, "dense_shapes": dense_shapes, "output_types": output_types, "output_shapes": output_shapes} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "ExperimentalParseExampleDataset", - Input: []tf.Input{ - input_dataset, num_parallel_calls, tf.OutputList(dense_defaults), - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Returns the number of records this Reader has produced. -// -// This is the same as the number of ReaderRead executions that have -// succeeded. -// -// Arguments: -// reader_handle: Handle to a Reader. -func ReaderNumRecordsProducedV2(scope *Scope, reader_handle tf.Output) (records_produced tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ReaderNumRecordsProducedV2", - Input: []tf.Input{ - reader_handle, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// QuantizedResizeBilinearAttr is an optional argument to QuantizedResizeBilinear. -type QuantizedResizeBilinearAttr func(optionalAttr) - -// QuantizedResizeBilinearAlignCorners sets the optional align_corners attribute to value. -// -// value: If true, the centers of the 4 corner pixels of the input and output tensors are -// aligned, preserving the values at the corner pixels. Defaults to false. -// If not specified, defaults to false -func QuantizedResizeBilinearAlignCorners(value bool) QuantizedResizeBilinearAttr { +func ResizeBicubicGradAlignCorners(value bool) ResizeBicubicGradAttr { return func(m optionalAttr) { m["align_corners"] = value } } -// QuantizedResizeBilinearHalfPixelCenters sets the optional half_pixel_centers attribute to value. +// ResizeBicubicGradHalfPixelCenters sets the optional half_pixel_centers attribute to value. // If not specified, defaults to false -func QuantizedResizeBilinearHalfPixelCenters(value bool) QuantizedResizeBilinearAttr { +func ResizeBicubicGradHalfPixelCenters(value bool) ResizeBicubicGradAttr { return func(m optionalAttr) { m["half_pixel_centers"] = value } } -// Resize quantized `images` to `size` using quantized bilinear interpolation. -// -// Input images and output images must be quantized types. +// Computes the gradient of bicubic interpolation. // // Arguments: -// images: 4-D with shape `[batch, height, width, channels]`. -// size: = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The -// new size for the images. +// grads: 4-D with shape `[batch, height, width, channels]`. +// original_image: 4-D with shape `[batch, orig_height, orig_width, channels]`, +// The image tensor that was resized. // -// -// -// Returns 4-D with shape -// `[batch, new_height, new_width, channels]`. -func QuantizedResizeBilinear(scope *Scope, images tf.Output, size tf.Output, min tf.Output, max tf.Output, optional ...QuantizedResizeBilinearAttr) (resized_images tf.Output, out_min tf.Output, out_max tf.Output) { +// Returns 4-D with shape `[batch, orig_height, orig_width, channels]`. +// Gradients with respect to the input image. Input image must have been +// float or double. +func ResizeBicubicGrad(scope *Scope, grads tf.Output, original_image tf.Output, optional ...ResizeBicubicGradAttr) (output tf.Output) { if scope.Err() != nil { return } @@ -38163,14 +38232,14 @@ func QuantizedResizeBilinear(scope *Scope, images tf.Output, size tf.Output, min a(attrs) } opspec := tf.OpSpec{ - Type: "QuantizedResizeBilinear", + Type: "ResizeBicubicGrad", Input: []tf.Input{ - images, size, min, max, + grads, original_image, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) + return op.Output(0) } // ResizeNearestNeighborGradAttr is an optional argument to ResizeNearestNeighborGrad. @@ -38223,186 +38292,151 @@ func ResizeNearestNeighborGrad(scope *Scope, grads tf.Output, size tf.Output, op return op.Output(0) } -// Generates sparse cross from a list of sparse and dense tensors. +// BatchToSpace for 4-D tensors of type T. // -// The op takes two lists, one of 2D `SparseTensor` and one of 2D `Tensor`, each -// representing features of one feature column. It outputs a 2D `SparseTensor` with -// the batchwise crosses of these features. +// This is a legacy version of the more general BatchToSpaceND. // -// For example, if the inputs are -// -// inputs[0]: SparseTensor with shape = [2, 2] -// [0, 0]: "a" -// [1, 0]: "b" -// [1, 1]: "c" -// -// inputs[1]: SparseTensor with shape = [2, 1] -// [0, 0]: "d" -// [1, 0]: "e" -// -// inputs[2]: Tensor [["f"], ["g"]] -// -// then the output will be -// -// shape = [2, 2] -// [0, 0]: "a_X_d_X_f" -// [1, 0]: "b_X_e_X_g" -// [1, 1]: "c_X_e_X_g" -// -// if hashed_output=true then the output will be -// -// shape = [2, 2] -// [0, 0]: FingerprintCat64( -// Fingerprint64("f"), FingerprintCat64( -// Fingerprint64("d"), Fingerprint64("a"))) -// [1, 0]: FingerprintCat64( -// Fingerprint64("g"), FingerprintCat64( -// Fingerprint64("e"), Fingerprint64("b"))) -// [1, 1]: FingerprintCat64( -// Fingerprint64("g"), FingerprintCat64( -// Fingerprint64("e"), Fingerprint64("c"))) +// Rearranges (permutes) data from batch into blocks of spatial data, followed by +// cropping. This is the reverse transformation of SpaceToBatch. More specifically, +// this op outputs a copy of the input tensor where values from the `batch` +// dimension are moved in spatial blocks to the `height` and `width` dimensions, +// followed by cropping along the `height` and `width` dimensions. // // Arguments: -// indices: 2-D. Indices of each input `SparseTensor`. -// values: 1-D. values of each `SparseTensor`. -// shapes: 1-D. Shapes of each `SparseTensor`. -// dense_inputs: 2-D. Columns represented by dense `Tensor`. -// hashed_output: If true, returns the hash of the cross instead of the string. -// This will allow us avoiding string manipulations. -// num_buckets: It is used if hashed_output is true. -// output = hashed_value%num_buckets if num_buckets > 0 else hashed_value. -// hash_key: Specify the hash_key that will be used by the `FingerprintCat64` -// function to combine the crosses fingerprints. +// input: 4-D tensor with shape +// `[batch*block_size*block_size, height_pad/block_size, width_pad/block_size, +// depth]`. Note that the batch size of the input tensor must be divisible by +// `block_size * block_size`. +// crops: 2-D tensor of non-negative integers with shape `[2, 2]`. It specifies +// how many elements to crop from the intermediate result across the spatial +// dimensions as follows: +// +// crops = [[crop_top, crop_bottom], [crop_left, crop_right]] // // +// Returns 4-D with shape `[batch, height, width, depth]`, where: // -// Returns 2-D. Indices of the concatenated `SparseTensor`.1-D. Non-empty values of the concatenated or hashed -// `SparseTensor`.1-D. Shape of the concatenated `SparseTensor`. -func SparseCross(scope *Scope, indices []tf.Output, values []tf.Output, shapes []tf.Output, dense_inputs []tf.Output, hashed_output bool, num_buckets int64, hash_key int64, out_type tf.DataType, internal_type tf.DataType) (output_indices tf.Output, output_values tf.Output, output_shape tf.Output) { +// height = height_pad - crop_top - crop_bottom +// width = width_pad - crop_left - crop_right +// +// The attr `block_size` must be greater than one. It indicates the block size. +// +// Some examples: +// +// (1) For the following input of shape `[4, 1, 1, 1]` and block_size of 2: +// +// ``` +// [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] +// ``` +// +// The output tensor has shape `[1, 2, 2, 1]` and value: +// +// ``` +// x = [[[[1], [2]], [[3], [4]]]] +// ``` +// +// (2) For the following input of shape `[4, 1, 1, 3]` and block_size of 2: +// +// ``` +// [[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]] +// ``` +// +// The output tensor has shape `[1, 2, 2, 3]` and value: +// +// ``` +// x = [[[[1, 2, 3], [4, 5, 6]], +// [[7, 8, 9], [10, 11, 12]]]] +// ``` +// +// (3) For the following input of shape `[4, 2, 2, 1]` and block_size of 2: +// +// ``` +// x = [[[[1], [3]], [[9], [11]]], +// [[[2], [4]], [[10], [12]]], +// [[[5], [7]], [[13], [15]]], +// [[[6], [8]], [[14], [16]]]] +// ``` +// +// The output tensor has shape `[1, 4, 4, 1]` and value: +// +// ``` +// x = [[[[1], [2], [3], [4]], +// [[5], [6], [7], [8]], +// [[9], [10], [11], [12]], +// [[13], [14], [15], [16]]]] +// ``` +// +// (4) For the following input of shape `[8, 1, 2, 1]` and block_size of 2: +// +// ``` +// x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]], +// [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]] +// ``` +// +// The output tensor has shape `[2, 2, 4, 1]` and value: +// +// ``` +// x = [[[[1], [3]], [[5], [7]]], +// [[[2], [4]], [[10], [12]]], +// [[[5], [7]], [[13], [15]]], +// [[[6], [8]], [[14], [16]]]] +// ``` +func BatchToSpace(scope *Scope, input tf.Output, crops tf.Output, block_size int64) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{"hashed_output": hashed_output, "num_buckets": num_buckets, "hash_key": hash_key, "out_type": out_type, "internal_type": internal_type} + attrs := map[string]interface{}{"block_size": block_size} opspec := tf.OpSpec{ - Type: "SparseCross", + Type: "BatchToSpace", Input: []tf.Input{ - tf.OutputList(indices), tf.OutputList(values), tf.OutputList(shapes), tf.OutputList(dense_inputs), + input, crops, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) + return op.Output(0) } -// DecodeJpegAttr is an optional argument to DecodeJpeg. -type DecodeJpegAttr func(optionalAttr) +// RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr is an optional argument to RetrieveTPUEmbeddingStochasticGradientDescentParameters. +type RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr func(optionalAttr) -// DecodeJpegChannels sets the optional channels attribute to value. +// RetrieveTPUEmbeddingStochasticGradientDescentParametersTableId sets the optional table_id attribute to value. +// If not specified, defaults to -1 // -// value: Number of color channels for the decoded image. -// If not specified, defaults to 0 -func DecodeJpegChannels(value int64) DecodeJpegAttr { +// REQUIRES: value >= -1 +func RetrieveTPUEmbeddingStochasticGradientDescentParametersTableId(value int64) RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr { return func(m optionalAttr) { - m["channels"] = value + m["table_id"] = value } } -// DecodeJpegRatio sets the optional ratio attribute to value. -// -// value: Downscaling ratio. -// If not specified, defaults to 1 -func DecodeJpegRatio(value int64) DecodeJpegAttr { - return func(m optionalAttr) { - m["ratio"] = value - } -} - -// DecodeJpegFancyUpscaling sets the optional fancy_upscaling attribute to value. -// -// value: If true use a slower but nicer upscaling of the -// chroma planes (yuv420/422 only). -// If not specified, defaults to true -func DecodeJpegFancyUpscaling(value bool) DecodeJpegAttr { - return func(m optionalAttr) { - m["fancy_upscaling"] = value - } -} - -// DecodeJpegTryRecoverTruncated sets the optional try_recover_truncated attribute to value. -// -// value: If true try to recover an image from truncated input. -// If not specified, defaults to false -func DecodeJpegTryRecoverTruncated(value bool) DecodeJpegAttr { - return func(m optionalAttr) { - m["try_recover_truncated"] = value - } -} - -// DecodeJpegAcceptableFraction sets the optional acceptable_fraction attribute to value. -// -// value: The minimum required fraction of lines before a truncated -// input is accepted. -// If not specified, defaults to 1 -func DecodeJpegAcceptableFraction(value float32) DecodeJpegAttr { - return func(m optionalAttr) { - m["acceptable_fraction"] = value - } -} - -// DecodeJpegDctMethod sets the optional dct_method attribute to value. -// -// value: string specifying a hint about the algorithm used for -// decompression. Defaults to "" which maps to a system-specific -// default. Currently valid values are ["INTEGER_FAST", -// "INTEGER_ACCURATE"]. The hint may be ignored (e.g., the internal -// jpeg library changes to a version that does not have that specific -// option.) +// RetrieveTPUEmbeddingStochasticGradientDescentParametersTableName sets the optional table_name attribute to value. // If not specified, defaults to "" -func DecodeJpegDctMethod(value string) DecodeJpegAttr { +func RetrieveTPUEmbeddingStochasticGradientDescentParametersTableName(value string) RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr { return func(m optionalAttr) { - m["dct_method"] = value + m["table_name"] = value } } -// Decode a JPEG-encoded image to a uint8 tensor. +// Retrieve SGD embedding parameters. // -// The attr `channels` indicates the desired number of color channels for the -// decoded image. +// An op that retrieves optimization parameters from embedding to host +// memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up +// the correct embedding table configuration. For example, this op is +// used to retrieve updated parameters before saving a checkpoint. // -// Accepted values are: -// -// * 0: Use the number of channels in the JPEG-encoded image. -// * 1: output a grayscale image. -// * 3: output an RGB image. -// -// If needed, the JPEG-encoded image is transformed to match the requested number -// of color channels. -// -// The attr `ratio` allows downscaling the image by an integer factor during -// decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than -// downscaling the image later. -// -// -// This op also supports decoding PNGs and non-animated GIFs since the interface is -// the same, though it is cleaner to use `tf.image.decode_image`. -// -// Arguments: -// contents: 0-D. The JPEG-encoded image. -// -// Returns 3-D with shape `[height, width, channels]`.. -func DecodeJpeg(scope *Scope, contents tf.Output, optional ...DecodeJpegAttr) (image tf.Output) { +// Returns Parameter parameters updated by the stochastic gradient descent optimization algorithm. +func RetrieveTPUEmbeddingStochasticGradientDescentParameters(scope *Scope, num_shards int64, shard_id int64, optional ...RetrieveTPUEmbeddingStochasticGradientDescentParametersAttr) (parameters tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "DecodeJpeg", - Input: []tf.Input{ - contents, - }, + Type: "RetrieveTPUEmbeddingStochasticGradientDescentParameters", + Attrs: attrs, } op := scope.AddOperation(opspec) @@ -38545,31 +38579,6 @@ func EncodeJpeg(scope *Scope, image tf.Output, optional ...EncodeJpegAttr) (cont return op.Output(0) } -// JPEG encode input image with provided compression quality. -// -// `image` is a 3-D uint8 Tensor of shape `[height, width, channels]`. -// `quality` is an int32 jpeg compression quality value between 0 and 100. -// -// -// Arguments: -// images: Images to adjust. At least 3-D. -// quality: An int quality to encode to. -// -// Returns 0-D. JPEG-encoded image. -func EncodeJpegVariableQuality(scope *Scope, images tf.Output, quality tf.Output) (contents tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "EncodeJpegVariableQuality", - Input: []tf.Input{ - images, quality, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // ExtractJpegShapeAttr is an optional argument to ExtractJpegShape. type ExtractJpegShapeAttr func(optionalAttr) @@ -38611,78 +38620,120 @@ func ExtractJpegShape(scope *Scope, contents tf.Output, optional ...ExtractJpegS return op.Output(0) } -// Deprecated. Disallowed in GraphDef version >= 2. +// Adjust the contrast of one or more images. // -// DEPRECATED at GraphDef version 2: Use AdjustContrastv2 instead -func AdjustContrast(scope *Scope, images tf.Output, contrast_factor tf.Output, min_value tf.Output, max_value tf.Output) (output tf.Output) { +// `images` is a tensor of at least 3 dimensions. The last 3 dimensions are +// interpreted as `[height, width, channels]`. The other dimensions only +// represent a collection of images, such as `[batch, height, width, channels].` +// +// Contrast is adjusted independently for each channel of each image. +// +// For each channel, the Op first computes the mean of the image pixels in the +// channel and then adjusts each component of each pixel to +// `(x - mean) * contrast_factor + mean`. +// +// Arguments: +// images: Images to adjust. At least 3-D. +// contrast_factor: A float multiplier for adjusting contrast. +// +// Returns The contrast-adjusted image or images. +func AdjustContrastv2(scope *Scope, images tf.Output, contrast_factor tf.Output) (output tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "AdjustContrast", + Type: "AdjustContrastv2", Input: []tf.Input{ - images, contrast_factor, min_value, max_value, + images, contrast_factor, }, } op := scope.AddOperation(opspec) return op.Output(0) } -// RandomPoissonV2Attr is an optional argument to RandomPoissonV2. -type RandomPoissonV2Attr func(optionalAttr) - -// RandomPoissonV2Seed sets the optional seed attribute to value. +// Computes the maximum along segments of a tensor. // -// value: If either `seed` or `seed2` are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func RandomPoissonV2Seed(value int64) RandomPoissonV2Attr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// RandomPoissonV2Seed2 sets the optional seed2 attribute to value. +// Read +// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) +// for an explanation of segments. // -// value: A second seed to avoid seed collision. -// If not specified, defaults to 0 -func RandomPoissonV2Seed2(value int64) RandomPoissonV2Attr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// RandomPoissonV2Dtype sets the optional dtype attribute to value. -// If not specified, defaults to DT_INT64 -func RandomPoissonV2Dtype(value tf.DataType) RandomPoissonV2Attr { - return func(m optionalAttr) { - m["dtype"] = value - } -} - -// Outputs random values from the Poisson distribution(s) described by rate. +// This operator is similar to the unsorted segment sum operator found +// [(here)](../../../api_docs/python/math_ops.md#UnsortedSegmentSum). +// Instead of computing the sum over segments, it computes the maximum such that: // -// This op uses two algorithms, depending on rate. If rate >= 10, then -// the algorithm by Hormann is used to acquire samples via -// transformation-rejection. -// See http://www.sciencedirect.com/science/article/pii/0167668793909974. +// \\(output_i = \max_{j...} data[j...]\\) where max is over tuples `j...` such +// that `segment_ids[j...] == i`. +// +// If the maximum is empty for a given segment ID `i`, it outputs the smallest +// possible value for the specific numeric type, +// `output[i] = numeric_limits::lowest()`. +// +// If the given segment ID `i` is negative, then the corresponding value is +// dropped, and will not be included in the result. +// +//
