Lower vector transfer ops to loop.for operations.

This allows mixing linalg operations with vector transfer operations (with additional modifications to affine ops) and is a step towards solving #189.

PiperOrigin-RevId: 275543361
Change-Id: Icc8ae04738d4232507d5cfd584280dd8e588deb9
This commit is contained in:
Nicolas Vasilache 2019-10-18 14:09:42 -07:00 committed by TensorFlower Gardener
parent 7cbf6afd91
commit 26416a3b89
4 changed files with 19 additions and 16 deletions

View File

@ -770,5 +770,5 @@ mlir::linalg::createLowerLinalgToLLVMPass() {
}
static PassRegistration<LowerLinalgToLLVMPass>
pass("linalg-convert-to-llvm",
pass("convert-linalg-to-llvm",
"Lower the operations from the linalg dialect into the LLVM dialect");

View File

@ -320,7 +320,6 @@ categorizeValueByAffineType(MLIRContext *context, Value *val, unsigned &numDims,
d = getAffineSymbolExpr(numSymbols++, context);
resultVal = val;
} else {
assert(isValidDim(val) && "Must be a valid Dim");
d = getAffineDimExpr(numDims++, context);
resultVal = val;
}

View File

@ -24,11 +24,8 @@ using namespace mlir::edsc;
static SmallVector<ValueHandle, 8> getMemRefSizes(Value *memRef) {
MemRefType memRefType = memRef->getType().cast<MemRefType>();
assert(isStrided(memRefType) && "Expected strided MemRef type");
auto maps = memRefType.getAffineMaps();
(void)maps;
assert((maps.empty() || (maps.size() == 1 && maps[0].isIdentity())) &&
"Layout maps not supported");
SmallVector<ValueHandle, 8> res;
res.reserve(memRefType.getShape().size());
const auto &shape = memRefType.getShape();

View File

@ -25,6 +25,7 @@
#include "mlir/Analysis/NestedMatcher.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Analysis/VectorAnalysis.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/EDSC/Builders.h"
@ -54,9 +55,9 @@
/// // Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into
/// // vector<32x256xf32> and pad with %f0 to handle the boundary case:
/// %f0 = constant 0.0f : f32
/// affine.for %i0 = 0 to %0 {
/// affine.for %i1 = 0 to %1 step 256 {
/// affine.for %i2 = 0 to %2 step 32 {
/// loop.for %i0 = 0 to %0 {
/// loop.for %i1 = 0 to %1 step %c256 {
/// loop.for %i2 = 0 to %2 step %c32 {
/// %v = vector.transfer_read %A[%i0, %i1, %i2], (%f0)
/// {permutation_map: (d0, d1, d2) -> (d2, d1)} :
/// memref<?x?x?xf32>, vector<32x256xf32>
@ -68,8 +69,8 @@
/// abstraction):
///
/// ```mlir {.mlir}
/// affine.for %d2 = 0 to 256 {
/// affine.for %d1 = 0 to 32 {
/// loop.for %d2 = 0 to %c256 {
/// loop.for %d1 = 0 to %c32 {
/// %s = %A[%i0, %i1 + %d1, %i2 + %d2] : f32
/// %tmp[%d2, %d1] = %s
/// }
@ -126,7 +127,7 @@ struct VectorTransferRewriter : public RewritePattern {
/// Analyzes the `transfer` to find an access dimension along the fastest remote
/// MemRef dimension. If such a dimension with coalescing properties is found,
/// `pivs` and `vectorView` are swapped so that the invocation of
/// AffineLoopNestBuilder captures it in the innermost loop.
/// LoopNestBuilder captures it in the innermost loop.
template <typename VectorTransferOpTy>
void coalesceCopy(VectorTransferOpTy transfer,
SmallVectorImpl<edsc::ValueHandle *> *pivs,
@ -282,13 +283,16 @@ VectorTransferRewriter<VectorTransferReadOp>::matchAndRewrite(
auto lbs = vectorView.getLbs();
auto ubs = vectorView.getUbs();
auto steps = vectorView.getSteps();
SmallVector<ValueHandle, 8> steps;
steps.reserve(vectorView.getSteps().size());
for (auto step : vectorView.getSteps())
steps.push_back(constant_index(step));
// 2. Emit alloc-copy-load-dealloc.
ValueHandle tmp = alloc(tmpMemRefType(transfer));
IndexedValue local(tmp);
ValueHandle vec = vector_type_cast(tmp, vectorMemRefType(transfer));
AffineLoopNestBuilder(pivs, lbs, ubs, steps)([&] {
LoopNestBuilder(pivs, lbs, ubs, steps)([&] {
// Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
local(ivs) = remote(clip(transfer, view, ivs));
});
@ -342,14 +346,17 @@ VectorTransferRewriter<VectorTransferWriteOp>::matchAndRewrite(
auto lbs = vectorView.getLbs();
auto ubs = vectorView.getUbs();
auto steps = vectorView.getSteps();
SmallVector<ValueHandle, 8> steps;
steps.reserve(vectorView.getSteps().size());
for (auto step : vectorView.getSteps())
steps.push_back(constant_index(step));
// 2. Emit alloc-store-copy-dealloc.
ValueHandle tmp = alloc(tmpMemRefType(transfer));
IndexedValue local(tmp);
ValueHandle vec = vector_type_cast(tmp, vectorMemRefType(transfer));
std_store(vectorValue, vec, {constant_index(0)});
AffineLoopNestBuilder(pivs, lbs, ubs, steps)([&] {
LoopNestBuilder(pivs, lbs, ubs, steps)([&] {
// Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
remote(clip(transfer, view, ivs)) = local(ivs);
});