Merge pull request from Intel-tensorflow:yang/eigen-bf16

PiperOrigin-RevId: 321267626
Change-Id: I62c174955a9ce3801158ebfb5aee23a40267c04d
This commit is contained in:
TensorFlower Gardener 2020-07-14 17:21:38 -07:00
commit 25913db8b6
18 changed files with 92 additions and 691 deletions

View File

@ -896,7 +896,7 @@ static DenseElementsAttr GetEpsilonValue(Type ty) {
auto value = APFloat(APFloat::IEEEhalf(), APInt(16, raw_epsilon));
return DenseElementsAttr::get(scalar_ty, value);
} else if (element_ty.isBF16()) {
uint16_t raw_epsilon = tensorflow::bfloat16::epsilon().value;
uint16_t raw_epsilon = Eigen::NumTraits<Eigen::bfloat16>::epsilon().value;
auto value = APFloat(APFloat::BFloat(), APInt(16, raw_epsilon));
return DenseElementsAttr::get(scalar_ty, value);
} else if (element_ty.isF32()) {

View File

@ -48,7 +48,9 @@ XlaOp Epsilon(XlaBuilder* builder, PrimitiveType type) {
builder,
static_cast<Eigen::half>(Eigen::NumTraits<Eigen::half>::epsilon()));
case BF16:
return ConstantR0<bfloat16>(builder, bfloat16::epsilon());
return ConstantR0<Eigen::bfloat16>(
builder, static_cast<Eigen::bfloat16>(
Eigen::NumTraits<Eigen::bfloat16>::epsilon()));
case F32:
return ConstantR0<float>(builder, std::numeric_limits<float>::epsilon());
case F64:
@ -70,7 +72,8 @@ XlaOp MinFiniteValue(XlaBuilder* builder, PrimitiveType type) {
return ConstantR0<Eigen::half>(builder,
Eigen::NumTraits<Eigen::half>::lowest());
case BF16:
return ConstantR0<bfloat16>(builder, bfloat16::lowest());
return ConstantR0<Eigen::bfloat16>(
builder, Eigen::NumTraits<Eigen::bfloat16>::lowest());
case F32:
return ConstantR0<float>(builder, -std::numeric_limits<float>::max());
case F64:
@ -86,7 +89,8 @@ XlaOp MinPositiveNormalValue(XlaBuilder* builder, PrimitiveType type) {
return ConstantR0<Eigen::half>(builder,
std::numeric_limits<Eigen::half>::min());
case BF16:
return ConstantR0<bfloat16>(builder, bfloat16::min_positive_normal());
return ConstantR0<Eigen::bfloat16>(
builder, std::numeric_limits<Eigen::bfloat16>::min());
case F32:
return ConstantR0<float>(builder, std::numeric_limits<float>::min());
case F64:
@ -108,7 +112,8 @@ XlaOp MaxFiniteValue(XlaBuilder* builder, PrimitiveType type) {
return ConstantR0<Eigen::half>(builder,
Eigen::NumTraits<Eigen::half>::highest());
case BF16:
return ConstantR0<bfloat16>(builder, bfloat16::highest());
return ConstantR0<Eigen::bfloat16>(
builder, Eigen::NumTraits<Eigen::bfloat16>::highest());
case F32:
return ConstantR0<float>(builder, std::numeric_limits<float>::max());
case F64:
@ -125,8 +130,8 @@ XlaOp NanValue(XlaBuilder* builder, PrimitiveType type) {
return ConstantR0<Eigen::half>(
builder, Eigen::NumTraits<Eigen::half>::quiet_NaN());
case BF16:
return ConstantR0<bfloat16>(
builder, bfloat16(std::numeric_limits<float>::quiet_NaN()));
return ConstantR0<Eigen::bfloat16>(
builder, Eigen::NumTraits<Eigen::bfloat16>::quiet_NaN());
case F32:
return ConstantR0<float>(builder,
std::numeric_limits<float>::quiet_NaN());

View File

@ -218,23 +218,12 @@ int64 RecursiveElementCount(const Shape& shape) {
// Returns whether the given value is infinity.
template <typename NativeT>
bool IsInf(NativeT val) {
return std::isinf(val);
return Eigen::numext::isinf(val);
}
template <>
bool IsInf<half>(half val) {
return std::isinf(static_cast<float>(val));
}
// Returns whether the given value is nan.
template <typename NativeT>
float IsNan(NativeT value) {
return std::isnan(value);
}
template <>
float IsNan(half value) {
return IsNan<float>(static_cast<float>(value));
bool IsNan(NativeT value) {
return Eigen::numext::isnan(value);
}
// Converts the given floating-point value to a string.