+// +//
+// +// For example: +// +// ``` python +// c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]]) +// tf.unsorted_segment_max(c, tf.constant([0, 1, 0]), num_segments=2) +// # ==> [[ 4, 3, 3, 4], +// # [5, 6, 7, 8]] +// ``` // -// Otherwise, Knuth's algorithm is used to acquire samples via multiplying uniform -// random variables. -// See Donald E. Knuth (1969). Seminumerical Algorithms. The Art of Computer -// Programming, Volume 2. Addison Wesley // // Arguments: -// shape: 1-D integer tensor. Shape of independent samples to draw from each -// distribution described by the shape parameters given in rate. -// rate: A tensor in which each scalar is a "rate" parameter describing the -// associated poisson distribution. // -// Returns A tensor with shape `shape + shape(rate)`. Each slice -// `[:, ..., :, i0, i1, ...iN]` contains the samples drawn for -// `rate[i0, i1, ...iN]`. -func RandomPoissonV2(scope *Scope, shape tf.Output, rate tf.Output, optional ...RandomPoissonV2Attr) (output tf.Output) { +// segment_ids: A tensor whose shape is a prefix of `data.shape`. +// +// +// Returns Has same shape as data, except for the first `segment_ids.rank` +// dimensions, which are replaced with a single dimension which has size +// `num_segments`. +func UnsortedSegmentMax(scope *Scope, data tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "UnsortedSegmentMax", + Input: []tf.Input{ + data, segment_ids, num_segments, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// DecodeBmpAttr is an optional argument to DecodeBmp. +type DecodeBmpAttr func(optionalAttr) + +// DecodeBmpChannels sets the optional channels attribute to value. +// If not specified, defaults to 0 +func DecodeBmpChannels(value int64) DecodeBmpAttr { + return func(m optionalAttr) { + m["channels"] = value + } +} + +// Decode the first frame of a BMP-encoded image to a uint8 tensor. +// +// The attr `channels` indicates the desired number of color channels for the +// decoded image. +// +// Accepted values are: +// +// * 0: Use the number of channels in the BMP-encoded image. +// * 3: output an RGB image. +// * 4: output an RGBA image. +// +// Arguments: +// contents: 0-D. The BMP-encoded image. +// +// Returns 3-D with shape `[height, width, channels]`. RGB order +func DecodeBmp(scope *Scope, contents tf.Output, optional ...DecodeBmpAttr) (image tf.Output) { if scope.Err() != nil { return } @@ -38691,9 +38742,9 @@ func RandomPoissonV2(scope *Scope, shape tf.Output, rate tf.Output, optional ... a(attrs) } opspec := tf.OpSpec{ - Type: "RandomPoissonV2", + Type: "DecodeBmp", Input: []tf.Input{ - shape, rate, + contents, }, Attrs: attrs, } @@ -38701,34 +38752,6 @@ func RandomPoissonV2(scope *Scope, shape tf.Output, rate tf.Output, optional ... return op.Output(0) } -// Adjust the saturation of one or more images. -// -// `images` is a tensor of at least 3 dimensions. The last dimension is -// interpretted as channels, and must be three. -// -// The input image is considered in the RGB colorspace. Conceptually, the RGB -// colors are first mapped into HSV. A scale is then applied all the saturation -// values, and then remapped back to RGB colorspace. -// -// Arguments: -// images: Images to adjust. At least 3-D. -// scale: A float scale to add to the saturation. -// -// Returns The hue-adjusted image or images. -func AdjustSaturation(scope *Scope, images tf.Output, scale tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "AdjustSaturation", - Input: []tf.Input{ - images, scale, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Decode the frame(s) of a GIF-encoded image to a uint8 tensor. // // GIF images with frame or transparency compression are not supported. @@ -38786,48 +38809,6 @@ func RGBToHSV(scope *Scope, images tf.Output) (output tf.Output) { return op.Output(0) } -// RequantizePerChannelAttr is an optional argument to RequantizePerChannel. -type RequantizePerChannelAttr func(optionalAttr) - -// RequantizePerChannelOutType sets the optional out_type attribute to value. -// -// value: The quantized type of output tensor that needs to be converted. -// If not specified, defaults to DT_QUINT8 -func RequantizePerChannelOutType(value tf.DataType) RequantizePerChannelAttr { - return func(m optionalAttr) { - m["out_type"] = value - } -} - -// Requantizes input with min and max values known per channel. -// -// Arguments: -// input: The original input tensor. -// input_min: The minimum value of the input tensor -// input_max: The maximum value of the input tensor. -// requested_output_min: The minimum value of the output tensor requested. -// requested_output_max: The maximum value of the output tensor requested. -// -// Returns Output tensor.The minimum value of the final output tensorThe maximum value of the final output tensor. -func RequantizePerChannel(scope *Scope, input tf.Output, input_min tf.Output, input_max tf.Output, requested_output_min tf.Output, requested_output_max tf.Output, optional ...RequantizePerChannelAttr) (output tf.Output, output_min tf.Output, output_max tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "RequantizePerChannel", - Input: []tf.Input{ - input, input_min, input_max, requested_output_min, requested_output_max, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - // Outputs a tensor containing the reduction across all input tensors. // // Outputs a tensor containing the reduction across all input tensors passed to ops @@ -38894,72 +38875,103 @@ func DrawBoundingBoxesV2(scope *Scope, images tf.Output, boxes tf.Output, colors return op.Output(0) } -// SampleDistortedBoundingBoxV2Attr is an optional argument to SampleDistortedBoundingBoxV2. -type SampleDistortedBoundingBoxV2Attr func(optionalAttr) +// Returns x + y element-wise. +// +// *NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) +func Add(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Add", + Input: []tf.Input{ + x, y, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} -// SampleDistortedBoundingBoxV2Seed sets the optional seed attribute to value. +// SampleDistortedBoundingBoxAttr is an optional argument to SampleDistortedBoundingBox. +type SampleDistortedBoundingBoxAttr func(optionalAttr) + +// SampleDistortedBoundingBoxSeed sets the optional seed attribute to value. // // value: If either `seed` or `seed2` are set to non-zero, the random number // generator is seeded by the given `seed`. Otherwise, it is seeded by a random // seed. // If not specified, defaults to 0 -func SampleDistortedBoundingBoxV2Seed(value int64) SampleDistortedBoundingBoxV2Attr { +func SampleDistortedBoundingBoxSeed(value int64) SampleDistortedBoundingBoxAttr { return func(m optionalAttr) { m["seed"] = value } } -// SampleDistortedBoundingBoxV2Seed2 sets the optional seed2 attribute to value. +// SampleDistortedBoundingBoxSeed2 sets the optional seed2 attribute to value. // // value: A second seed to avoid seed collision. // If not specified, defaults to 0 -func SampleDistortedBoundingBoxV2Seed2(value int64) SampleDistortedBoundingBoxV2Attr { +func SampleDistortedBoundingBoxSeed2(value int64) SampleDistortedBoundingBoxAttr { return func(m optionalAttr) { m["seed2"] = value } } -// SampleDistortedBoundingBoxV2AspectRatioRange sets the optional aspect_ratio_range attribute to value. +// SampleDistortedBoundingBoxMinObjectCovered sets the optional min_object_covered attribute to value. +// +// value: The cropped area of the image must contain at least this +// fraction of any bounding box supplied. The value of this parameter should be +// non-negative. In the case of 0, the cropped area does not need to overlap +// any of the bounding boxes supplied. +// If not specified, defaults to 0.1 +func SampleDistortedBoundingBoxMinObjectCovered(value float32) SampleDistortedBoundingBoxAttr { + return func(m optionalAttr) { + m["min_object_covered"] = value + } +} + +// SampleDistortedBoundingBoxAspectRatioRange sets