Split out SaveableObjects into their own file
Pulls a couple build rules out of tensorflow/python:training. I'd like to use a SaveableObject in :checkpointable (for saving some Python state by default), which means the file with SaveableObject has to be essientially dependency-free. PiperOrigin-RevId: 194473987
This commit is contained in:
parent
7d3e3fd76a
commit
236120d32d
@ -2967,7 +2967,11 @@ py_library(
|
||||
["training/**/*.py"],
|
||||
exclude = [
|
||||
"**/*test*",
|
||||
"training/training_util.py", # See :training_util
|
||||
# The following targets have their own build rules (same name as the
|
||||
# file):
|
||||
"training/checkpointable.py",
|
||||
"training/saveable_object.py",
|
||||
"training/training_util.py",
|
||||
],
|
||||
),
|
||||
srcs_version = "PY2AND3",
|
||||
@ -2975,6 +2979,7 @@ py_library(
|
||||
":array_ops",
|
||||
":array_ops_gen",
|
||||
":checkpoint_ops_gen",
|
||||
":checkpointable",
|
||||
":client",
|
||||
":control_flow_ops",
|
||||
":data_flow_ops",
|
||||
@ -2998,6 +3003,7 @@ py_library(
|
||||
":random_ops",
|
||||
":resource_variable_ops",
|
||||
":resources",
|
||||
":saveable_object",
|
||||
":sdca_ops",
|
||||
":sparse_ops",
|
||||
":state_ops",
|
||||
@ -3043,6 +3049,12 @@ py_test(
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "saveable_object",
|
||||
srcs = ["training/saveable_object.py"],
|
||||
srcs_version = "PY2AND3",
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "device_util",
|
||||
srcs = ["training/device_util.py"],
|
||||
|
99
tensorflow/python/training/saveable_object.py
Normal file
99
tensorflow/python/training/saveable_object.py
Normal file
@ -0,0 +1,99 @@
|
||||
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Types for specifying saving and loading behavior."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
class SaveSpec(object):
|
||||
"""Class used to describe tensor slices that need to be saved."""
|
||||
|
||||
def __init__(self, tensor, slice_spec, name, dtype=None):
|
||||
"""Creates a `SaveSpec` object.
|
||||
|
||||
Args:
|
||||
tensor: the tensor to save or callable that produces a tensor to save.
|
||||
slice_spec: the slice to be saved. See `Variable.SaveSliceInfo`.
|
||||
name: the name to save the tensor under.
|
||||
dtype: The data type of the Tensor. Required if `tensor` is callable.
|
||||
Used for error checking in the restore op.
|
||||
"""
|
||||
self._tensor = tensor
|
||||
self.slice_spec = slice_spec
|
||||
self.name = name
|
||||
if callable(self._tensor):
|
||||
if dtype is None:
|
||||
raise AssertionError(
|
||||
"When passing a callable `tensor` to a SaveSpec, an explicit "
|
||||
"dtype must be provided.")
|
||||
self.dtype = dtype
|
||||
else:
|
||||
self.dtype = tensor.dtype
|
||||
|
||||
@property
|
||||
def tensor(self):
|
||||
return self._tensor() if callable(self._tensor) else self._tensor
|
||||
|
||||
|
||||
class SaveableObject(object):
|
||||
"""Base class for saving and restoring saveable objects."""
|
||||
|
||||
def __init__(self, op, specs, name):
|
||||
"""Creates a `SaveableObject` object.
|
||||
|
||||
Args:
|
||||
op: the "producer" object that this class wraps; it produces a list of
|
||||
tensors to save. E.g., a "Variable" object saving its backing tensor.
|
||||
specs: a list of SaveSpec, each element of which describes one tensor to
|
||||
save under this object. All Tensors must be on the same device.
|
||||
name: the name to save the object under.
|
||||
"""
|
||||
self.op = op
|
||||
self.specs = specs
|
||||
self.name = name
|
||||
self._device = None
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
"""The device for SaveSpec Tensors."""
|
||||
# Note that SaveSpec.tensor runs Tensor-gathering ops when executing
|
||||
# eagerly, making this call potentially very expensive.
|
||||
#
|
||||
# TODO(allenl): Consider another way to gather device information. Lower
|
||||
# priority since this property isn't part of the normal save()/restore()
|
||||
# workflow, but does come up when some alternative builders are passed to
|
||||
# the Saver.
|
||||
if self._device is None:
|
||||
self._device = self.specs[0].tensor.device
|
||||
return self._device
|
||||
|
||||
def restore(self, restored_tensors, restored_shapes):
|
||||
"""Restores this object from 'restored_tensors'.
