From bea689b801285cb4892757e2ce1c15bb7672dc2d Mon Sep 17 00:00:00 2001 From: Kevin Rose Date: Sun, 9 Oct 2016 22:09:52 -0500 Subject: [PATCH 001/130] updating tf.contrib.metrics.confusion_matrix documentation --- .../python/ops/confusion_matrix_ops.py | 35 ++++++++++--------- 1 file changed, 18 insertions(+), 17 deletions(-) diff --git a/tensorflow/contrib/metrics/python/ops/confusion_matrix_ops.py b/tensorflow/contrib/metrics/python/ops/confusion_matrix_ops.py index a4469029c1e..70b6c82b34f 100644 --- a/tensorflow/contrib/metrics/python/ops/confusion_matrix_ops.py +++ b/tensorflow/contrib/metrics/python/ops/confusion_matrix_ops.py @@ -33,27 +33,28 @@ def confusion_matrix(predictions, labels, num_classes=None, dtype=dtypes.int32, Calculate the Confusion Matrix for a pair of prediction and label 1-D int arrays. - Considering a prediction array such as: `[1, 2, 3]` - And a label array such as: `[2, 2, 3]` - - The confusion matrix returned would be the following one: - - ```python - [[0, 0, 0] - [0, 1, 0] - [0, 1, 0] - [0, 0, 1]] - ``` - - If `weights` is not None, then the confusion matrix elements are the - corresponding `weights` elements. - - Where the matrix rows represent the prediction labels and the columns + The matrix rows represent the prediction labels and the columns represents the real labels. The confusion matrix is always a 2-D array - of shape [n, n], where n is the number of valid labels for a given + of shape `[n, n]`, where `n` is the number of valid labels for a given classification task. Both prediction and labels must be 1-D arrays of the same shape in order for this function to work. + Class labels are expected to start at 0. E.g., if there were + three classes then the possible labels would be `[0, 1, 2]`. + + If `weights` is not `None`, then each prediction contributes its + corresponding weight to the total value of the confusion matrix cell. + + For example: + + ```python + tf.contrib.metrics.confusion_matrix([1, 2, 3], [2, 2, 3]) ==> + [[0, 0, 0, 0] + [0, 0, 1, 0] + [0, 0, 1, 0] + [0, 0, 0, 1]] + ``` + Args: predictions: A 1-D array representing the predictions for a given classification. From e617778e72e7e10f49c5a96533668f87ae8abb71 Mon Sep 17 00:00:00 2001 From: Kevin Rose Date: Sun, 9 Oct 2016 22:10:44 -0500 Subject: [PATCH 002/130] tf.contrib.metrics.aggregate_metrics doc missing code markdown --- tensorflow/contrib/metrics/python/ops/metric_ops.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/tensorflow/contrib/metrics/python/ops/metric_ops.py b/tensorflow/contrib/metrics/python/ops/metric_ops.py index 6cbe01e6713..175ce1e028b 100644 --- a/tensorflow/contrib/metrics/python/ops/metric_ops.py +++ b/tensorflow/contrib/metrics/python/ops/metric_ops.py @@ -2900,6 +2900,7 @@ def aggregate_metric_map(names_to_tuples): This function is useful for pairing metric names with their associated value and update ops when the list of metrics is long. For example: + ```python metrics_to_values, metrics_to_updates = slim.metrics.aggregate_metric_map({ 'Mean Absolute Error': new_slim.metrics.streaming_mean_absolute_error( predictions, labels, weights), @@ -2910,6 +2911,7 @@ def aggregate_metric_map(names_to_tuples): 'RMSE Log': new_slim.metrics.streaming_root_mean_squared_error( predictions, labels, weights), }) + ``` Args: names_to_tuples: a map of metric names to tuples, each of which contain the From eaa4d78d0ddb897bcaf74ab58e4a86925270d71e Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 12:02:03 -0800 Subject: [PATCH 003/130] Improving the error message of the tf.Tensor.__bool__ call to explain a bit more behind the decision to disallow implicit casts to bool. Change: 135830272 --- tensorflow/python/framework/ops.py | 13 +++++++++---- 1 file changed, 9 insertions(+), 4 deletions(-) diff --git a/tensorflow/python/framework/ops.py b/tensorflow/python/framework/ops.py index 046695746c7..bf81e5be187 100644 --- a/tensorflow/python/framework/ops.py +++ b/tensorflow/python/framework/ops.py @@ -513,13 +513,17 @@ class Tensor(object): # ... ``` + This disallows ambiguities between testing the Python value vs testing the + dynamic condition of the `Tensor`. + Raises: `TypeError`. """ raise TypeError("Using a `tf.Tensor` as a Python `bool` is not allowed. " "Use `if t is not None:` instead of `if t:` to test if a " - "tensor is defined, and use the logical TensorFlow ops " - "to test the value of a tensor.") + "tensor is defined, and use TensorFlow ops such as " + "tf.cond to execute subgraphs conditioned on the value of " + "a tensor.") def __nonzero__(self): """Dummy method to prevent a tensor from being used as a Python `bool`. @@ -531,8 +535,9 @@ class Tensor(object): """ raise TypeError("Using a `tf.Tensor` as a Python `bool` is not allowed. " "Use `if t is not None:` instead of `if t:` to test if a " - "tensor is defined, and use the logical TensorFlow ops " - "to test the value of a tensor.") + "tensor is defined, and use TensorFlow ops such as " + "tf.cond to execute subgraphs conditioned on the value of " + "a tensor.") def eval(self, feed_dict=None, session=None): """Evaluates this tensor in a `Session`. From 1a4ddbfc86dd3aa257ce52f5c69f0d56b745b7c1 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 12:09:40 -0800 Subject: [PATCH 004/130] Update generated Python Op docs. Change: 135831242 --- .../api_docs/python/contrib.distributions.md | 89 +++++++++++++++---- tensorflow/g3doc/api_docs/python/framework.md | 3 + .../tf.contrib.distributions.Bernoulli.md | 9 +- .../functions_and_classes/shard1/tf.Tensor.md | 3 + .../tf.contrib.distributions.Categorical.md | 57 +++++++++++- .../tf.contrib.distributions.Binomial.md | 8 +- .../tf.contrib.distributions.Multinomial.md | 11 ++- ...rib.distributions.BernoulliWithSigmoidP.md | 4 +- 8 files changed, 152 insertions(+), 32 deletions(-) diff --git a/tensorflow/g3doc/api_docs/python/contrib.distributions.md b/tensorflow/g3doc/api_docs/python/contrib.distributions.md index 0e8a2a798c0..f7ba8a274c9 100644 --- a/tensorflow/g3doc/api_docs/python/contrib.distributions.md +++ b/tensorflow/g3doc/api_docs/python/contrib.distributions.md @@ -727,10 +727,12 @@ Initialize a batch of Binomial distributions. * `logits`: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm]` `m >= 0`, and the same dtype as `n`. Each entry represents logits for the probability - of success for independent Binomial distributions. + of success for independent Binomial distributions. Only one of + `logits` or `p` should be passed in. * `p`: Positive floating point tensor with shape broadcastable to `[N1,..., Nm]` `m >= 0`, `p in [0, 1]`. Each entry represents the - probability of success for independent Binomial distributions. + probability of success for independent Binomial distributions. Only one + of `logits` or `p` should be passed in. * `validate_args`: `Boolean`, default `False`. Whether to assert valid values for parameters `n`, `p`, and `x` in `prob` and `log_prob`. If `False` and inputs are invalid, correct behavior is not guaranteed. @@ -1033,7 +1035,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Binomial.logits` {#Binomial.logits} -Log-odds. +Log-odds of success. - - - @@ -1321,10 +1323,11 @@ Construct Bernoulli distributions. * `logits`: An N-D `Tensor` representing the log-odds of a positive event. Each entry in the `Tensor` parametrizes an independent Bernoulli distribution where the probability of an event - is sigmoid(logits). + is sigmoid(logits). Only one of `logits` or `p` should be passed in. * `p`: An N-D `Tensor` representing the probability of a positive event. Each entry in the `Tensor` parameterizes an independent - Bernoulli distribution. + Bernoulli distribution. Only one of `logits` or `p` should be passed + in. * `dtype`: dtype for samples. * `validate_args`: `Boolean`, default `False`. Whether to validate that `0 <= p <= 1`. If `validate_args` is `False`, and the inputs are @@ -1609,7 +1612,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Bernoulli.logits` {#Bernoulli.logits} - +Log-odds of success. - - - @@ -1641,7 +1644,7 @@ Name prepended to all ops created by this `Distribution`. #### `tf.contrib.distributions.Bernoulli.p` {#Bernoulli.p} - +Probability of success. - - - @@ -2142,7 +2145,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.BernoulliWithSigmoidP.logits` {#BernoulliWithSigmoidP.logits} - +Log-odds of success. - - - @@ -2174,7 +2177,7 @@ Name prepended to all ops created by this `Distribution`. #### `tf.contrib.distributions.BernoulliWithSigmoidP.p` {#BernoulliWithSigmoidP.p} - +Probability of success. - - - @@ -3596,9 +3599,45 @@ Categorical distribution. The categorical distribution is parameterized by the log-probabilities of a set of classes. + +#### Examples + +Creates a 3-class distiribution, with the 2nd class, the most likely to be +drawn from. + +```python +p = [0.1, 0.5, 0.4] +dist = Categorical(p=p) +``` + +Creates a 3-class distiribution, with the 2nd class the most likely to be +drawn from, using logits. + +```python +logits = [-50, 400, 40] +dist = Categorical(logits=logits) +``` + +Creates a 3-class distribution, with the 3rd class is most likely to be drawn. +The distribution functions can be evaluated on counts. + +```python +# counts is a scalar. +p = [0.1, 0.4, 0.5] +dist = Categorical(p=p) +dist.pmf(0) # Shape [] + +# p will be broadcast to [[0.1, 0.4, 0.5], [0.1, 0.4, 0.5]] to match counts. +counts = [1, 0] +dist.pmf(counts) # Shape [2] + +# p will be broadcast to shape [3, 5, 7, 3] to match counts. +counts = [[...]] # Shape [5, 7, 3] +dist.pmf(counts) # Shape [5, 7, 3] +``` - - - -#### `tf.contrib.distributions.Categorical.