the optional aspect_ratio_range attribute to value. // // value: The cropped area of the image must have an aspect ratio = // width / height within this range. // If not specified, defaults to -func SampleDistortedBoundingBoxV2AspectRatioRange(value []float32) SampleDistortedBoundingBoxV2Attr { +func SampleDistortedBoundingBoxAspectRatioRange(value []float32) SampleDistortedBoundingBoxAttr { return func(m optionalAttr) { m["aspect_ratio_range"] = value } } -// SampleDistortedBoundingBoxV2AreaRange sets the optional area_range attribute to value. +// SampleDistortedBoundingBoxAreaRange sets the optional area_range attribute to value. // // value: The cropped area of the image must contain a fraction of the // supplied image within this range. // If not specified, defaults to -func SampleDistortedBoundingBoxV2AreaRange(value []float32) SampleDistortedBoundingBoxV2Attr { +func SampleDistortedBoundingBoxAreaRange(value []float32) SampleDistortedBoundingBoxAttr { return func(m optionalAttr) { m["area_range"] = value } } -// SampleDistortedBoundingBoxV2MaxAttempts sets the optional max_attempts attribute to value. +// SampleDistortedBoundingBoxMaxAttempts sets the optional max_attempts attribute to value. // // value: Number of attempts at generating a cropped region of the image // of the specified constraints. After `max_attempts` failures, return the entire // image. // If not specified, defaults to 100 -func SampleDistortedBoundingBoxV2MaxAttempts(value int64) SampleDistortedBoundingBoxV2Attr { +func SampleDistortedBoundingBoxMaxAttempts(value int64) SampleDistortedBoundingBoxAttr { return func(m optionalAttr) { m["max_attempts"] = value } } -// SampleDistortedBoundingBoxV2UseImageIfNoBoundingBoxes sets the optional use_image_if_no_bounding_boxes attribute to value. +// SampleDistortedBoundingBoxUseImageIfNoBoundingBoxes sets the optional use_image_if_no_bounding_boxes attribute to value. // // value: Controls behavior if no bounding boxes supplied. // If true, assume an implicit bounding box covering the whole input. If false, // raise an error. // If not specified, defaults to false -func SampleDistortedBoundingBoxV2UseImageIfNoBoundingBoxes(value bool) SampleDistortedBoundingBoxV2Attr { +func SampleDistortedBoundingBoxUseImageIfNoBoundingBoxes(value bool) SampleDistortedBoundingBoxAttr { return func(m optionalAttr) { m["use_image_if_no_bounding_boxes"] = value } @@ -39010,16 +39022,12 @@ func SampleDistortedBoundingBoxV2UseImageIfNoBoundingBoxes(value bool) SampleDis // image_size: 1-D, containing `[height, width, channels]`. // bounding_boxes: 3-D with shape `[batch, N, 4]` describing the N bounding boxes // associated with the image. -// min_object_covered: The cropped area of the image must contain at least this -// fraction of any bounding box supplied. The value of this parameter should be -// non-negative. In the case of 0, the cropped area does not need to overlap -// any of the bounding boxes supplied. // // Returns 1-D, containing `[offset_height, offset_width, 0]`. Provide as input to // `tf.slice`.1-D, containing `[target_height, target_width, -1]`. Provide as input to // `tf.slice`.3-D with shape `[1, 1, 4]` containing the distorted bounding box. // Provide as input to `tf.image.draw_bounding_boxes`. -func SampleDistortedBoundingBoxV2(scope *Scope, image_size tf.Output, bounding_boxes tf.Output, min_object_covered tf.Output, optional ...SampleDistortedBoundingBoxV2Attr) (begin tf.Output, size tf.Output, bboxes tf.Output) { +func SampleDistortedBoundingBox(scope *Scope, image_size tf.Output, bounding_boxes tf.Output, optional ...SampleDistortedBoundingBoxAttr) (begin tf.Output, size tf.Output, bboxes tf.Output) { if scope.Err() != nil { return } @@ -39028,9 +39036,9 @@ func SampleDistortedBoundingBoxV2(scope *Scope, image_size tf.Output, bounding_b a(attrs) } opspec := tf.OpSpec{ - Type: "SampleDistortedBoundingBoxV2", + Type: "SampleDistortedBoundingBox", Input: []tf.Input{ - image_size, bounding_boxes, min_object_covered, + image_size, bounding_boxes, }, Attrs: attrs, } @@ -39038,61 +39046,6 @@ func SampleDistortedBoundingBoxV2(scope *Scope, image_size tf.Output, bounding_b return op.Output(0), op.Output(1), op.Output(2) } -// LoadTPUEmbeddingADAMParametersAttr is an optional argument to LoadTPUEmbeddingADAMParameters. -type LoadTPUEmbeddingADAMParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingADAMParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingADAMParametersTableId(value int64) LoadTPUEmbeddingADAMParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingADAMParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingADAMParametersTableName(value string) LoadTPUEmbeddingADAMParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load ADAM embedding parameters. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the ADAM optimization algorithm. -// momenta: Value of momenta used in the ADAM optimization algorithm. -// velocities: Value of velocities used in the ADAM optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingADAMParameters(scope *Scope, parameters tf.Output, momenta tf.Output, velocities tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingADAMParametersAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingADAMParameters", - Input: []tf.Input{ - parameters, momenta, velocities, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - // CropAndResizeGradBoxesAttr is an optional argument to CropAndResizeGradBoxes. type CropAndResizeGradBoxesAttr func(optionalAttr) @@ -39161,15 +39114,93 @@ func ExperimentalIteratorGetDevice(scope *Scope, resource tf.Output) (device tf. return op.Output(0) } -// Computes the derivative of a Gamma random sample w.r.t. `alpha`. -func RandomGammaGrad(scope *Scope, alpha tf.Output, sample tf.Output) (output tf.Output) { +// ResourceStridedSliceAssignAttr is an optional argument to ResourceStridedSliceAssign. +type ResourceStridedSliceAssignAttr func(optionalAttr) + +// ResourceStridedSliceAssignBeginMask sets the optional begin_mask attribute to value. +// If not specified, defaults to 0 +func ResourceStridedSliceAssignBeginMask(value int64) ResourceStridedSliceAssignAttr { + return func(m optionalAttr) { + m["begin_mask"] = value + } +} + +// ResourceStridedSliceAssignEndMask sets the optional end_mask attribute to value. +// If not specified, defaults to 0 +func ResourceStridedSliceAssignEndMask(value int64) ResourceStridedSliceAssignAttr { + return func(m optionalAttr) { + m["end_mask"] = value + } +} + +// ResourceStridedSliceAssignEllipsisMask sets the optional ellipsis_mask attribute to value. +// If not specified, defaults to 0 +func ResourceStridedSliceAssignEllipsisMask(value int64) ResourceStridedSliceAssignAttr { + return func(m optionalAttr) { + m["ellipsis_mask"] = value + } +} + +// ResourceStridedSliceAssignNewAxisMask sets the optional new_axis_mask attribute to value. +// If not specified, defaults to 0 +func ResourceStridedSliceAssignNewAxisMask(value int64) ResourceStridedSliceAssignAttr { + return func(m optionalAttr) { + m["new_axis_mask"] = value + } +} + +// ResourceStridedSliceAssignShrinkAxisMask sets the optional shrink_axis_mask attribute to value. +// If not specified, defaults to 0 +func ResourceStridedSliceAssignShrinkAxisMask(value int64) ResourceStridedSliceAssignAttr { + return func(m optionalAttr) { + m["shrink_axis_mask"] = value + } +} + +// Assign `value` to the sliced l-value reference of `ref`. +// +// The values of `value` are assigned to the positions in the variable +// `ref` that are selected by the slice parameters. The slice parameters +// `begin, `end`, `strides`, etc. work exactly as in `StridedSlice`. +// +// NOTE this op currently does not support broadcasting and so `value`'s +// shape must be exactly the shape produced by the slice of `ref`. +// +// Returns the created operation. +func ResourceStridedSliceAssign(scope *Scope, ref tf.Output, begin tf.Output, end tf.Output, strides tf.Output, value tf.Output, optional ...ResourceStridedSliceAssignAttr) (o *tf.Operation) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "ResourceStridedSliceAssign", + Input: []tf.Input{ + ref, begin, end, strides, value, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} + +// Exits the current frame to its parent frame. +// +// Exit makes its input `data` available to the parent frame. +// +// Arguments: +// data: The tensor to be made available to the parent frame. +// +// Returns The same tensor as `data`. +func Exit(scope *Scope, data tf.Output) (output tf.Output) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "RandomGammaGrad", + Type: "Exit", Input: []tf.Input{ - alpha, sample, + data, }, } op := scope.AddOperation(opspec) @@ -39231,6 +39262,102 @@ func SparseReduceMax(scope *Scope, input_indices tf.Output, input_values