View File

@ -455,10 +455,10 @@ int NPyBfloat16_Compare(const void* a, const void* b, void* arr) {
return 1;
}
// NaNs sort to the end.
if (!std::isnan(x) && std::isnan(y)) {
if (!Eigen::numext::isnan(x) && Eigen::numext::isnan(y)) {
return -1;
}
if (std::isnan(x) && !std::isnan(y)) {
if (Eigen::numext::isnan(x) && !Eigen::numext::isnan(y)) {
return 1;
}
return 0;
@ -962,7 +962,7 @@ struct Frexp {
struct Heaviside {
bfloat16 operator()(bfloat16 bx, bfloat16 h0) {
float x = static_cast<float>(bx);
if (std::isnan(x)) {
if (Eigen::numext::isnan(x)) {
return bx;
}
if (x < 0) {
@ -984,7 +984,9 @@ struct IsInf {
bool operator()(bfloat16 a) { return std::isinf(static_cast<float>(a)); }
};
struct IsNan {
bool operator()(bfloat16 a) { return std::isnan(static_cast<float>(a)); }
bool operator()(bfloat16 a) {
return Eigen::numext::isnan(static_cast<float>(a));
}
};
struct Ldexp {
bfloat16 operator()(bfloat16 a, int exp) {
@ -1200,25 +1202,25 @@ struct Ge {
struct Maximum {
bfloat16 operator()(bfloat16 a, bfloat16 b) {
float fa(a), fb(b);
return std::isnan(fa) || fa > fb ? a : b;
return Eigen::numext::isnan(fa) || fa > fb ? a : b;
}
};
struct Minimum {
bfloat16 operator()(bfloat16 a, bfloat16 b) {
float fa(a), fb(b);
return std::isnan(fa) || fa < fb ? a : b;
return Eigen::numext::isnan(fa) || fa < fb ? a : b;
}
};
struct Fmax {
bfloat16 operator()(bfloat16 a, bfloat16 b) {
float fa(a), fb(b);
return std::isnan(fb) || fa > fb ? a : b;
return Eigen::numext::isnan(fb) || fa > fb ? a : b;
}
};
struct Fmin {
bfloat16 operator()(bfloat16 a, bfloat16 b) {
float fa(a), fb(b);
return std::isnan(fb) || fa < fb ? a : b;
return Eigen::numext::isnan(fb) || fa < fb ? a : b;
}
};
@ -1244,7 +1246,8 @@ struct NextAfter {
float from_as_float(from), to_as_float(to);
memcpy(&from_as_int, &from, sizeof(bfloat16));
memcpy(&to_as_int, &to, sizeof(bfloat16));
if (std::isnan(from_as_float) || std::isnan(to_as_float)) {
if (Eigen::numext::isnan(from_as_float) ||
Eigen::numext::isnan(to_as_float)) {
return bfloat16(std::numeric_limits<float>::quiet_NaN());
}
if (from_as_int == to_as_int) {

View File

@ -2674,7 +2674,9 @@ struct MinMaxFiniteValue<Eigen::half> {
template <>
struct MinMaxFiniteValue<bfloat16> {
static double max() { return static_cast<double>(bfloat16::highest()); }
static double max() {
return static_cast<double>(Eigen::NumTraits<Eigen::bfloat16>::highest());
}
static double min() { return -max(); }
};

View File

@ -103,7 +103,8 @@ INSTANTIATE_TEST_SUITE_P(
::testing::Values(
// The largest negative number smaller than zero in bf16 that's not
// denormalized.
std::make_pair(static_cast<float>(-bfloat16::min_positive_normal()),
std::make_pair(static_cast<float>(
-std::numeric_limits<Eigen::bfloat16>::min()),
0.0f),
// Test odd and even values.
std::make_pair(32.75f, 33.00f), std::make_pair(32.50f, 32.75f),

View File

@ -17,7 +17,6 @@ limitations under the License.
#define TENSORFLOW_CORE_FRAMEWORK_BFLOAT16_H_
#include "tensorflow/core/framework/numeric_types.h"
#include "tensorflow/core/platform/byte_order.h"
#include "tensorflow/core/platform/types.h"
// Compact 16-bit encoding of floating point numbers. This representation uses