__init__(logits, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical')` {#Categorical.__init__} +#### `tf.contrib.distributions.Categorical.__init__(logits=None, p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical')` {#Categorical.__init__} Initialize Categorical distributions using class log-probabilities. @@ -3608,7 +3647,13 @@ Initialize Categorical distributions using class log-probabilities. * `logits`: An N-D `Tensor`, `N >= 1`, representing the log probabilities of a set of Categorical distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension - indexes into the classes. + represents a vector of logits for each class. Only one of `logits` or + `p` should be passed in. +* `p`: An N-D `Tensor`, `N >= 1`, representing the probabilities + of a set of Categorical distributions. The first `N - 1` dimensions + index into a batch of independent distributions and the last dimension + represents a vector of probabilities for each class. Only one of + `logits` or `p` should be passed in. * `dtype`: The type of the event samples (default: int32). * `validate_args`: Unused in this distribution. * `allow_nan_stats`: `Boolean`, default `True`. If `False`, raise an @@ -3886,7 +3931,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Categorical.logits` {#Categorical.logits} - +Vector of coordinatewise logits. - - - @@ -3917,6 +3962,15 @@ Name prepended to all ops created by this `Distribution`. Scalar `int32` tensor: the number of classes. +- - - + +#### `tf.contrib.distributions.Categorical.p` {#Categorical.p} + +Vector of probabilities summing to one. + +Each element is the probability of drawing that coordinate. + + - - - #### `tf.contrib.distributions.Categorical.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Categorical.param_shapes} @@ -17730,12 +17784,13 @@ Initialize a batch of Multinomial distributions. * `logits`: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm, k], m >= 0`, and the same dtype as `n`. Defines this as a batch of `N1 x ... x Nm` - different `k` class Multinomial distributions. + different `k` class Multinomial distributions. Only one of `logits` or + `p` should be passed in. * `p`: Positive floating point tensor with shape broadcastable to `[N1,..., Nm, k]` `m >= 0` and same dtype as `n`. Defines this as a batch of `N1 x ... x Nm` different `k` class Multinomial distributions. `p`'s components in the last portion of its shape should - sum up to 1. + sum up to 1. Only one of `logits` or `p` should be passed in. * `validate_args`: `Boolean`, default `False`. Whether to assert valid values for parameters `n` and `p`, and `x` in `prob` and `log_prob`. If `False`, correct behavior is not guaranteed. @@ -18041,7 +18096,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Multinomial.logits` {#Multinomial.logits} -Log-odds. +Vector of coordinatewise logits. - - - @@ -18076,7 +18131,9 @@ Name prepended to all ops created by this `Distribution`. #### `tf.contrib.distributions.Multinomial.p` {#Multinomial.p} -Event probabilities. +Vector of probabilities summing to one. + +Each element is the probability of drawing that coordinate. - - - diff --git a/tensorflow/g3doc/api_docs/python/framework.md b/tensorflow/g3doc/api_docs/python/framework.md index eacd295ef38..24ef7787597 100644 --- a/tensorflow/g3doc/api_docs/python/framework.md +++ b/tensorflow/g3doc/api_docs/python/framework.md @@ -1410,6 +1410,9 @@ if tf.constant(5) < tf.constant(7): # Will raise. # ... ``` +This disallows ambiguities between testing the Python value vs testing the +dynamic condition of the `Tensor`. + ##### Raises: `TypeError`. diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Bernoulli.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Bernoulli.md index e4ce4b16dd5..e9b11e4b4ee 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Bernoulli.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Bernoulli.md @@ -14,10 +14,11 @@ Construct Bernoulli distributions. * `logits`: An N-D `Tensor` representing the log-odds of a positive event. Each entry in the `Tensor` parametrizes an independent Bernoulli distribution where the probability of an event - is sigmoid(logits). + is sigmoid(logits). Only one of `logits` or `p` should be passed in. * `p`: An N-D `Tensor` representing the probability of a positive event. Each entry in the `Tensor` parameterizes an independent - Bernoulli distribution. + Bernoulli distribution. Only one of `logits` or `p` should be passed + in. * `dtype`: dtype for samples. * `validate_args`: `Boolean`, default `False`. Whether to validate that `0 <= p <= 1`. If `validate_args` is `False`, and the inputs are @@ -302,7 +303,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Bernoulli.logits` {#Bernoulli.logits} - +Log-odds of success. - - - @@ -334,7 +335,7 @@ Name prepended to all ops created by this `Distribution`. #### `tf.contrib.distributions.Bernoulli.p` {#Bernoulli.p} - +Probability of success. - - - diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.Tensor.