tf.Outp return op.Output(0) } +// Concatenates tensors along one dimension. +// +// Arguments: +// values: List of `N` Tensors to concatenate. Their ranks and types must match, +// and their sizes must match in all dimensions except `concat_dim`. +// axis: 0-D. The dimension along which to concatenate. Must be in the +// range [-rank(values), rank(values)). +// +// Returns A `Tensor` with the concatenation of values stacked along the +// `concat_dim` dimension. This tensor's shape matches that of `values` except +// in `concat_dim` where it has the sum of the sizes. +func ConcatV2(scope *Scope, values []tf.Output, axis tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ConcatV2", + Input: []tf.Input{ + tf.OutputList(values), axis, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// MapUnstageAttr is an optional argument to MapUnstage. +type MapUnstageAttr func(optionalAttr) + +// MapUnstageCapacity sets the optional capacity attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func MapUnstageCapacity(value int64) MapUnstageAttr { + return func(m optionalAttr) { + m["capacity"] = value + } +} + +// MapUnstageMemoryLimit sets the optional memory_limit attribute to value. +// If not specified, defaults to 0 +// +// REQUIRES: value >= 0 +func MapUnstageMemoryLimit(value int64) MapUnstageAttr { + return func(m optionalAttr) { + m["memory_limit"] = value + } +} + +// MapUnstageContainer sets the optional container attribute to value. +// If not specified, defaults to "" +func MapUnstageContainer(value string) MapUnstageAttr { + return func(m optionalAttr) { + m["container"] = value + } +} + +// MapUnstageSharedName sets the optional shared_name attribute to value. +// If not specified, defaults to "" +func MapUnstageSharedName(value string) MapUnstageAttr { + return func(m optionalAttr) { + m["shared_name"] = value + } +} + +// Op removes and returns the values associated with the key +// +// from the underlying container. If the underlying container +// does not contain this key, the op will block until it does. +func MapUnstage(scope *Scope, key tf.Output, indices tf.Output, dtypes []tf.DataType, optional ...MapUnstageAttr) (values []tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"dtypes": dtypes} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "MapUnstage", + Input: []tf.Input{ + key, indices, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + if scope.Err() != nil { + return + } + var idx int + var err error + if values, idx, err = makeOutputList(op, idx, "values"); err != nil { + scope.UpdateErr("MapUnstage", err) + return + } + return values +} + // Creates a dataset that shards the input dataset. // // Creates a dataset that shards the input dataset by num_workers, returning a @@ -39263,74 +39390,6 @@ func ExperimentalAutoShardDataset(scope *Scope, input_dataset tf.Output, num_wor return op.Output(0) } -// LoadTPUEmbeddingStochasticGradientDescentParametersAttr is an optional argument to LoadTPUEmbeddingStochasticGradientDescentParameters. -type LoadTPUEmbeddingStochasticGradientDescentParametersAttr func(optionalAttr) - -// LoadTPUEmbeddingStochasticGradientDescentParametersTableId sets the optional table_id attribute to value. -// If not specified, defaults to -1 -// -// REQUIRES: value >= -1 -func LoadTPUEmbeddingStochasticGradientDescentParametersTableId(value int64) LoadTPUEmbeddingStochasticGradientDescentParametersAttr { - return func(m optionalAttr) { - m["table_id"] = value - } -} - -// LoadTPUEmbeddingStochasticGradientDescentParametersTableName sets the optional table_name attribute to value. -// If not specified, defaults to "" -func LoadTPUEmbeddingStochasticGradientDescentParametersTableName(value string) LoadTPUEmbeddingStochasticGradientDescentParametersAttr { - return func(m optionalAttr) { - m["table_name"] = value - } -} - -// Load SGD embedding parameters. -// -// An op that loads optimization parameters into HBM for embedding. Must be -// preceded by a ConfigureTPUEmbeddingHost op that sets up the correct -// embedding table configuration. For example, this op is used to install -// parameters that are loaded from a checkpoint before a training loop is -// executed. -// -// Arguments: -// parameters: Value of parameters used in the stochastic gradient descent optimization algorithm. -// -// -// -// Returns the created operation. -func LoadTPUEmbeddingStochasticGradientDescentParameters(scope *Scope, parameters tf.Output, num_shards int64, shard_id int64, optional ...LoadTPUEmbeddingStochasticGradientDescentParametersAttr) (o *tf.Operation) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_shards": num_shards, "shard_id": shard_id} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "LoadTPUEmbeddingStochasticGradientDescentParameters", - Input: []tf.Input{ - parameters, - }, - Attrs: attrs, - } - return scope.AddOperation(opspec) -} - -// Returns element-wise largest integer not greater than x. -func Floor(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "Floor", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // RecordInputAttr is an optional argument to RecordInput. type RecordInputAttr func(optionalAttr) @@ -39481,19 +39540,121 @@ func ExperimentalDatasetCardinality(scope *Scope, input_dataset tf.Output) (card return op.Output(0) } -// A TPU core selector Op. +// Writes the given dataset to the given file using the TFRecord format. // -// This Op produces a set of TPU cores (for warm-up) or a single TPU core -// (for regular inference) to execute the TPU program on. The output is -// consumed by TPUPartitionedCall. +// Arguments: +// input_dataset: A variant tensor representing the dataset to write. +// filename: A scalar string tensor representing the filename to use. +// compression_type: A scalar string tensor containing either (i) the empty string (no +// compression), (ii) "ZLIB", or (iii) "GZIP". // -// Returns A vector 1 or more TPU cores. -func TPUOrdinalSelector(scope *Scope) (device_ordinals tf.Output) { +// Returns the created operation. +func ExperimentalDatasetToTFRecord(scope *Scope, input_dataset tf.Output, filename tf.Output, compression_type tf.Output) (o *tf.Operation) { if scope.Err() != nil { return } opspec := tf.OpSpec{ - Type: "TPUOrdinalSelector", + Type: "ExperimentalDatasetToTFRecord", + Input: []tf.Input{ + input_dataset, filename, compression_type, + }, + } + return scope.AddOperation(opspec) +} + +// A substitute for `InterleaveDataset` on a fixed list of `N` datasets. +// +// Arguments: +// selector_input_dataset: A dataset of scalar `DT_INT64` elements that determines which of the +// `N` data inputs should produce the next output element. +// data_input_datasets: `N` datasets with the same type that will be interleaved according to +// the values of `selector_input_dataset`. +// +// +func ExperimentalDirectedInterleaveDataset(scope *Scope, selector_input_dataset tf.Output, data_input_datasets []tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "ExperimentalDirectedInterleaveDataset", + Input: []tf.Input{ + selector_input_dataset, tf.OutputList(data_input_datasets), + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// BatchMatMulV2Attr is an optional argument to BatchMatMulV2. +type BatchMatMulV2Attr func(optionalAttr) + +// BatchMatMulV2AdjX sets the optional adj_x attribute to value. +// +// value: If `True`, adjoint the slices of `x`. Defaults to `False`. +// If not specified, defaults to false +func BatchMatMulV2AdjX(value bool) BatchMatMulV2Attr { + return func(m optionalAttr) { + m["adj_x"] = value + } +} + +// BatchMatMulV2AdjY sets the optional adj_y attribute to value. +// +// value: If `True`, adjoint the slices of `y`. Defaults to `False`. +// If not specified, defaults to false +func BatchMatMulV2AdjY(value bool) BatchMatMulV2Attr { + return func(m optionalAttr) { + m["adj_y"] = value + } +} + +// Multiplies slices of two tensors in batches. +// +// Multiplies all slices of `Tensor` `x` and `y` (each slice can be +// viewed as an element of a batch), and arranges the individual results +// in a single output tensor of the same batch size. Each of the +// individual slices can optionally be adjointed (to adjoint a matrix +// means to transpose and conjugate it) before multiplication by setting +// the `adj_x` or `adj_y` flag to `True`, which are by default `False`. +// +// The input tensors `x` and `y` are 2-D or higher with shape `[..., r_x, c_x]` +// and `[..., r_y, c_y]`. +// +// The output tensor is 2-D or higher with shape `[..., r_o, c_o]`, where: +// +// r_o = c_x if adj_x else r_x +// c_o = r_y if adj_y else c_y +// +// It is computed as: +// +// output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :]) +// +// *NOTE*: `BatchMatMulV2` supports broadcasting in the batch dimensions. More +// about broadcasting +// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html). +// +// +// Arguments: +// x: 2-D or higher with shape `[..., r_x, c_x]`. +// y: 2-D or higher with shape `[..., r_y, c_y]`. +// +// Returns 3-D or higher with shape `[..., r_o, c_o]` +func BatchMatMulV2(scope *Scope, x tf.Output, y tf.Output, optional ...BatchMatMulV2Attr) (output tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "BatchMatMulV2", + Input: []tf.Input{ + x, y, + }, + Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) @@ -39516,77 +39677,35 @@ func ExperimentalIgnoreErrorsDataset(scope *Scope, input_dataset tf.Output, outp return op.Output(0) } -// Records the latency of producing `input_dataset` elements in a StatsAggregator. -func ExperimentalLatencyStatsDataset(scope *Scope, input_dataset tf.Output, tag tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ExperimentalLatencyStatsDataset", - Input: []tf.Input{ - input_dataset, tag, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// PrintAttr is an optional argument to Print. -type PrintAttr func(optionalAttr) - -// PrintMessage sets the optional message attribute to value. +// Converts each string in the input Tensor to its hash mod by a number of buckets. // -// value: A string, prefix of the error message. -// If not specified, defaults to "" -func PrintMessage(value string) PrintAttr { - return func(m optionalAttr) { - m["message"] = value - } -} - -// PrintFirstN sets the optional first_n attribute to value. +// The hash function is deterministic on the content of the string within the +// process. The hash function is a keyed hash function, where attribute `key` +// defines the key of the hash function. `key` is an array of 2 elements. // -// value: Only log `first_n` number of times. -1 disables logging. -// If not specified, defaults to -1 -func PrintFirstN(value int64) PrintAttr { - return func(m optionalAttr) { - m["first_n"] = value - } -} - -// PrintSummarize sets the optional summarize attribute to value. -// -// value: Only print this many entries of each tensor. -// If not specified, defaults to 3 -func PrintSummarize(value int64) PrintAttr { - return func(m optionalAttr) { - m["summarize"] = value - } -} - -// Prints a list of tensors. -// -// Passes `input` through to `output` and prints `data` when evaluating. +// A strong hash is important when inputs may be malicious, e.g. URLs with +// additional components. Adversaries could try to make their inputs hash to the +// same bucket for a denial-of-service attack or to skew the results. A strong +// hash prevents this by making it difficult, if not infeasible, to compute inputs +// that hash to the same bucket. This comes at a cost of roughly 4x higher compute +// time than `tf.string_to_hash_bucket_fast`. // // Arguments: -// input: The tensor passed to `output` -// data: A list of tensors to print out when op is evaluated. +// input: The strings to assign a hash bucket. +// num_buckets: The number of buckets. +// key: The key for the keyed hash function passed as a list of two uint64 +// elements. // -// Returns = The unmodified `input` tensor -func Print(scope *Scope, input tf.Output, data []tf.Output, optional ...PrintAttr) (output tf.Output) { +// Returns A Tensor of the same shape as the input `string_tensor`. +func StringToHashBucketStrong(scope *Scope, input tf.Output, num_buckets int64, key []int64) (output tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } + attrs := map[string]interface{}{"num_buckets": num_buckets, "key": key} opspec := tf.OpSpec{ - Type: "Print", + Type: "StringToHashBucketStrong", Input: []tf.Input{ - input, tf.OutputList(data), + input, }, Attrs: attrs, } @@ -39594,75 +39713,6 @@ func Print(scope *Scope, input tf.Output, data []tf.Output, optional ...PrintAtt return op.Output(0) } -// MutableHashTableOfTensorsV2Attr is an optional argument to MutableHashTableOfTensorsV2. -type MutableHashTableOfTensorsV2Attr func(optionalAttr) - -// MutableHashTableOfTensorsV2Container sets the optional container attribute to value. -// -// value: If non-empty, this table is placed in the given container. -// Otherwise, a default container is used. -// If not specified, defaults to "" -func MutableHashTableOfTensorsV2Container(value string) MutableHashTableOfTensorsV2Attr { - return func(m optionalAttr) { - m["container"] = value - } -} - -// MutableHashTableOfTensorsV2SharedName sets the optional shared_name attribute to value. -// -// value: If non-empty, this table is shared under the given name across -// multiple sessions. -// If not specified, defaults to "" -func MutableHashTableOfTensorsV2SharedName(value string) MutableHashTableOfTensorsV2Attr { - return func(m optionalAttr) { - m["shared_name"] = value - } -} - -// MutableHashTableOfTensorsV2UseNodeNameSharing sets the optional use_node_name_sharing attribute to value. -// If not specified, defaults to false -func MutableHashTableOfTensorsV2UseNodeNameSharing(value bool) MutableHashTableOfTensorsV2Attr { - return func(m optionalAttr) { - m["use_node_name_sharing"] = value - } -} - -// MutableHashTableOfTensorsV2ValueShape sets the optional value_shape attribute to value. -// If not specified, defaults to <> -func MutableHashTableOfTensorsV2ValueShape(value tf.Shape) MutableHashTableOfTensorsV2Attr { - return func(m optionalAttr) { - m["value_shape"] = value - } -} - -// Creates an empty hash table. -// -// This op creates a mutable hash table, specifying the type of its keys and -// values. Each value must be a vector. Data can be inserted into the table using -// the insert operations. It does not support the initialization operation. -// -// Arguments: -// key_dtype: Type of the table keys. -// value_dtype: Type of the table values. -// -// Returns Handle to a table. -func MutableHashTableOfTensorsV2(scope *Scope, key_dtype tf.DataType, value_dtype tf.DataType, optional ...MutableHashTableOfTensorsV2Attr) (table_handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"key_dtype": key_dtype, "value_dtype": value_dtype} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "MutableHashTableOfTensorsV2", - - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Creates a dataset that emits `components` as a tuple of tensors once. func TensorDataset(scope *Scope, components []tf.Output, output_shapes []tf.Shape) (handle tf.Output) { if scope.Err() != nil { @@ -39680,27 +39730,49 @@ func TensorDataset(scope *Scope, components []tf.Output, output_shapes []tf.Shap return op.Output(0) } -// ExperimentalStatsAggregatorHandleAttr is an optional argument to ExperimentalStatsAggregatorHandle. -type ExperimentalStatsAggregatorHandleAttr func(optionalAttr) +// ResourceApplyKerasMomentumAttr is an optional argument to ResourceApplyKerasMomentum. +type ResourceApplyKerasMomentumAttr func(optionalAttr) -// ExperimentalStatsAggregatorHandleContainer sets the optional container attribute to value. -// If not specified, defaults to "" -func ExperimentalStatsAggregatorHandleContainer(value string) ExperimentalStatsAggregatorHandleAttr { +// ResourceApplyKerasMomentumUseLocking sets the optional use_locking attribute to value. +// +// value: If `True`, updating of the var and accum tensors will be protected +// by a lock; otherwise the behavior is undefined, but may exhibit less +// contention. +// If not specified, defaults to false +func ResourceApplyKerasMomentumUseLocking(value bool) ResourceApplyKerasMomentumAttr { return func(m optionalAttr) { - m["container"] = value + m["use_locking"] = value } } -// ExperimentalStatsAggregatorHandleSharedName sets the optional shared_name attribute to value. -// If not specified, defaults to "" -func ExperimentalStatsAggregatorHandleSharedName(value string) ExperimentalStatsAggregatorHandleAttr { +// ResourceApplyKerasMomentumUseNesterov sets the optional use_nesterov attribute to value. +// +// value: If `True`, the tensor passed to compute grad will be +// var + momentum * accum, so in the end, the var you get is actually +// var + momentum * accum. +// If not specified, defaults to false +func ResourceApplyKerasMomentumUseNesterov(value bool) ResourceApplyKerasMomentumAttr { return func(m optionalAttr) { - m["shared_name"] = value + m["use_nesterov"] = value } } -// Creates a statistics manager resource. -func ExperimentalStatsAggregatorHandle(scope *Scope, optional ...ExperimentalStatsAggregatorHandleAttr) (handle tf.Output) { +// Update '*var' according to the momentum scheme. Set use_nesterov = True if you +// +// want to use Nesterov momentum. +// +// accum = accum * momentum - lr * grad +// var += accum +// +// Arguments: +// var_: Should be from a Variable(). +// accum: Should be from a Variable(). +// lr: Scaling factor. Must be a scalar. +// grad: The gradient. +// momentum: Momentum. Must be a scalar. +// +// Returns the created operation. +func