Contributing: fix typos
This commit is contained in:
parent
c1c494b07e
commit
215dab52c6
@ -27,7 +27,7 @@ extern "C" {
|
||||
// creating a new op every time. If `raw_device_name` is `NULL` or empty, it
|
||||
// does not set the device name. If it's not `NULL`, then it attempts to parse
|
||||
// and set the device name. It's effectively `TFE_OpSetDevice`, but it is faster
|
||||
// than seperately calling it because if the existing op has the same
|
||||
// than separately calling it because if the existing op has the same
|
||||
// `raw_device_name`, it skips parsing and just leave as it is.
|
||||
TF_CAPI_EXPORT extern void TFE_OpReset(TFE_Op* op_to_reset,
|
||||
const char* op_or_function_name,
|
||||
|
@ -1569,7 +1569,7 @@ TEST_P(ModularFileSystemTest, TestRoundTrip) {
|
||||
if (!status.ok())
|
||||
GTEST_SKIP() << "NewRandomAccessFile() not supported: " << status;
|
||||
|
||||
char scratch[64 /* big enough to accomodate test_data */] = {0};
|
||||
char scratch[64 /* big enough to accommodate test_data */] = {0};
|
||||
StringPiece result;
|
||||
status = read_file->Read(0, test_data.size(), &result, scratch);
|
||||
EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK);
|
||||
|
@ -937,7 +937,7 @@ class ConvertFusedBatchNormGradBase
|
||||
// Gets the result values.
|
||||
Value x_backprop, scale_backprop, offset_backprop;
|
||||
if (op.is_training()) { // training
|
||||
// TODO(b/145536565): handle GPU logic seperately.
|
||||
// TODO(b/145536565): handle GPU logic separately.
|
||||
// Infers the output type with the converted `act`.
|
||||
Type feature_type = RankedTensorType::get(
|
||||
{GetDimSize(act_type, feature_dim)}, kernel_type);
|
||||
|
@ -405,7 +405,7 @@ Status OptimizeGraph(const GrapplerItem& item, int64 num_workers, int64 index,
|
||||
// the latest occurrence of a ReaderDataset (e.g. CSVDataset, TFRecordDataset,
|
||||
// etc...). We then add a shard after that dataset to shard the outputs of
|
||||
// that dataset, in effect giving a piece to each worker. Finally, we remove
|
||||
// occurences from randomness from before that point in the graph (e.g. things
|
||||
// occurrences from randomness from before that point in the graph (e.g. things
|
||||
// like ShuffleDataset) to ensure that `shard` returns a sensible result.
|
||||
switch (policy) {
|
||||
case AutoShardPolicy::OFF:
|
||||
|
@ -248,7 +248,7 @@ service EagerService {
|
||||
|
||||
// Contexts are always created with a deadline and no RPCs within a deadline
|
||||
// will trigger a context garbage collection. KeepAlive calls can be used to
|
||||
// delay this. It can also be used to validate the existance of a context ID
|
||||
// delay this. It can also be used to validate the existence of a context ID
|
||||
// on remote eager worker. If the context is on remote worker, return the same
|
||||
// ID and the current context view ID. This is useful for checking if the
|
||||
// remote worker (potentially with the same task name and hostname / port) is
|
||||
|
@ -156,7 +156,7 @@ TEST(PrepackedCacheTest, TestCacheOnCacheable) {
|
||||
dst.data = dst_data;
|
||||
|
||||
ruy::BasicSpec<float, float> spec;
|
||||
// Perform the multiplication and confirm no caching occured.
|
||||
// Perform the multiplication and confirm no caching occurred.
|
||||
ruy::Mul<ruy::kAllPaths>(lhs, rhs, spec, &context, &dst);
|
||||
EXPECT_EQ(cache->TotalSize(), 0);
|
||||
|
||||
|
@ -41,7 +41,7 @@ def replace_includes(line, supplied_headers_list):
|
||||
|
||||
|
||||
def replace_main(line):
|
||||
"""Updates any occurences of a bare main definition to the Arduino equivalent."""
|
||||
"""Updates any occurrences of a bare main definition to the Arduino equivalent."""
|
||||
main_match = re.match(r'(.*int )(main)(\(.*)', line)
|
||||
if main_match:
|
||||
line = main_match.group(1) + 'tflite_micro_main' + main_match.group(3)
|
||||
|
@ -48,7 +48,7 @@ def replace_arduino_includes(line, supplied_headers_list):
|
||||
|
||||
|
||||
def replace_arduino_main(line):
|
||||
"""Updates any occurences of a bare main definition to the Arduino equivalent."""