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.Tensor.md index 621e994691a..7360430d36b 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.Tensor.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.Tensor.md @@ -289,6 +289,9 @@ if tf.constant(5) < tf.constant(7): # Will raise. # ... ``` +This disallows ambiguities between testing the Python value vs testing the +dynamic condition of the `Tensor`. + ##### Raises: `TypeError`. diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Categorical.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Categorical.md index acecb8e52cb..7d3f2a3a252 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Categorical.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Categorical.md @@ -2,9 +2,45 @@ Categorical distribution. The categorical distribution is parameterized by the log-probabilities of a set of classes. + +#### Examples + +Creates a 3-class distiribution, with the 2nd class, the most likely to be +drawn from. + +```python +p = [0.1, 0.5, 0.4] +dist = Categorical(p=p) +``` + +Creates a 3-class distiribution, with the 2nd class the most likely to be +drawn from, using logits. + +```python +logits = [-50, 400, 40] +dist = Categorical(logits=logits) +``` + +Creates a 3-class distribution, with the 3rd class is most likely to be drawn. +The distribution functions can be evaluated on counts. + +```python +# counts is a scalar. +p = [0.1, 0.4, 0.5] +dist = Categorical(p=p) +dist.pmf(0) # Shape [] + +# p will be broadcast to [[0.1, 0.4, 0.5], [0.1, 0.4, 0.5]] to match counts. +counts = [1, 0] +dist.pmf(counts) # Shape [2] + +# p will be broadcast to shape [3, 5, 7, 3] to match counts. +counts = [[...]] # Shape [5, 7, 3] +dist.pmf(counts) # Shape [5, 7, 3] +``` - - - -#### `tf.contrib.distributions.Categorical.__init__(logits, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical')` {#Categorical.__init__} +#### `tf.contrib.distributions.Categorical.__init__(logits=None, p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical')` {#Categorical.__init__} Initialize Categorical distributions using class log-probabilities. @@ -14,7 +50,13 @@ Initialize Categorical distributions using class log-probabilities. * `logits`: An N-D `Tensor`, `N >= 1`, representing the log probabilities of a set of Categorical distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension - indexes into the classes. + represents a vector of logits for each class. Only one of `logits` or + `p` should be passed in. +* `p`: An N-D `Tensor`, `N >= 1`, representing the probabilities + of a set of Categorical distributions. The first `N - 1` dimensions + index into a batch of independent distributions and the last dimension + represents a vector of probabilities for each class. Only one of + `logits` or `p` should be passed in. * `dtype`: The type of the event samples (default: int32). * `validate_args`: Unused in this distribution. * `allow_nan_stats`: `Boolean`, default `True`. If `False`, raise an @@ -292,7 +334,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Categorical.logits` {#Categorical.logits} - +Vector of coordinatewise logits. - - - @@ -323,6 +365,15 @@ Name prepended to all ops created by this `Distribution`. Scalar `int32` tensor: the number of classes. +- - - + +#### `tf.contrib.distributions.Categorical.p` {#Categorical.p} + +Vector of probabilities summing to one. + +Each element is the probability of drawing that coordinate. + + - - - #### `tf.contrib.distributions.Categorical.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#Categorical.param_shapes} diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Binomial.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Binomial.md index 27414dd7308..10897cfe667 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Binomial.