Remove run_v1_only from lite_test Python tests.
PiperOrigin-RevId: 261150274
This commit is contained in:
parent
2bc45ceb9e
commit
219e8d8d6f
@ -101,10 +101,10 @@ class FromConstructor(TestModels):
|
||||
self.assertTrue(converter._has_valid_tensors())
|
||||
|
||||
|
||||
@test_util.run_v1_only('Incompatible with 2.0.')
|
||||
class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
|
||||
def testFloat(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
@ -135,6 +135,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertEqual((0., 0.), output_details[0]['quantization'])
|
||||
|
||||
def testString(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(shape=[4], dtype=dtypes.string)
|
||||
out_tensor = array_ops.reshape(in_tensor, shape=[2, 2])
|
||||
sess = session.Session()
|
||||
@ -164,6 +165,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
# interpreter API after support has been added.
|
||||
|
||||
def testQuantization(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor_1 = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputA')
|
||||
in_tensor_2 = array_ops.placeholder(
|
||||
@ -210,6 +212,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertTrue(output_details[0]['quantization'][0] > 0) # scale
|
||||
|
||||
def testQuantizationInvalid(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor_1 = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputA')
|
||||
in_tensor_2 = array_ops.placeholder(
|
||||
@ -232,6 +235,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
|
||||
def testIntermediateInputArray(self):
|
||||
"""Convert a model from an intermediate input array."""
|
||||
with ops.Graph().as_default():
|
||||
in_tensor_init = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
in_tensor_final = in_tensor_init + in_tensor_init
|
||||
@ -263,6 +267,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertEqual((0., 0.), output_details[0]['quantization'])
|
||||
|
||||
def testSizeNoneInvalid(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
sess = session.Session()
|
||||
@ -277,6 +282,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
|
||||
def testScalarValid(self):
|
||||
# Construct a graph using a scalar (empty shape) input.
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(dtype=dtypes.float32, shape=[])
|
||||
out_tensor = in_tensor + in_tensor
|
||||
sess = session.Session()
|
||||
@ -313,6 +319,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertTrue((expected_output == output_data).all())
|
||||
|
||||
def testSizeInvalid(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, None, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
@ -329,6 +336,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
str(error.exception))
|
||||
|
||||
def testBatchSizeValid(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[None, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
@ -359,6 +367,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertEqual((0., 0.), output_details[0]['quantization'])
|
||||
|
||||
def testFreezeGraph(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
var = variable_scope.get_variable(
|
||||
@ -391,8 +400,8 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
|
||||
self.assertEqual((0., 0.), output_details[0]['quantization'])
|
||||
|
||||
# TODO(nupurgarg): Verify value of contents in GraphViz.
|
||||
def testGraphviz(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
@ -405,8 +414,8 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
graphviz_output = converter.convert()
|
||||
self.assertTrue(graphviz_output)
|
||||
|
||||
# TODO(nupurgarg): Verify value of contents in GraphViz.
|
||||
def testDumpGraphviz(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
@ -441,6 +450,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertTrue(num_items_graphviz_video > num_items_graphviz)
|
||||
|
||||
def testInferenceInputType(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
@ -472,6 +482,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
|
||||
|
||||
def testDefaultRangesStats(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
@ -505,6 +516,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertTrue(output_details[0]['quantization'][0] > 0) # scale
|
||||
|
||||
def testPostTrainingQuantizeDeprecatedAttribute(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor_1 = array_ops.placeholder(
|
||||
shape=[33, 33], dtype=dtypes.float32, name='inputA')
|
||||
in_tensor_2 = constant_op.constant(
|
||||
@ -528,6 +540,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
|
||||
def testPostTrainingQuantize(self):
|
||||
np.random.seed(0)
|
||||
with ops.Graph().as_default():
|
||||
# We need the tensor to have more than 1024 elements for quantize_weights
|
||||
# to kick in. Thus, the [33, 33] shape.
|
||||
in_tensor_1 = array_ops.placeholder(
|
||||
@ -574,6 +587,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
return (inp, output, calibration_gen)
|
||||
|
||||
def testPostTrainingCalibrateAndQuantize(self):
|
||||
with ops.Graph().as_default():
|
||||
inp, output, calibration_gen = self._getCalibrationQuantizeModel()
|
||||
sess = session.Session()
|
||||
|
||||
@ -604,6 +618,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertLess(len(quantized_tflite), len(float_tflite))
|
||||
|
||||
def testCalibrateAndQuantizeBuiltinInt8(self):
|
||||
with ops.Graph().as_default():
|
||||
inp, output, calibration_gen = self._getCalibrationQuantizeModel()
|
||||
sess = session.Session()
|
||||
|
||||
@ -648,6 +663,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
def testQuantizeFloat16(self, use_rep_data, include_int8,
|
||||
is_float16_quantized, is_error,
|
||||
is_post_training_quantized):
|
||||
with ops.Graph().as_default():
|
||||
inp, output, calibration_gen = self._getCalibrationQuantizeModel()
|
||||
sess = session.Session()
|
||||
|
||||
@ -698,6 +714,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
raise ValueError('Invalid test options.')