|
||||
|
||||
Args:
|
||||
restored_tensors: the tensors that were loaded from a checkpoint
|
||||
restored_shapes: the shapes this object should conform to after
|
||||
restore, or None.
|
||||
|
||||
Returns:
|
||||
An operation that restores the state of the object.
|
||||
|
||||
Raises:
|
||||
ValueError: If the object cannot be restored using the provided
|
||||
parameters.
|
||||
"""
|
||||
# pylint: disable=unused-argument
|
||||
raise ValueError("Calling an abstract method.")
|
@ -54,6 +54,7 @@ from tensorflow.python.ops import variables
|
||||
from tensorflow.python.platform import gfile
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.training import checkpointable
|
||||
from tensorflow.python.training import saveable_object
|
||||
from tensorflow.python.training import training_util
|
||||
from tensorflow.python.training.checkpoint_state_pb2 import CheckpointState
|
||||
from tensorflow.python.util import compat
|
||||
@ -91,84 +92,8 @@ class BaseSaverBuilder(object):
|
||||
Can be extended to create different Ops.
|
||||
"""
|
||||
|
||||
class SaveSpec(object):
|
||||
"""Class used to describe tensor slices that need to be saved."""
|
||||
|
||||
def __init__(self, tensor, slice_spec, name, dtype=None):
|
||||
"""Creates a `SaveSpec` object.
|
||||
|
||||
Args:
|
||||
tensor: the tensor to save or callable that produces a tensor to save.
|
||||
slice_spec: the slice to be saved. See `Variable.SaveSliceInfo`.
|
||||
name: the name to save the tensor under.
|
||||
dtype: The data type of the Tensor. Required if `tensor` is callable.
|
||||
Used for error checking in the restore op.
|
||||
"""
|
||||
self._tensor = tensor
|
||||
self.slice_spec = slice_spec
|
||||
self.name = name
|
||||
if callable(self._tensor):
|
||||
if dtype is None:
|
||||
raise AssertionError(
|
||||
"When passing a callable `tensor` to a SaveSpec, an explicit "
|
||||
"dtype must be provided.")
|
||||
self.dtype = dtype
|
||||
else:
|
||||
self.dtype = tensor.dtype
|
||||
|
||||
@property
|
||||
def tensor(self):
|
||||
return self._tensor() if callable(self._tensor) else self._tensor
|
||||
|
||||
class SaveableObject(object):
|
||||
"""Base class for saving and restoring saveable objects."""
|
||||
|
||||
def __init__(self, op, specs, name):
|
||||
"""Creates a `SaveableObject` object.
|
||||
|
||||
Args:
|
||||
op: the "producer" object that this class wraps; it produces a list of
|
||||
tensors to save. E.g., a "Variable" object saving its backing tensor.
|
||||
specs: a list of SaveSpec, each element of which describes one tensor to
|
||||
save under this object. All Tensors must be on the same device.
|
||||
name: the name to save the object under.
|
||||
"""
|
||||
self.op = op
|
||||
self.specs = specs
|
||||
self.name = name
|
||||
self._device = None
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
"""The device for SaveSpec Tensors."""
|
||||
# Note that SaveSpec.tensor runs Tensor-gathering ops when executing
|
||||
# eagerly, making this call potentially very expensive.
|
||||
#
|
||||
# TODO(allenl): Consider another way to gather device information. Lower
|
||||
# priority since this property isn't part of the normal save()/restore()
|
||||
# workflow, but does come up when some alternative builders are passed to
|
||||
# the Saver.
|
||||
if self._device is None:
|
||||
self._device = self.specs[0].tensor.device
|
||||
return self._device
|
||||
|
||||
def restore(self, restored_tensors, restored_shapes):
|
||||
"""Restores this object from 'restored_tensors'.
|
||||
|
||||
Args:
|
||||
restored_tensors: the tensors that were loaded from a checkpoint
|
||||
restored_shapes: the shapes this object should conform to after
|
||||
restore, or None.
|
||||
|
||||
Returns:
|
||||
An operation that restores the state of the object.
|
||||
|
||||
Raises:
|
||||
ValueError: If the object cannot be restored using the provided
|
||||
parameters.
|
||||
"""
|
||||
# pylint: disable=unused-argument
|
||||
raise ValueError("Calling an abstract method.")
|
||||
SaveSpec = saveable_object.SaveSpec
|
||||
SaveableObject = saveable_object.SaveableObject
|
||||
|
||||
class VariableSaveable(SaveableObject):
|
||||
"""SaveableObject implementation that handles Variables."""
|
||||
|
Loading…
Reference in New Issue
Block a user