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Binomial.md @@ -65,10 +65,12 @@ Initialize a batch of Binomial distributions. * `logits`: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm]` `m >= 0`, and the same dtype as `n`. Each entry represents logits for the probability - of success for independent Binomial distributions. + of success for independent Binomial distributions. Only one of + `logits` or `p` should be passed in. * `p`: Positive floating point tensor with shape broadcastable to `[N1,..., Nm]` `m >= 0`, `p in [0, 1]`. Each entry represents the - probability of success for independent Binomial distributions. + probability of success for independent Binomial distributions. Only one + of `logits` or `p` should be passed in. * `validate_args`: `Boolean`, default `False`. Whether to assert valid values for parameters `n`, `p`, and `x` in `prob` and `log_prob`. If `False` and inputs are invalid, correct behavior is not guaranteed. @@ -371,7 +373,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Binomial.logits` {#Binomial.logits} -Log-odds. +Log-odds of success. - - - diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Multinomial.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Multinomial.md index bfc40da6ceb..15e6b46e834 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Multinomial.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Multinomial.md @@ -73,12 +73,13 @@ Initialize a batch of Multinomial distributions. * `logits`: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm, k], m >= 0`, and the same dtype as `n`. Defines this as a batch of `N1 x ... x Nm` - different `k` class Multinomial distributions. + different `k` class Multinomial distributions. Only one of `logits` or + `p` should be passed in. * `p`: Positive floating point tensor with shape broadcastable to `[N1,..., Nm, k]` `m >= 0` and same dtype as `n`. Defines this as a batch of `N1 x ... x Nm` different `k` class Multinomial distributions. `p`'s components in the last portion of its shape should - sum up to 1. + sum up to 1. Only one of `logits` or `p` should be passed in. * `validate_args`: `Boolean`, default `False`. Whether to assert valid values for parameters `n` and `p`, and `x` in `prob` and `log_prob`. If `False`, correct behavior is not guaranteed. @@ -384,7 +385,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.Multinomial.logits` {#Multinomial.logits} -Log-odds. +Vector of coordinatewise logits. - - - @@ -419,7 +420,9 @@ Name prepended to all ops created by this `Distribution`. #### `tf.contrib.distributions.Multinomial.p` {#Multinomial.p} -Event probabilities. +Vector of probabilities summing to one. + +Each element is the probability of drawing that coordinate. - - - diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.distributions.BernoulliWithSigmoidP.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.distributions.BernoulliWithSigmoidP.md index 02dd663694b..97a2f4d2b86 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.distributions.BernoulliWithSigmoidP.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.distributions.BernoulliWithSigmoidP.md @@ -274,7 +274,7 @@ survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. #### `tf.contrib.distributions.BernoulliWithSigmoidP.logits` {#BernoulliWithSigmoidP.logits} - +Log-odds of success. - - - @@ -306,7 +306,7 @@ Name prepended to all ops created by this `Distribution`. #### `tf.contrib.distributions.BernoulliWithSigmoidP.p` {#BernoulliWithSigmoidP.p} - +Probability of success. - - - From 9bda3b2699c949eda41d8e904a23eef9fc81496d Mon Sep 17 00:00:00 2001 From: Nikhil Thorat Date: Tue, 11 Oct 2016 12:15:27 -0800 Subject: [PATCH 005/130] Update the UI for nearest neighbors selection to our design spec. Hide the search and nn-lists when the page loads, only show them when relevent. Change: 135831922 --- .../vz-projector-inspector-panel.html | 69 +++++++++++++------ .../vz-projector-inspector-panel.ts | 2 +- 2 files changed, 48 insertions(+), 23 deletions(-) diff --git a/tensorflow/tensorboard/components/vz-projector/vz-projector-inspector-panel.html b/tensorflow/tensorboard/components/vz-projector/vz-projector-inspector-panel.html index 02438aa8715..cf00cda7939 100644 --- a/tensorflow/tensorboard/components/vz-projector/vz-projector-inspector-panel.html +++ b/tensorflow/tensorboard/components/vz-projector/vz-projector-inspector-panel.html @@ -38,7 +38,6 @@ limitations under the License. .buttons { display: flex; - margin-bottom: 10px; height: 60px; } @@ -119,13 +118,36 @@ limitations under the License. } .options a { + color: #727272; + font-size: 13px; + margin-left: 12px; text-decoration: none; - color: black; } .options a.selected { - color: black; - border-bottom: 2px solid black; + color: #009EFE; +} + +.neighbors-options { + margin-top: 6px; +} + +.neighbors-options .option-label, .distance .option-label { + color: #727272; + margin-right: 2px; + width: auto; +} + +.num-neighbors-container { + display: inline-block; +} + +#nn-slider { + margin: 0 -12px 0 10px; +} + +.euclidian { + margin-right: 10px; } .matches-list .row { @@ -149,17 +171,6 @@ limitations under the License. -
- - - -
@@ -174,18 +185,32 @@ limitations under the License.