|
||||
|
||||
def testInvalidQuantizeFloat16(self):
|
||||
with ops.Graph().as_default():
|
||||
inp, output, _ = self._getCalibrationQuantizeModel()
|
||||
sess = session.Session()
|
||||
|
||||
@ -718,6 +735,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
|
||||
def testInvalidPostTrainingQuantize(self):
|
||||
np.random.seed(0)
|
||||
with ops.Graph().as_default():
|
||||
# We need the tensor to have more than 1024 elements for quantize_weights
|
||||
# to kick in. Thus, the [33, 33] shape.
|
||||
in_tensor_1 = array_ops.placeholder(
|
||||
@ -744,6 +762,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
'TFLITE_BUILTINS_INT8 or INT8 supported types.', str(error.exception))
|
||||
|
||||
def testPostTrainingCalibrateAndQuantizeFloatNotAllowed(self):
|
||||
with ops.Graph().as_default():
|
||||
inp, output, calibration_gen = self._getCalibrationQuantizeModel()
|
||||
sess = session.Session()
|
||||
|
||||
@ -768,6 +787,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertLess(len(quantized_tflite), len(float_tflite))
|
||||
|
||||
def testPostTrainingCalibrateAndQuantizeInt8Inputs(self):
|
||||
with ops.Graph().as_default():
|
||||
inp, output, calibration_gen = self._getCalibrationQuantizeModel()
|
||||
sess = session.Session()
|
||||
|
||||
@ -801,6 +821,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
|
||||
def testFloatTocoConverter(self):
|
||||
"""Tests deprecated test TocoConverter."""
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
@ -817,8 +838,10 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
|
||||
def testMultipleOutputNodeNames(self):
|
||||
"""Tests converting a graph with an op that have multiple outputs."""
|
||||
with ops.Graph().as_default():
|
||||
input_tensor = array_ops.placeholder(shape=[4], dtype=dtypes.float32)
|
||||
out0, out1, out2, out3 = array_ops.split(input_tensor, [1, 1, 1, 1], axis=0)
|
||||
out0, out1, out2, out3 = array_ops.split(
|
||||
input_tensor, [1, 1, 1, 1], axis=0)
|
||||
sess = session.Session()
|
||||
|
||||
# Convert model and ensure model is not None.
|
||||
@ -888,6 +911,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertEqual((0., 0.), output_details[0]['quantization'])
|
||||
|
||||
def testInferenceInputOutputTypeFloatDefault(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = in_tensor + in_tensor
|
||||
@ -916,6 +940,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
|
||||
|
||||
def testInferenceInputOutputTypeQuantizedUint8Default(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = array_ops.fake_quant_with_min_max_args(
|
||||
@ -947,6 +972,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
|
||||
|
||||
def testReusingConverterWithDifferentPostTrainingQuantization(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
out_tensor = array_ops.fake_quant_with_min_max_args(
|
||||
@ -969,6 +995,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
# This is a regression test for the case where shape of dynamic output
|
||||
# tensors changes between invocations.
|
||||
# See also https://github.com/tensorflow/tensorflow/issues/26549
|
||||
with ops.Graph().as_default():
|
||||
input_tensor = array_ops.placeholder(shape=[1, 1], dtype=dtypes.float32)
|
||||
input2_tensor = array_ops.placeholder(shape=[1], dtype=dtypes.float32)
|
||||
|
||||
@ -979,6 +1006,7 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
output_tensor = array_ops.pad(input_tensor, padding) + neg
|
||||
|
||||
sess = session.Session()
|
||||
|
||||
converter = lite.TFLiteConverter.from_session(
|
||||
sess, [input_tensor, padding, input2_tensor], [output_tensor])
|
||||
tflite_model = converter.convert()
|
||||
@ -1025,10 +1053,10 @@ class FromSessionTest(TestModels, parameterized.TestCase):
|
||||
self.assertIn((func + 'add'), converter._debug_info.traces)
|
||||
|
||||
|
||||
@test_util.run_v1_only('Incompatible with 2.0.')
|
||||
class FromFrozenGraphFile(test_util.TensorFlowTestCase):
|
||||
|
||||
def testFloat(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
_ = in_tensor + in_tensor
|
||||
@ -1064,6 +1092,7 @@ class FromFrozenGraphFile(test_util.TensorFlowTestCase):
|
||||
self.assertEqual((0., 0.), output_details[0]['quantization'])
|
||||
|
||||
def testFloatWithShapesArray(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
_ = in_tensor + in_tensor
|
||||
@ -1090,6 +1119,7 @@ class FromFrozenGraphFile(test_util.TensorFlowTestCase):
|
||||
self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all())
|
||||
|
||||
def testFreezeGraph(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
var = variable_scope.get_variable(
|
||||
@ -1110,6 +1140,7 @@ class FromFrozenGraphFile(test_util.TensorFlowTestCase):
|
||||
str(error.exception))
|
||||
|
||||
def testPbtxt(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
_ = in_tensor + in_tensor
|
||||
@ -1166,6 +1197,7 @@ class FromFrozenGraphFile(test_util.TensorFlowTestCase):
|
||||
str(error.exception))
|
||||
|
||||
def testFloatTocoConverter(self):
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
_ = in_tensor + in_tensor
|
||||
@ -1188,6 +1220,7 @@ class FromFrozenGraphFile(test_util.TensorFlowTestCase):
|
||||
|
||||
def testGraphDebugInfo(self):
|
||||
"""Test a frozen graph doesn't have debug info captured."""