View File

@ -35,14 +35,16 @@ TEST(Bfloat16Test, FlushDenormalsToZero) {
for (float denorm = -std::numeric_limits<float>::denorm_min();
denorm < std::numeric_limits<float>::denorm_min();
denorm = std::nextafterf(denorm, 1.0f)) {
bfloat16 bf_trunc = bfloat16::truncate_to_bfloat16(denorm);
bfloat16 bf_trunc =
bfloat16(Eigen::bfloat16_impl::truncate_to_bfloat16(denorm));
ASSERT_EQ(static_cast<float>(bf_trunc), 0.0f);
if (std::signbit(denorm)) {
ASSERT_EQ(bf_trunc.value, 0x8000) << denorm;
} else {
ASSERT_EQ(bf_trunc.value, 0x0000) << denorm;
}
bfloat16 bf_round = bfloat16::round_to_bfloat16(denorm);
bfloat16 bf_round =
bfloat16(Eigen::bfloat16_impl::float_to_bfloat16_rtne(denorm));
ASSERT_EQ(static_cast<float>(bf_round), 0.0f);
if (std::signbit(denorm)) {
ASSERT_EQ(bf_round.value, 0x8000) << denorm;
@ -88,7 +90,8 @@ class Bfloat16Test : public ::testing::Test,
public ::testing::WithParamInterface<Bfloat16TestParam> {};
TEST_P(Bfloat16Test, TruncateTest) {
bfloat16 truncated = bfloat16::truncate_to_bfloat16((GetParam().input));
bfloat16 truncated =
bfloat16(Eigen::bfloat16_impl::truncate_to_bfloat16((GetParam().input)));
if (std::isnan(GetParam().input)) {
EXPECT_TRUE(std::isnan(float(truncated)) || std::isinf(float(truncated)));
@ -97,7 +100,8 @@ TEST_P(Bfloat16Test, TruncateTest) {
EXPECT_EQ(GetParam().expected_truncation, float(truncated));
bfloat16 rounded = bfloat16::round_to_bfloat16((GetParam().input));
bfloat16 rounded = bfloat16(
Eigen::bfloat16_impl::float_to_bfloat16_rtne((GetParam().input)));
if (std::isnan(GetParam().input)) {
EXPECT_TRUE(std::isnan(float(rounded)) || std::isinf(float(rounded)));
return;
@ -172,9 +176,13 @@ TEST(Bfloat16Test, Conversion) {
}
TEST(Bfloat16Test, Epsilon) {
EXPECT_LT(1.0f, static_cast<float>(bfloat16::epsilon() + bfloat16(1.0f)));
EXPECT_EQ(1.0f, static_cast<float>((bfloat16::epsilon() / bfloat16(2.0f)) +
bfloat16(1.0f)));
EXPECT_LT(1.0f,
static_cast<float>(Eigen::NumTraits<Eigen::bfloat16>::epsilon() +
bfloat16(1.0f)));
EXPECT_EQ(1.0f,
static_cast<float>((Eigen::NumTraits<Eigen::bfloat16>::epsilon() /
bfloat16(2.0f)) +
bfloat16(1.0f)));
}
TEST(Bfloat16Test, Negate) {

View File

@ -43,47 +43,17 @@ typedef Eigen::QUInt16 quint16;
} // namespace tensorflow
static inline tensorflow::bfloat16 FloatToBFloat16(float float_val) {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return *reinterpret_cast<tensorflow::bfloat16*>(
reinterpret_cast<uint16_t*>(&float_val));
return *reinterpret_cast<tensorflow::bfloat16*>(
reinterpret_cast<uint16_t*>(&float_val));
#else
return *reinterpret_cast<tensorflow::bfloat16*>(
&(reinterpret_cast<uint16_t*>(&float_val)[1]));
return *reinterpret_cast<tensorflow::bfloat16*>(
&(reinterpret_cast<uint16_t*>(&float_val)[1]));
#endif
}
namespace Eigen {
// TODO(xpan): We probably need to overwrite more methods to have correct eigen
// behavior. E.g. epsilon(), dummy_precision, etc. See NumTraits.h in eigen.
template <>
struct NumTraits<tensorflow::bfloat16>
: GenericNumTraits<tensorflow::bfloat16> {
enum {
IsInteger = 0,
IsSigned = 1,
RequireInitialization = 0
};
static EIGEN_STRONG_INLINE tensorflow::bfloat16 highest() {
return FloatToBFloat16(NumTraits<float>::highest());
}
static EIGEN_STRONG_INLINE tensorflow::bfloat16 lowest() {
return FloatToBFloat16(NumTraits<float>::lowest());
}
static EIGEN_STRONG_INLINE tensorflow::bfloat16 infinity() {
return FloatToBFloat16(NumTraits<float>::infinity());
}
static EIGEN_STRONG_INLINE tensorflow::bfloat16 quiet_NaN() {
return FloatToBFloat16(NumTraits<float>::quiet_NaN());
}
};
template <>
struct NumTraits<tensorflow::tstring> : GenericNumTraits<tensorflow::tstring> {
enum {
@ -104,30 +74,6 @@ struct NumTraits<tensorflow::tstring> : GenericNumTraits<tensorflow::tstring> {
static inline tensorflow::tstring quiet_NaN();
};
using ::tensorflow::operator==;
using ::tensorflow::operator!=;
namespace numext {
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE tensorflow::bfloat16 log(
const tensorflow::bfloat16& x) {
return static_cast<tensorflow::bfloat16>(::logf(static_cast<float>(x)));
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE tensorflow::bfloat16 exp(
const tensorflow::bfloat16& x) {
return static_cast<tensorflow::bfloat16>(::expf(static_cast<float>(x)));
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE tensorflow::bfloat16 abs(
const tensorflow::bfloat16& x) {
return static_cast<tensorflow::bfloat16>(::fabsf(static_cast<float>(x)));
}
} // namespace numext
} // namespace Eigen
#if defined(_MSC_VER) && !defined(__clang__)
@ -138,6 +84,13 @@ struct hash<Eigen::half> {
return static_cast<std::size_t>(a.x);
}
};
template <>
struct hash<Eigen::bfloat16> {
std::size_t operator()(const Eigen::bfloat16& a) const {
return hash<float>()(static_cast<float>(a));
}
};
} // namespace std
#endif // _MSC_VER