ResourceApplyKerasMomentum(scope *Scope, var_ tf.Output, accum tf.Output, lr tf.Output, grad tf.Output, momentum tf.Output, optional ...ResourceApplyKerasMomentumAttr) (o *tf.Operation) { if scope.Err() != nil { return } @@ -39709,22 +39781,103 @@ func ExperimentalStatsAggregatorHandle(scope *Scope, optional ...ExperimentalSta a(attrs) } opspec := tf.OpSpec{ - Type: "ExperimentalStatsAggregatorHandle", + Type: "ResourceApplyKerasMomentum", + Input: []tf.Input{ + var_, accum, lr, grad, momentum, + }, + Attrs: attrs, + } + return scope.AddOperation(opspec) +} +// Creates a dataset that changes the batch size. +// +// Creates a dataset that changes the batch size of the dataset to current batch +// size // num_workers. +// +// Arguments: +// input_dataset: A variant tensor representing the input dataset. +// num_workers: A scalar representing the number of workers to distribute this batch across. As +// a result of this transformation the current batch size would end up being +// divided by this parameter. +// +// +func ExperimentalRebatchDataset(scope *Scope, input_dataset tf.Output, num_workers tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "ExperimentalRebatchDataset", + Input: []tf.Input{ + input_dataset, num_workers, + }, Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0) } -// A dataset that splits the elements of its input into multiple elements. -func ExperimentalUnbatchDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { +// Creates a dataset that will write to / read from a snapshot. +// +// This dataset attempts to determine whether a valid snapshot exists at the +// `snapshot_path`, and reads from the snapshot in lieu of using `input_dataset`. +// If not, it will run the preprocessing pipeline as usual, and write out a +// snapshot of the data processed for future use. +// +// Arguments: +// input_dataset: A variant tensor representing the input dataset. +// path: The path we should write snapshots to / read snapshots from. +// +// +func SnapshotDataset(scope *Scope, input_dataset tf.Output, path tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { if scope.Err() != nil { return } attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} opspec := tf.OpSpec{ - Type: "ExperimentalUnbatchDataset", + Type: "SnapshotDataset", + Input: []tf.Input{ + input_dataset, path, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// L2 Loss. +// +// Computes half the L2 norm of a tensor without the `sqrt`: +// +// output = sum(t ** 2) / 2 +// +// Arguments: +// t: Typically 2-D, but may have any dimensions. +// +// Returns 0-D. +func L2Loss(scope *Scope, t tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "L2Loss", + Input: []tf.Input{ + t, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset that contains the unique elements of `input_dataset`. +func ExperimentalUniqueDataset(scope *Scope, input_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} + opspec := tf.OpSpec{ + Type: "ExperimentalUniqueDataset", Input: []tf.Input{ input_dataset, }, @@ -39734,32 +39887,6 @@ func ExperimentalUnbatchDataset(scope *Scope, input_dataset tf.Output, output_ty return op.Output(0) } -// Gets the next output from the given iterator . -func IteratorGetNext(scope *Scope, iterator tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "IteratorGetNext", - Input: []tf.Input{ - iterator, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - if scope.Err() != nil { - return - } - var idx int - var err error - if components, idx, err = makeOutputList(op, idx, "components"); err != nil { - scope.UpdateErr("IteratorGetNext", err) - return - } - return components -} - // Creates a dataset that overrides the maximum intra-op parallelism. // // Arguments: @@ -39783,48 +39910,6 @@ func ExperimentalMaxIntraOpParallelismDataset(scope *Scope, input_dataset tf.Out return op.Output(0) } -// StatefulStandardNormalV2Attr is an optional argument to StatefulStandardNormalV2. -type StatefulStandardNormalV2Attr func(optionalAttr) - -// StatefulStandardNormalV2Dtype sets the optional dtype attribute to value. -// -// value: The type of the output. -// If not specified, defaults to DT_FLOAT -func StatefulStandardNormalV2Dtype(value tf.DataType) StatefulStandardNormalV2Attr { - return func(m optionalAttr) { - m["dtype"] = value - } -} - -// Outputs random values from a normal distribution. -// -// The generated values will have mean 0 and standard deviation 1. -// -// Arguments: -// resource: The handle of the resource variable that stores the state of the RNG. -// algorithm: The RNG algorithm. -// shape: The shape of the output tensor. -// -// Returns A tensor of the specified shape filled with random normal values. -func StatefulStandardNormalV2(scope *Scope, resource tf.Output, algorithm tf.Output, shape tf.Output, optional ...StatefulStandardNormalV2Attr) (output tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "StatefulStandardNormalV2", - Input: []tf.Input{ - resource, algorithm, shape, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // Creates a dataset that uses a custom thread pool to compute `input_dataset`. // // Arguments: @@ -39970,108 +40055,77 @@ func SparseMatMul(scope *Scope, a tf.Output, b tf.Output, optional ...SparseMatM return op.Output(0) } -// Applies sparse addition to `input` using individual values or slices -// -// from `updates` according to indices `indices`. The updates are non-aliasing: -// `input` is only modified in-place if no other operations will use it. -// Otherwise, a copy of `input` is made. This operation has a gradient with -// respect to both `input` and `updates`. -// -// `input` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. -// -// `indices` must be integer tensor, containing indices into `input`. -// It must be shape \\([d_0, ..., d_{Q-2}, K]\\) where `0 < K <= P`. -// -// The innermost dimension of `indices` (with length `K`) corresponds to -// indices into elements (if `K = P`) or `(P-K)`-dimensional slices -// (if `K < P`) along the `K`th dimension of `input`. -// -// `updates` is `Tensor` of rank `Q-1+P-K` with shape: -// -// $$[d_0, ..., d_{Q-2}, input.shape[K], ..., input.shape[P-1]].$$ -// -// For example, say we want to add 4 scattered elements to a rank-1 tensor to 8 -// elements. In Python, that addition would look like this: -// -// input = tf.constant([1, 2, 3, 4, 5, 6, 7, 8]) -// indices = tf.constant([[4], [3], [1], [7]]) -// updates = tf.constant([9, 10, 11, 12]) -// output = tf.scatter_nd_non_aliasing_add(input, indices, updates) -// with tf.Session() as sess: -// print(sess.run(output)) -// -// The resulting value `output` would look like this: -// -// [1, 13, 3, 14, 14, 6, 7, 20] -// -// See `tf.scatter_nd` for more details about how to make updates to slices. -// -// Arguments: -// input: A Tensor. -// indices: A Tensor. Must be one of the following types: `int32`, `int64`. -// A tensor of indices into `input`. -// updates: A Tensor. Must have the same type as ref. A tensor of updated values -// to add to `input`. -// -// Returns A `Tensor` with the same shape as `input`, containing values of `input` -// updated with `updates`. -func ScatterNdNonAliasingAdd(scope *Scope, input tf.Output, indices tf.Output, updates tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ScatterNdNonAliasingAdd", - Input: []tf.Input{ - input, indices, updates, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} +// LearnedUnigramCandidateSamplerAttr is an optional argument to LearnedUnigramCandidateSampler. +type LearnedUnigramCandidateSamplerAttr func(optionalAttr) -// SumAttr is an optional argument to Sum. -type SumAttr func(optionalAttr) - -// SumKeepDims sets the optional keep_dims attribute to value. +// LearnedUnigramCandidateSamplerSeed sets the optional seed attribute to value. // -// value: If true, retain reduced dimensions with length 1. -// If not specified, defaults to false -func SumKeepDims(value bool) SumAttr { +// value: If either seed or seed2 are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func LearnedUnigramCandidateSamplerSeed(value int64) LearnedUnigramCandidateSamplerAttr { return func(m optionalAttr) { - m["keep_dims"] = value + m["seed"] = value } } -// Computes the sum of elements across dimensions of a tensor. +// LearnedUnigramCandidateSamplerSeed2 sets the optional seed2 attribute to value. // -// Reduces `input` along the dimensions given in `axis`. Unless -// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in -// `axis`. If `keep_dims` is true, the reduced dimensions are -// retained with length 1. +// value: An second seed to avoid seed collision. +// If not specified, defaults to 0 +func LearnedUnigramCandidateSamplerSeed2(value int64) LearnedUnigramCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Generates labels for candidate sampling with a learned