-
-
- Distance: -
- cosine | - euclidean + -
+ diff --git a/tensorflow/tensorboard/components/vz-projector/vz-projector-inspector-panel.ts b/tensorflow/tensorboard/components/vz-projector/vz-projector-inspector-panel.ts index c0a15bd71c7..386475dd023 100644 --- a/tensorflow/tensorboard/components/vz-projector/vz-projector-inspector-panel.ts +++ b/tensorflow/tensorboard/components/vz-projector/vz-projector-inspector-panel.ts @@ -257,7 +257,7 @@ export class InspectorPanel extends PolymerClass { let numNNInput = this.$$('#nn-slider') as HTMLInputElement; let updateNumNN = () => { this.numNN = +numNNInput.value; - this.dom.select('.num-nn span').text(this.numNN); + this.dom.select('.num-nn .nn-count').text(this.numNN); if (this.selectedPointIndex != null) { this.projector.notifySelectionChanged([this.selectedPointIndex]); } From bda95cd05314c1ff03017484f294fb8165e57ca1 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 12:18:54 -0800 Subject: [PATCH 006/130] Change Student T variate generation algorithm to one that emits fewer nans. Change: 135832358 --- .../python/kernel_tests/student_t_test.py | 69 ++++++++++++++----- .../python/ops/distribution_util.py | 13 +++- .../distributions/python/ops/student_t.py | 27 +++----- 3 files changed, 73 insertions(+), 36 deletions(-) diff --git a/tensorflow/contrib/distributions/python/kernel_tests/student_t_test.py b/tensorflow/contrib/distributions/python/kernel_tests/student_t_test.py index bf0d6f94900..3ddd16d844a 100644 --- a/tensorflow/contrib/distributions/python/kernel_tests/student_t_test.py +++ b/tensorflow/contrib/distributions/python/kernel_tests/student_t_test.py @@ -108,20 +108,53 @@ class StudentTTest(tf.test.TestCase): df_v = 4.0 mu_v = 3.0 sigma_v = np.sqrt(10.0) - n = tf.constant(100000) + n = tf.constant(200000) student = tf.contrib.distributions.StudentT(df=df, mu=mu, sigma=sigma) - samples = student.sample_n(n, seed=137) + samples = student.sample_n(n) sample_values = samples.eval() - n = 100000 - self.assertEqual(sample_values.shape, (n,)) - self.assertAllClose(sample_values.mean(), mu_v, atol=1e-2) + n_val = 200000 + self.assertEqual(sample_values.shape, (n_val,)) + self.assertAllClose(sample_values.mean(), mu_v, rtol=1e-2, atol=0) self.assertAllClose(sample_values.var(), sigma_v**2 * df_v / (df_v - 2), - atol=.25) + rtol=1e-2, atol=0) self._checkKLApprox(df_v, mu_v, sigma_v, sample_values) - def _testStudentSampleMultiDimensional(self): - # DISABLED: Please enable this test once b/issues/30149644 is resolved. + # Test that sampling with the same seed twice gives the same results. + def testStudentSampleMultipleTimes(self): + with self.test_session(): + df = tf.constant(4.0) + mu = tf.constant(3.0) + sigma = tf.constant(math.sqrt(10.0)) + df_v = 4.0 + mu_v = 3.0 + sigma_v = np.sqrt(10.0) + n = tf.constant(100) + student = tf.contrib.distributions.StudentT( + name="student_t1", df=df, mu=mu, sigma=sigma) + samples1 = student.sample_n(n, seed=123456).eval() + + # We need to start another test session, since this resets the internal + # state. + with self.test_session(): + student2 = tf.contrib.distributions.StudentT( + name="student_t2", df=df, mu=mu, sigma=sigma) + samples2 = student2.sample_n(n, seed=123456).eval() + self.assertAllClose(samples1, samples2) + + def testStudentSampleSmallDfNoNan(self): + with self.test_session(): + df_v = [1e-1, 1e-5, 1e-10, 1e-20] + df = tf.constant(df_v) + n = tf.constant(200000) + student = tf.contrib.distributions.StudentT(df=df, mu=1.0, sigma=1.0) + samples = student.sample_n(n) + sample_values = samples.eval() + n_val = 200000 + self.assertEqual(sample_values.shape, (n_val, 4)) + self.assertTrue(np.all(np.logical_not(np.isnan(sample_values)))) + + def testStudentSampleMultiDimensional(self): with self.test_session(): batch_size = 7 df = tf.constant([[3.0, 7.0]] * batch_size) @@ -130,20 +163,22 @@ class StudentTTest(tf.test.TestCase): df_v = [3.0, 7.0] mu_v = [3.0, -3.0] sigma_v = [np.sqrt(10.0), np.sqrt(15.0)] - n = tf.constant(100000) + n = tf.constant(200000) student = tf.contrib.distributions.StudentT(df=df, mu=mu, sigma=sigma) samples = student.sample_n(n) sample_values = samples.eval() - self.assertEqual(samples.get_shape(), (100000, batch_size, 2)) - self.assertAllClose(sample_values[:, 0, 0].mean(), mu_v[0], atol=.15) + self.assertEqual(samples.get_shape(), (200000, batch_size, 2)) + self.assertAllClose( + sample_values[:, 0, 0].mean(), mu_v[0], rtol=1e-2, atol=0) self.assertAllClose(sample_values[:, 0, 0].var(), sigma_v[0]**2 * df_v[0] / (df_v[0] - 2), - atol=1) + rtol=1e-1, atol=0) self._checkKLApprox(df_v[0], mu_v[0], sigma_v[0], sample_values[:, 0, 0]) - self.assertAllClose(sample_values[:, 0, 1].mean(), mu_v[1], atol=.01) + self.assertAllClose( + sample_values[:, 0, 1].mean(), mu_v[1], rtol=1e-2, atol=0) self.assertAllClose(sample_values[:, 0, 1].var(), sigma_v[1]**2 * df_v[1] / (df_v[1] - 2), - atol=.25) + rtol=1e-1, atol=0) self._checkKLApprox(df_v[0], mu_v[0], sigma_v[0], sample_values[:, 0, 1]) def _checkKLApprox(self, df, mu, sigma, samples): @@ -337,8 +372,7 @@ class StudentTTest(tf.test.TestCase): mode = student.mode().eval() self.assertAllClose([-1., 0, 1], mode) - def _testPdfOfSample(self): - # DISABLED: Please enable this test once b/issues/30149644 is resolved. + def testPdfOfSample(self): with self.test_session() as sess: student = tf.contrib.distributions.StudentT(df=3., mu=np.pi, sigma=1.) num = 20000 @@ -357,8 +391,7 @@ class StudentTTest(tf.test.TestCase): # Verify integral over sample*pdf ~= 1. self._assertIntegral(sample_vals, pdf_vals) - def _testPdfOfSampleMultiDims(self): - # DISABLED: Please enable this test once b/issues/30149644 is resolved. + def testPdfOfSampleMultiDims(self): with self.test_session() as sess: student = tf.contrib.distributions.StudentT(df=[7., 11.], mu=[[5.], [6.]], diff --git a/tensorflow/contrib/distributions/python/ops/distribution_util.py b/tensorflow/contrib/distributions/python/ops/distribution_util.py index 1838c3a9ea1..bbb7a84f27a 100644 --- a/tensorflow/contrib/distributions/python/ops/distribution_util.py +++ b/tensorflow/contrib/distributions/python/ops/distribution_util.py @@ -19,6 +19,7 @@ from __future__ import division from __future__ import print_function import functools +import hashlib import sys import numpy as np @@ -197,8 +198,8 @@ def log_combinations(n, counts, name="log_combinations"): # The sum should be along the last dimension of counts. This is the # "distribution" dimension. Here n a priori represents the sum of counts. with ops.name_scope(name, values=[n, counts]): - n = array_ops.identity(n, name="n") - counts = array_ops.identity(counts, name="counts") + n = ops.convert_to_tensor(n, name="n") + counts = ops.convert_to_tensor(counts, name="counts") total_permutations = math_ops.lgamma(n + 1) counts_factorial = math_ops.lgamma(counts + 1) redundant_permutations = math_ops.reduce_sum(counts_factorial, @@ -397,6 +398,14 @@ def pick_vector(cond, [math_ops.select(cond, n, -1)]) +def gen_new_seed(seed, salt): + """Generate a new seed, from the given seed and salt.""" + if seed: + string = (str(seed) + salt).encode("utf-8") + return int(hashlib.md5(string).hexdigest()[:8], 16) & 0x7FFFFFFF + return None + + def override_docstring_if_empty(fn, doc_str): """Override the `doc_str` argument to `fn.__doc__`. diff --git a/tensorflow/contrib/distributions/python/ops/student_t.py b/tensorflow/contrib/distributions/python/ops/student_t.py index d038100799c..06350482af0 100644 --- a/tensorflow/contrib/distributions/python/ops/student_t.py +++ b/tensorflow/contrib/distributions/python/ops/student_t.py @@ -177,22 +177,17 @@ class StudentT(distribution.Distribution): return tensor_shape.scalar() def _sample_n(self, n, seed=None): - # We use 2 uniform random floats to generate polar random variates. - # http://dl.acm.org/citation.cfm?id=179631 - # Theorem 2. Let G, H be iid variates, uniformly distributed on [0,1]. - # Let theta = 2*pi*H, let R = sqrt(df*(G^(-2/df) - 