View File

@ -278,48 +278,6 @@ template <typename From, typename To>
struct functor_traits<scalar_cast_op<std::complex<From>, std::complex<To>>>
: functor_traits_complex_impl<std::complex<From>, std::complex<To>> {};
// Specialized cast op impls for bfloat16.
template <>
struct scalar_cast_op<::tensorflow::bfloat16, float> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
typedef float result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float operator()(
const ::tensorflow::bfloat16& a) const {
float ret;
uint16_t* p = reinterpret_cast<uint16_t*>(&ret);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
p[0] = a.value;
p[1] = 0;
#else
static_assert(::tensorflow::port::kLittleEndian,
"Not a little endian system!");
p[0] = 0;
p[1] = a.value;
#endif
return ret;
}
};
template <>
struct functor_traits<scalar_cast_op<::tensorflow::bfloat16, float>> {
enum { Cost = NumTraits<float>::AddCost, PacketAccess = false };
};
template <>
struct scalar_cast_op<float, ::tensorflow::bfloat16> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
typedef ::tensorflow::bfloat16 result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ::tensorflow::bfloat16 operator()(
const float a) const {
return ::tensorflow::bfloat16(a);
}
};
template <>
struct functor_traits<scalar_cast_op<float, ::tensorflow::bfloat16>> {
enum { Cost = NumTraits<float>::AddCost, PacketAccess = false };
};
} // namespace internal
} // namespace Eigen

View File

@ -165,7 +165,7 @@ bool IsZero(T v);
template <>
ALWAYS_INLINE bool IsZero(bfloat16 v) {
return v.IsZero();
return !static_cast<bool>(v);
}
template <>

View File

@ -14,9 +14,6 @@ limitations under the License.
==============================================================================*/
#define EIGEN_USE_THREADS
// clang-format off
#include "tensorflow/core/lib/bfloat16/bfloat16.h"
// clang-format on
#include "tensorflow/core/kernels/training_ops.h"
#include <algorithm> // NOLINT
@ -26,6 +23,7 @@ limitations under the License.
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/kernels/training_op_helpers.h"
#include "tensorflow/core/kernels/variable_ops.h"
#include "tensorflow/core/lib/bfloat16/bfloat16.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/util/util.h"

View File

@ -12,7 +12,6 @@ package(
cc_library(
name = "bfloat16",
srcs = ["bfloat16.cc"],
hdrs = ["bfloat16.h"],
deps = [
"//tensorflow/core/platform:byte_order",
@ -24,7 +23,6 @@ cc_library(
filegroup(
name = "mobile_srcs_no_runtime",
srcs = [
"bfloat16.cc",
"bfloat16.h",
],
)

View File

@ -1,28 +0,0 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/lib/bfloat16/bfloat16.h"
#include "third_party/eigen3/Eigen/Core"
namespace tensorflow {
const uint16_t bfloat16::NAN_VALUE;
const uint16_t bfloat16::ZERO_VALUE;
B16_DEVICE_FUNC bfloat16::operator Eigen::half() const {
return static_cast<Eigen::half>(float(*this));
}
} // end namespace tensorflow