|
||||
"""Updates any occurrences of a bare main definition to the Arduino equivalent."""
|
||||
main_match = re.match(r'(.*int )(main)(\(.*)', line)
|
||||
if main_match:
|
||||
line = main_match.group(1) + 'tflite_micro_main' + main_match.group(3)
|
||||
|
@ -32,7 +32,7 @@ std::vector<string> GetOperatorNames(const Model& model);
|
||||
// Counts the number of different types of operators in the model:
|
||||
// Built-in ops, custom ops and select ops.
|
||||
// Each map is mapping from the name of the operator (such as 'Conv') to its
|
||||
// total number of occurences in the model.
|
||||
// total number of occurrences in the model.
|
||||
void CountOperatorsByType(const Model& model,
|
||||
std::map<string, int>* built_in_ops,
|
||||
std::map<string, int>* custom_ops,
|
||||
|
@ -107,7 +107,7 @@ class BucketBySequenceLengthTest(test_base.DatasetTestBase,
|
||||
# Calculate the expected occurrence of individual batch sizes.
|
||||
expected_batch_sizes[length] = \
|
||||
[batch_size] * (bucket_elements // batch_size)
|
||||
# Calculate the expected occurence of individual sequence lengths.
|
||||
# Calculate the expected occurrence of individual sequence lengths.
|
||||
expected_lengths.extend([length] * (bucket_elements // batch_size))
|
||||
|
||||
def build_dataset(sparse):
|
||||
|
@ -307,7 +307,7 @@ class _CategoricalEncodingCombiner(Combiner):
|
||||
# Any newly created token counts in 'base_accumulator''s
|
||||
# per_doc_count_dict will have a last_doc_id of -1. This is always
|
||||
# less than the next doc id (which are strictly positive), so any
|
||||
# future occurences are guaranteed to be counted.
|
||||
# future occurrences are guaranteed to be counted.
|
||||
base_accumulator.per_doc_count_dict[token]["count"] += value["count"]
|
||||
|
||||
return base_accumulator
|
||||
|
@ -756,7 +756,7 @@ class _TextVectorizationCombiner(Combiner):
|
||||
# Any newly created token counts in 'base_accumulator''s
|
||||
# per_doc_count_dict will have a last_doc_id of -1. This is always
|
||||
# less than the next doc id (which are strictly positive), so any
|
||||
# future occurences are guaranteed to be counted.
|
||||
# future occurrences are guaranteed to be counted.
|
||||
base_accumulator.per_doc_count_dict[token]["count"] += value["count"]
|
||||
|
||||
return base_accumulator
|
||||
|
@ -173,8 +173,8 @@ def _RGBToHSVGrad(op, grad):
|
||||
|
||||
This function is a piecewise continuous function as defined here:
|
||||
https://en.wikipedia.org/wiki/HSL_and_HSV#From_RGB
|
||||
We perform the multi variate derivative and compute all partial derivates
|
||||
seperately before adding them in the end. Formulas are given before each
|
||||
We perform the multivariate derivative and compute all partial derivatives
|
||||
separately before adding them in the end. Formulas are given before each
|
||||
partial derivative calculation.
|
||||
|
||||
Args:
|
||||
|
@ -1,3 +1,3 @@
|
||||
Client responsible for communicating the Cloud TPU API. Released seperately from tensorflow.
|
||||
Client responsible for communicating the Cloud TPU API. Released separately from tensorflow.
|
||||
|
||||
https://pypi.org/project/cloud-tpu-client/
|
@ -434,8 +434,8 @@ class ListWrapper(
|
||||
|
||||
@_non_append_mutation.setter
|
||||
def _non_append_mutation(self, value):
|
||||
# Trackable only cares that a mutation occured at some point; when
|
||||
# attempting to save it checks whether a mutation occured and the object is
|
||||
# Trackable only cares that a mutation occurred at some point; when
|
||||
# attempting to save it checks whether a mutation occurred and the object is
|
||||
# in a "dirty" state but otherwise the specifics of how it got to that state
|
||||
# are ignored. By contrast, the attribute cache needs to signal the mutation
|
||||
# immediately since a caller could query the value of an attribute (And
|
||||
|
Loading…
Reference in New Issue
Block a user