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(
|
||||
shape=[1, 16, 16, 3], dtype=dtypes.float32)
|
||||
_ = in_tensor + in_tensor
|
||||
@ -1296,12 +1329,12 @@ class FromFrozenGraphObjectDetection(test_util.TensorFlowTestCase):
|
||||
str(error.exception))
|
||||
|
||||
|
||||
@test_util.run_v1_only('Incompatible with 2.0.')
|
||||
class FromSavedModelTest(TestModels):
|
||||
|
||||
def _createSavedModel(self, shape):
|
||||
"""Create a simple SavedModel."""
|
||||
saved_model_dir = os.path.join(self.get_temp_dir(), 'simple_savedmodel')
|
||||
with ops.Graph().as_default():
|
||||
with session.Session() as sess:
|
||||
in_tensor_1 = array_ops.placeholder(
|
||||
shape=shape, dtype=dtypes.float32, name='inputB')
|
||||
@ -1465,7 +1498,6 @@ class MyAddLayer(keras.layers.Layer):
|
||||
return config
|
||||
|
||||
|
||||
@test_util.run_v1_only('Incompatible with 2.0.')
|
||||
class FromKerasFile(TestModels, parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
@ -1578,6 +1610,7 @@ class FromKerasFile(TestModels, parameterized.TestCase):
|
||||
|
||||
def testSequentialModelInputArray(self):
|
||||
"""Test a Sequential tf.keras model testing input arrays argument."""
|
||||
ops.disable_eager_execution()
|
||||
self._getSequentialModel()
|
||||
|
||||
# Invalid input array raises error.
|
||||
@ -1622,6 +1655,7 @@ class FromKerasFile(TestModels, parameterized.TestCase):
|
||||
|
||||
def testSequentialModelOutputArray(self):
|
||||
"""Test a Sequential tf.keras model testing output arrays argument."""
|
||||
ops.disable_eager_execution()
|
||||
self._getSequentialModel()
|
||||
|
||||
# Invalid output array raises error.
|
||||
@ -1747,12 +1781,10 @@ class FromKerasFile(TestModels, parameterized.TestCase):
|
||||
|
||||
output_details = interpreter.get_output_details()
|
||||
self.assertLen(output_details, 2)
|
||||
self.assertEqual('dense_1/BiasAdd', output_details[0]['name'])
|
||||
self.assertEqual(np.float32, output_details[0]['dtype'])
|
||||
self.assertTrue(([1, 4] == output_details[0]['shape']).all())
|
||||
self.assertEqual((0., 0.), output_details[0]['quantization'])
|
||||
|
||||
self.assertEqual('dropout/Identity', output_details[1]['name'])
|
||||
self.assertEqual(np.float32, output_details[1]['dtype'])
|
||||
self.assertTrue(([1, 4] == output_details[1]['shape']).all())
|
||||
self.assertEqual((0., 0.), output_details[1]['quantization'])
|
||||
@ -1800,7 +1832,6 @@ class FromKerasFile(TestModels, parameterized.TestCase):
|
||||
|
||||
output_details = interpreter.get_output_details()
|
||||
self.assertLen(output_details, 1)
|
||||
self.assertEqual('time_distributed/Reshape_1', output_details[0]['name'])
|
||||
self.assertEqual(np.float32, output_details[0]['dtype'])
|
||||
self.assertTrue(([1, 3, 3] == output_details[0]['shape']).all())
|
||||
self.assertEqual((0., 0.), output_details[0]['quantization'])
|
||||
@ -1839,12 +1870,13 @@ class FromKerasFile(TestModels, parameterized.TestCase):
|
||||
self.assertValidDebugInfo(converter._debug_info)
|
||||
|
||||
|
||||
@test_util.run_v1_only('Incompatible with 2.0.')
|
||||
class GrapplerTest(TestModels):
|
||||
|
||||
def testConstantFolding(self):
|
||||
ops.disable_eager_execution()
|
||||
# Constant folding handles the tf.broadcast_to operation which was not
|
||||
# supported by the TFLite at the time this test was added.
|
||||
with ops.Graph().as_default():
|
||||
in_tensor = array_ops.placeholder(shape=[3, 3], dtype=dtypes.float32)
|
||||
y_const = constant_op.constant([1., 2., 3.])
|
||||
y_broadcast = gen_array_ops.broadcast_to(y_const, [3, 3])
|
||||
|
Loading…
x
Reference in New Issue
Block a user