View File

@ -16,520 +16,13 @@ limitations under the License.
#ifndef TENSORFLOW_CORE_LIB_BFLOAT16_BFLOAT16_H_
#define TENSORFLOW_CORE_LIB_BFLOAT16_BFLOAT16_H_
#include <cmath>
#include <complex>
#include <iostream>
#include <limits>
// clang-format off
#include "tensorflow/core/platform/byte_order.h"
#if defined(__CUDACC__) || (defined(__HIPCC__) && defined(__HIP__))
// All functions callable from CUDA code must be qualified with __device__
#define B16_DEVICE_FUNC __host__ __device__
#else
#define B16_DEVICE_FUNC
#endif
namespace Eigen {
struct half;
}
#include "third_party/eigen3/Eigen/Core"
// clang-format on
namespace tensorflow {
// Single precision complex.
typedef std::complex<float> complex64;
// Double precision complex.
typedef std::complex<double> complex128;
// see framework/bfloat16.h for description.
struct bfloat16 {
// The default constructor must yield a zero value, not an uninitialized
// value; some TF kernels use T() as a zero value.
B16_DEVICE_FUNC bfloat16() : value(ZERO_VALUE) {}
B16_DEVICE_FUNC static bfloat16 truncate_to_bfloat16(const float v) {
bfloat16 output;
if (float_isnan(v)) {
output.value = NAN_VALUE;
return output;
} else if (std::fabs(v) < std::numeric_limits<float>::min()) {
// Flush denormal to +/- 0.
output.value = std::signbit(v) ? 0x8000 : 0;
return output;
}
const uint16_t* p = reinterpret_cast<const uint16_t*>(&v);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
output.value = p[0];
#else
output.value = p[1];
#endif
return output;
}
B16_DEVICE_FUNC explicit bfloat16(const float v) {
value = round_to_bfloat16(v).value;
}
B16_DEVICE_FUNC explicit bfloat16(const double val)
: bfloat16(static_cast<float>(val)) {}
// Following the convention of numpy, converting between complex and
// float will lead to loss of imag value.
B16_DEVICE_FUNC explicit bfloat16(const complex64& val)
: bfloat16(val.real()) {}
B16_DEVICE_FUNC explicit bfloat16(const complex128& val)
: bfloat16(static_cast<float>(val.real())) {}
B16_DEVICE_FUNC explicit bfloat16(const unsigned short val)
: bfloat16(static_cast<float>(val)) {}
B16_DEVICE_FUNC explicit bfloat16(const unsigned int val)
: bfloat16(static_cast<float>(val)) {}
B16_DEVICE_FUNC explicit bfloat16(const int val)
: bfloat16(static_cast<float>(val)) {}
B16_DEVICE_FUNC explicit bfloat16(const long val)
: bfloat16(static_cast<float>(val)) {}
B16_DEVICE_FUNC explicit bfloat16(const long long val)
: bfloat16(static_cast<float>(val)) {}
template <class T>
B16_DEVICE_FUNC explicit bfloat16(const T& val)
: bfloat16(static_cast<float>(val)) {}
B16_DEVICE_FUNC explicit operator float() const {
float result = 0;
uint16_t* q = reinterpret_cast<uint16_t*>(&result);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
q[0] = value;
#else
q[1] = value;
#endif
return result;
}
B16_DEVICE_FUNC explicit operator bool() const {
return static_cast<bool>(float(*this));
}
B16_DEVICE_FUNC explicit operator Eigen::half() const;
B16_DEVICE_FUNC explicit operator short() const {
return static_cast<short>(float(*this));
}
B16_DEVICE_FUNC explicit operator int() const {
return static_cast<int>(float(*this));
}
B16_DEVICE_FUNC explicit operator long() const {
return static_cast<long>(float(*this));
}
B16_DEVICE_FUNC explicit operator char() const {
return static_cast<char>(float(*this));
}
B16_DEVICE_FUNC explicit operator signed char() const {
return static_cast<signed char>(float(*this));
}
B16_DEVICE_FUNC explicit operator unsigned char() const {
return static_cast<unsigned char>(float(*this));
}
B16_DEVICE_FUNC explicit operator unsigned short() const {
return static_cast<unsigned short>(float(*this));
}
B16_DEVICE_FUNC explicit operator unsigned int() const {
return static_cast<unsigned int>(float(*this));
}
B16_DEVICE_FUNC explicit operator unsigned long() const {
return static_cast<unsigned long>(float(*this));
}
B16_DEVICE_FUNC explicit operator unsigned long long() const {
return static_cast<unsigned long long>(float(*this));
}
B16_DEVICE_FUNC explicit operator long long() const {
return static_cast<long long>(float(*this));
}
B16_DEVICE_FUNC explicit operator double() const {
return static_cast<double>(float(*this));
}
B16_DEVICE_FUNC explicit operator complex64() const {
return complex64(float(*this), float(0.0));
}
B16_DEVICE_FUNC explicit operator complex128() const {
return complex128(double(*this), double(0.0));
}
union FP32 {
unsigned int u;
float f;
};
// Converts a float point to bfloat16, with round-nearest-to-even as rounding
// method.
// TODO: There is a slightly faster implementation (8% faster on CPU)
// than this (documented in cl/175987786), that is exponentially harder to
// understand and document. Switch to the faster version when converting to
// BF16 becomes compute-bound.
B16_DEVICE_FUNC static bfloat16 round_to_bfloat16(float v) {
uint32_t input;
FP32 f;
f.f = v;
input = f.u;
bfloat16 output;
// Fast rounding algorithm that rounds a half value to nearest even. This
// reduces expected error when we convert a large number of floats. Here
// is how it works:
//
// Definitions:
// To convert a float 32 to bfloat16, a float 32 can be viewed as 32 bits
// with the following tags:
//