unigram distribution. +// +// See explanations of candidate sampling and the data formats at +// go/candidate-sampling. +// +// For each batch, this op picks a single set of sampled candidate labels. +// +// The advantages of sampling candidates per-batch are simplicity and the +// possibility of efficient dense matrix multiplication. The disadvantage is that +// the sampled candidates must be chosen independently of the context and of the +// true labels. // // Arguments: -// input: The tensor to reduce. -// axis: The dimensions to reduce. Must be in the range -// `[-rank(input), rank(input))`. +// true_classes: A batch_size * num_true matrix, in which each row contains the +// IDs of the num_true target_classes in the corresponding original label. +// num_true: Number of true labels per context. +// num_sampled: Number of candidates to randomly sample. +// unique: If unique is true, we sample with rejection, so that all sampled +// candidates in a batch are unique. This requires some approximation to +// estimate the post-rejection sampling probabilities. +// range_max: The sampler will sample integers from the interval [0, range_max). // -// Returns The reduced tensor. -func Sum(scope *Scope, input tf.Output, axis tf.Output, optional ...SumAttr) (output tf.Output) { +// Returns A vector of length num_sampled, in which each element is +// the ID of a sampled candidate.A batch_size * num_true matrix, representing +// the number of times each candidate is expected to occur in a batch +// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled +// candidate representing the number of times the candidate is expected +// to occur in a batch of sampled candidates. If unique=true, then this is a +// probability. +func LearnedUnigramCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, range_max int64, optional ...LearnedUnigramCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { if scope.Err() != nil { return } - attrs := map[string]interface{}{} + attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique, "range_max": range_max} for _, a := range optional { a(attrs) } opspec := tf.OpSpec{ - Type: "Sum", + Type: "LearnedUnigramCandidateSampler", Input: []tf.Input{ - input, axis, + true_classes, }, Attrs: attrs, } op := scope.AddOperation(opspec) - return op.Output(0) + return op.Output(0), op.Output(1), op.Output(2) } // DecodeProtoV2Attr is an optional argument to DecodeProtoV2. @@ -40201,23 +40255,48 @@ func DecodeProtoV2(scope *Scope, bytes tf.Output, message_type string, field_nam return sizes, values } -// Creates a dataset that emits the outputs of `input_dataset` `count` times. +// Creates a dataset that splits a SparseTensor into elements row-wise. +func SparseTensorSliceDataset(scope *Scope, indices tf.Output, values tf.Output, dense_shape tf.Output) (handle tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "SparseTensorSliceDataset", + Input: []tf.Input{ + indices, values, dense_shape, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Computes the reciprocal of x element-wise. // -// Arguments: -// -// count: A scalar representing the number of times that `input_dataset` should -// be repeated. A value of `-1` indicates that it should be repeated infinitely. -// -// -func RepeatDataset(scope *Scope, input_dataset tf.Output, count tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { +// I.e., \\(y = 1 / x\\). +func Reciprocal(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "Reciprocal", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + +// Creates a dataset that concatenates `input_dataset` with `another_dataset`. +func ConcatenateDataset(scope *Scope, input_dataset tf.Output, another_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { if scope.Err() != nil { return } attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} opspec := tf.OpSpec{ - Type: "RepeatDataset", + Type: "ConcatenateDataset", Input: []tf.Input{ - input_dataset, count, + input_dataset, another_dataset, }, Attrs: attrs, } @@ -40242,39 +40321,21 @@ func TensorSliceDataset(scope *Scope, components []tf.Output, output_shapes []tf return op.Output(0) } -// Creates a dataset that concatenates `input_dataset` with `another_dataset`. -func ConcatenateDataset(scope *Scope, input_dataset tf.Output, another_dataset tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - opspec := tf.OpSpec{ - Type: "ConcatenateDataset", - Input: []tf.Input{ - input_dataset, another_dataset, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - -// Creates a dataset that contains `count` elements from the `input_dataset`. +// Creates a dataset that emits the outputs of `input_dataset` `count` times. // // Arguments: // -// count: A scalar representing the number of elements from the `input_dataset` -// that should be taken. A value of `-1` indicates that all of `input_dataset` -// is taken. +// count: A scalar representing the number of times that `input_dataset` should +// be repeated. A value of `-1` indicates that it should be repeated infinitely. // // -func TakeDataset(scope *Scope, input_dataset tf.Output, count tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { +func RepeatDataset(scope *Scope, input_dataset tf.Output, count tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { if scope.Err() != nil { return } attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} opspec := tf.OpSpec{ - Type: "TakeDataset", + Type: "RepeatDataset", Input: []tf.Input{ input_dataset, count, }, @@ -40284,84 +40345,23 @@ func TakeDataset(scope *Scope, input_dataset tf.Output, count tf.Output, output_ return op.Output(0) } -// Saves input tensors slices to disk. -// -// This is like `Save` except that tensors can be listed in the saved file as being -// a slice of a larger tensor. `shapes_and_slices` specifies the shape of the -// larger tensor and the slice that this tensor covers. `shapes_and_slices` must -// have as many elements as `tensor_names`. -// -// Elements of the `shapes_and_slices` input must either be: -// -// * The empty string, in which case the corresponding tensor is -// saved normally. -// * A string of the form `dim0 dim1 ... dimN-1 slice-spec` where the -// `dimI` are the dimensions of the larger tensor and `slice-spec` -// specifies what part is covered by the tensor to save. -// -// `slice-spec` itself is a `:`-separated list: `slice0:slice1:...:sliceN-1` -// where each `sliceI` is either: -// -// * The string `-` meaning that the slice covers all indices of this dimension -// * `start,length` where `start` and `length` are integers. In that -// case the slice covers `length` indices starting at `start`. -// -// See also `Save`. -// -// Arguments: -// filename: Must have a single element. The name of the file to which we write the -// tensor. -// tensor_names: Shape `[N]`. The names of the tensors to be saved. -// shapes_and_slices: Shape `[N]`. The shapes and slice specifications to use when -// saving the tensors. -// data: `N` tensors to save. -// -// Returns the created operation. -func SaveSlices(scope *Scope, filename tf.Output, tensor_names tf.Output, shapes_and_slices tf.Output, data []tf.Output) (o *tf.Operation) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "SaveSlices", - Input: []tf.Input{ - filename, tensor_names, shapes_and_slices, tf.OutputList(data), - }, - } - return scope.AddOperation(opspec) -} - -// BatchDatasetV2Attr is an optional argument to BatchDatasetV2. -type BatchDatasetV2Attr func(optionalAttr) - -// BatchDatasetV2ParallelCopy sets the optional parallel_copy attribute to value. -// If not specified, defaults to false -func BatchDatasetV2ParallelCopy(value bool) BatchDatasetV2Attr { - return func(m optionalAttr) { - m["parallel_copy"] = value - } -} - // Creates a dataset that batches `batch_size` elements from `input_dataset`. // // Arguments: // -// batch_size: A scalar representing the number of elements to accumulate in a batch. -// drop_remainder: A scalar representing whether the last batch should be dropped in case its size -// is smaller than desired. +// batch_size: A scalar representing the number of elements to accumulate in a +// batch. // // -func BatchDatasetV2(scope *Scope, input_dataset tf.Output, batch_size tf.Output, drop_remainder tf.Output, output_types []tf.DataType, output_shapes []tf.Shape, optional ...BatchDatasetV2Attr) (handle tf.Output) { +func BatchDataset(scope *Scope, input_dataset tf.Output, batch_size tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (handle tf.Output) { if scope.Err() != nil { return } attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes} - for _, a := range optional { - a(attrs) - } opspec := tf.OpSpec{ - Type: "BatchDatasetV2", + Type: "BatchDataset", Input: []tf.Input{ - input_dataset, batch_size, drop_remainder, + input_dataset, batch_size, }, Attrs: attrs, }