// Sign | Exp (8 bits) | Frac (23 bits)
// S EEEEEEEE FFFFFFLRTTTTTTTTTTTTTTT
//
// S: Sign bit.
// E: Exponent bits.
// F: First 6 bits of fraction.
// L: Least significant bit of resulting bfloat16 if we truncate away the
// rest of the float32. This is also the 7th bit of fraction
// R: Rounding bit, 8th bit of fraction.
// T: Sticky bits, rest of fraction, 15 bits.
//
// To round half to nearest even, there are 3 cases where we want to round
// down (simply truncate the result of the bits away, which consists of
// rounding bit and sticky bits) and two cases where we want to round up
// (truncate then add one to the result).
//
// The fast converting algorithm simply adds lsb (L) to 0x7fff (15 bits of
// 1s) as the rounding bias, adds the rounding bias to the input, then
// truncates the last 16 bits away.
//
// To understand how it works, we can analyze this algorithm case by case:
//
// 1. L = 0, R = 0:
// Expect: round down, this is less than half value.
//
// Algorithm:
// - Rounding bias: 0x7fff + 0 = 0x7fff
// - Adding rounding bias to input may create any carry, depending on
// whether there is any value set to 1 in T bits.
// - R may be set to 1 if there is a carry.
// - L remains 0.
// - Note that this case also handles Inf and -Inf, where all fraction
// bits, including L, R and Ts are all 0. The output remains Inf after
// this algorithm.
//
// 2. L = 1, R = 0:
// Expect: round down, this is less than half value.
//
// Algorithm:
// - Rounding bias: 0x7fff + 1 = 0x8000
// - Adding rounding bias to input doesn't change sticky bits but
// adds 1 to rounding bit.
// - L remains 1.
//
// 3. L = 0, R = 1, all of T are 0:
// Expect: round down, this is exactly at half, the result is already
// even (L=0).
//
// Algorithm:
// - Rounding bias: 0x7fff + 0 = 0x7fff
// - Adding rounding bias to input sets all sticky bits to 1, but
// doesn't create a carry.
// - R remains 1.
// - L remains 0.
//
// 4. L = 1, R = 1:
// Expect: round up, this is exactly at half, the result needs to be
// round to the next even number.
//
// Algorithm:
// - Rounding bias: 0x7fff + 1 = 0x8000
// - Adding rounding bias to input doesn't change sticky bits, but
// creates a carry from rounding bit.
// - The carry sets L to 0, creates another carry bit and propagate
// forward to F bits.
// - If all the F bits are 1, a carry then propagates to the exponent
// bits, which then creates the minimum value with the next exponent
// value. Note that we won't have the case where exponents are all 1,
// since that's either a NaN (handled in the other if condition) or inf
// (handled in case 1).
//
// 5. L = 0, R = 1, any of T is 1:
// Expect: round up, this is greater than half.
//
// Algorithm:
// - Rounding bias: 0x7fff + 0 = 0x7fff
// - Adding rounding bias to input creates a carry from sticky bits,
// sets rounding bit to 0, then create another carry.
// - The second carry sets L to 1.
//
// Examples:
//
// Exact half value that is already even:
// Input:
// Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit)
// S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1000000000000000
//
// This falls into case 3. We truncate the rest of 16 bits and no
// carry is created into F and L:
//
// Output:
// Sign | Exp (8 bit) | Frac (first 7 bit)
// S E E E E E E E E F F F F F F L
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
//
// Exact half value, round to next even number:
// Input:
// Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit)
// S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1000000000000000
//
// This falls into case 4. We create a carry from R and T,
// which then propagates into L and F:
//
// Output:
// Sign | Exp (8 bit) | Frac (first 7 bit)
// S E E E E E E E E F F F F F F L
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
//
//
// Max denormal value round to min normal value:
// Input:
// Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit)
// S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT
// 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1111111111111111
//
// This falls into case 4. We create a carry from R and T,
// propagate into L and F, which then propagates into exponent
// bits:
//
// Output:
// Sign | Exp (8 bit) | Frac (first 7 bit)
// S E E E E E E E E F F F F F F L
// 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
//
// Max normal value round to Inf:
// Input:
// Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit)
// S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT
// 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1111111111111111
//
// This falls into case 4. We create a carry from R and T,
// propagate into L and F, which then propagates into exponent
// bits:
//
// Sign | Exp (8 bit) | Frac (first 7 bit)
// S E E E E E E E E F F F F F F L
// 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
//
//
// Least significant bit of resulting bfloat.
uint32_t lsb = (input >> 16) & 1;
uint32_t rounding_bias = 0x7fff + lsb;
input += rounding_bias;
output.value = static_cast<uint16_t>(input >> 16);
if ((f.u & 0xff800000u) == 0) {
// Flush positive denormal to 0
output.value = 0x0;
}
if ((f.u & 0xff800000u) == 0x80000000u) {
// Flush negative denormal to -0
output.value = 0x8000;
}
if (float_isnan(v)) {
output.value = NAN_VALUE;
}
return output;
}
static bfloat16 epsilon() {
bfloat16 x;
x.value = 0x3c00; // 0x1.0p-7
return x;
}
static bfloat16 highest() {
bfloat16 x;
x.value = 0x7F7F; // 0x1.FEp127
return x;
}
static bfloat16 lowest() {
bfloat16 x;
x.value = 0xFF7F; // -0x1.FEp127
return x;
}
static bfloat16 min_positive_normal() {
bfloat16 x;
x.value = 0x0080; // 0x1p-126
return x;
}
bool IsZero() const { return (value & 0x7FFF) == ZERO_VALUE; }
uint16_t value;
// A value that represents "not a number".
static constexpr uint16_t NAN_VALUE = 0x7FC0;
private:
// A value that represents "zero".
static constexpr uint16_t ZERO_VALUE = 0;
B16_DEVICE_FUNC static bool float_isnan(const float& x) {
#ifdef __CUDA_ARCH__
return ::isnan(x);
#else
return std::isnan(x);
#endif
}
};
B16_DEVICE_FUNC inline std::ostream& operator<<(std::ostream& os,
const bfloat16& dt) {
os << static_cast<float>(dt);
return os;
}
B16_DEVICE_FUNC inline bfloat16 operator+(bfloat16 a, bfloat16 b) {
return bfloat16(static_cast<float>(a) + static_cast<float>(b));
}
B16_DEVICE_FUNC inline bfloat16 operator+(bfloat16 a, int b) {
return bfloat16(static_cast<float>(a) + static_cast<float>(b));
}
B16_DEVICE_FUNC inline bfloat16 operator+(int a, bfloat16 b) {
return bfloat16(static_cast<float>(a) + static_cast<float>(b));
}
B16_DEVICE_FUNC inline bfloat16 operator-(bfloat16 a, bfloat16 b) {
return bfloat16(static_cast<float>(a) - static_cast<float>(b));
}
B16_DEVICE_FUNC inline bfloat16 operator*(bfloat16 a, bfloat16 b) {
return bfloat16(static_cast<float>(a) * static_cast<float>(b));
}
B16_DEVICE_FUNC inline bfloat16 operator/(bfloat16 a, bfloat16 b) {
return bfloat16(static_cast<float>(a) / static_cast<float>(b));
}
B16_DEVICE_FUNC inline bfloat16 operator-(bfloat16 a) {
a.value ^= 0x8000;
return a;
}
B16_DEVICE_FUNC inline bool operator<(bfloat16 a, bfloat16 b) {
return static_cast<float>(a) < static_cast<float>(b);
}
B16_DEVICE_FUNC inline bool operator<=(bfloat16 a, bfloat16 b) {
return static_cast<float>(a) <= static_cast<float>(b);
}
B16_DEVICE_FUNC inline bool operator==(bfloat16 a, bfloat16 b) {
return static_cast<float>(a) == static_cast<float>(b);
}
B16_DEVICE_FUNC inline bool operator!=(bfloat16 a, bfloat16 b) {
return static_cast<float>(a) != static_cast<float>(b);
}
B16_DEVICE_FUNC inline bool operator>(bfloat16 a, bfloat16 b) {
return static_cast<float>(a) > static_cast<float>(b);
}
B16_DEVICE_FUNC inline bool operator>=(bfloat16 a, bfloat16 b) {
return static_cast<float>(a) >= static_cast<float>(b);
}
B16_DEVICE_FUNC inline bfloat16& operator+=(bfloat16& a, bfloat16 b) {
a = a + b;
return a;
}
B16_DEVICE_FUNC inline bfloat16& operator-=(bfloat16& a, bfloat16 b) {
a = a - b;
return a;
}
B16_DEVICE_FUNC inline bfloat16 operator++(bfloat16& a) {
a += bfloat16(1);
return a;
}
B16_DEVICE_FUNC inline bfloat16 operator--(bfloat16& a) {
a -= bfloat16(1);
return a;
}
B16_DEVICE_FUNC inline bfloat16 operator++(bfloat16& a, int) {
bfloat16 original_value = a;
++a;
return original_value;
}
B16_DEVICE_FUNC inline bfloat16 operator--(bfloat16& a, int) {
bfloat16 original_value = a;
--a;
return original_value;
}
B16_DEVICE_FUNC inline bfloat16& operator*=(bfloat16& a, bfloat16 b) {
a = a * b;
return a;
}
B16_DEVICE_FUNC inline bfloat16& operator/=(bfloat16& a, bfloat16 b) {
a = a / b;
return a;
}
typedef Eigen::bfloat16 bfloat16;
} // end namespace tensorflow
namespace std {
template <>
struct hash<tensorflow::bfloat16> {
size_t operator()(const tensorflow::bfloat16& v) const {
return hash<float>()(static_cast<float>(v));
}
};
using tensorflow::bfloat16;
inline bool isinf(const bfloat16& a) { return std::isinf(float(a)); }
inline bool isnan(const bfloat16& a) { return std::isnan(float(a)); }
inline bool isfinite(const bfloat16& a) { return std::isfinite(float(a)); }
inline bfloat16 abs(const bfloat16& a) { return bfloat16(std::abs(float(a))); }
inline bfloat16 exp(const bfloat16& a) { return bfloat16(std::exp(float(a))); }
inline bfloat16 expm1(const bfloat16& a) {
return bfloat16(std::expm1(float(a)));
}
inline bfloat16 log(const bfloat16& a) { return bfloat16(std::log(float(a))); }
inline bfloat16 log1p(const bfloat16& a) {
return bfloat16(std::log1p(float(a)));
}
inline bfloat16 log10(const bfloat16& a) {
return bfloat16(std::log10(float(a)));
}
inline bfloat16 sqrt(const bfloat16& a) {
return bfloat16(std::sqrt(float(a)));
}
inline bfloat16 pow(const bfloat16& a, const bfloat16& b) {
return bfloat16(std::pow(float(a), float(b)));
}
inline bfloat16 sin(const bfloat16& a) { return bfloat16(std::sin(float(a))); }
inline bfloat16 cos(const bfloat16& a) { return bfloat16(std::cos(float(a))); }
inline bfloat16 tan(const bfloat16& a) { return bfloat16(std::tan(float(a))); }
inline bfloat16 tanh(const bfloat16& a) {
return bfloat16(std::tanh(float(a)));
}
inline bfloat16 floor(const bfloat16& a) {
return bfloat16(std::floor(float(a)));
}
inline bfloat16 ceil(const bfloat16& a) {
return bfloat16(std::ceil(float(a)));
}
} // namespace std
#endif // TENSORFLOW_CORE_LIB_BFLOAT16_BFLOAT16_H_

View File

@ -1446,9 +1446,11 @@ Status RangeSize(const Tensor* start_t, const Tensor* limit_t,
}
auto size = (std::is_integral<T>::value
? ((std::abs(limit - start) + std::abs(delta) - T(1)) /
std::abs(delta))
: (std::ceil(std::abs((limit - start) / delta))));
? ((Eigen::numext::abs(limit - start) +
Eigen::numext::abs(delta) - T(1)) /
Eigen::numext::abs(delta))
: (Eigen::numext::ceil(
Eigen::numext::abs((limit - start) / delta))));
c->set_output(0, c->Vector(static_cast<int64>(size)));
return Status::OK();
}

View File

@ -426,10 +426,10 @@ int NPyBfloat16_Compare(const void* a, const void* b, void* arr) {
return 1;
}
// NaNs sort to the end.
if (!std::isnan(x) && std::isnan(y)) {
if (!Eigen::numext::isnan(x) && Eigen::numext::isnan(y)) {
return -1;
}
if (std::isnan(x) && !std::isnan(y)) {
if (Eigen::numext::isnan(x) && !Eigen::numext::isnan(y)) {
return 1;
}
return 0;

View File

@ -22,3 +22,23 @@
return res;
}
};
--- a/Eigen/src/Core/arch/Default/BFloat16.h
+++ a/Eigen/src/Core/arch/Default/BFloat16.h
@@ -291,7 +291,7 @@
return output;
}
const uint16_t* p = reinterpret_cast<const uint16_t*>(&v);
-#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
output.value = p[0];
#else
output.value = p[1];
@@ -493,7 +493,7 @@
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float bfloat16_to_float(__bfloat16_raw h) {
float result = 0;
unsigned short* q = reinterpret_cast<unsigned short*>(&result);
-#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
q[0] = h.value;
#else
q[1] = h.value;