1)) for df > 0. - # Let X = R*cos(theta), and let Y = R*sin(theta). - # Then X ~ t_df and Y ~ t_df. - # The variates X and Y are not independent. - shape = array_ops.concat(0, ([2, n], self.batch_shape())) - uniform = random_ops.random_uniform(shape=shape, - dtype=self.dtype, - seed=seed) - samples_g, samples_h = array_ops.unpack(uniform, num=2) - theta = (2. * math.pi) * samples_h - r = math_ops.sqrt(self.df * - (math_ops.pow(samples_g, -2 / self.df) - 1)) - samples = r * math_ops.cos(theta) + # The sampling method comes from the well known fact that if X ~ Normal(0, + # 1), and Z ~ Chi2(df), then X / sqrt(Z / df) ~ StudentT(df). + shape = array_ops.concat(0, ([n], self.batch_shape())) + normal_sample = random_ops.random_normal( + shape, dtype=self.dtype, seed=seed) + half = constant_op.constant(0.5, self.dtype) + df = self.df * array_ops.ones(self.batch_shape(), dtype=self.dtype) + gamma_sample = random_ops.random_gamma( + [n,], half * df, beta=half, dtype=self.dtype, + seed=distribution_util.gen_new_seed(seed, salt="student_t")) + samples = normal_sample / math_ops.sqrt(gamma_sample / df) return samples * self.sigma + self.mu def _log_prob(self, x): From c81def9ce168fc9abf021448653c331c045550e2 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 12:19:18 -0800 Subject: [PATCH 007/130] Make checkpoints_iterator timeout parameter available to slim evaluation_loop. Enables master quitting when workers have finished a set number of training iterations. Change: 135832395 --- .../contrib/slim/python/slim/evaluation.py | 12 ++++++-- .../slim/python/slim/evaluation_test.py | 30 +++++++++++++++++++ 2 files changed, 39 insertions(+), 3 deletions(-) diff --git a/tensorflow/contrib/slim/python/slim/evaluation.py b/tensorflow/contrib/slim/python/slim/evaluation.py index 9f702bfdea0..5c28a265381 100644 --- a/tensorflow/contrib/slim/python/slim/evaluation.py +++ b/tensorflow/contrib/slim/python/slim/evaluation.py @@ -379,7 +379,8 @@ def evaluation_loop(master, variables_to_restore=None, eval_interval_secs=60, max_number_of_evaluations=None, - session_config=None): + session_config=None, + timeout=None): """Runs TF-Slim's Evaluation Loop. Args: @@ -406,6 +407,8 @@ def evaluation_loop(master, If the value is left as 'None', the evaluation continues indefinitely. session_config: An instance of `tf.ConfigProto` that will be used to configure the `Session`. If left as `None`, the default will be used. + timeout: The maximum amount of time to wait between checkpoints. If left as + `None`, then the process will wait indefinitely. Returns: The value of `final_op` or `None` if `final_op` is `None`. @@ -429,7 +432,8 @@ def evaluation_loop(master, number_of_evaluations = 0 for checkpoint_path in checkpoints_iterator(checkpoint_dir, - eval_interval_secs): + eval_interval_secs, + timeout): logging.info('Starting evaluation at ' + time.strftime('%Y-%m-%d-%H:%M:%S', time.gmtime())) @@ -457,7 +461,9 @@ def evaluation_loop(master, number_of_evaluations >= max_number_of_evaluations): logging.info('Reached max_number_of_evaluations=%s. Exit', max_number_of_evaluations) - break + return final_op_value + logging.info( + 'Timed-out waiting for new checkpoint file. Exiting evaluation loop.') return final_op_value diff --git a/tensorflow/contrib/slim/python/slim/evaluation_test.py b/tensorflow/contrib/slim/python/slim/evaluation_test.py index f78de7ad658..d72a0296ec8 100644 --- a/tensorflow/contrib/slim/python/slim/evaluation_test.py +++ b/tensorflow/contrib/slim/python/slim/evaluation_test.py @@ -255,6 +255,36 @@ class EvaluationTest(tf.test.TestCase): '/non-existent-dir', timeout=0)) self.assertEqual(ret, []) + def testEvaluationLoopTimeout(self): + _, update_op = slim.metrics.streaming_accuracy( + self._predictions, self._labels) + init_op = tf.group(tf.initialize_all_variables(), + tf.initialize_local_variables()) + + # Create checkpoint and log directories. + chkpt_dir = os.path.join(self.get_temp_dir(), 'tmp_logs/') + gfile.MakeDirs(chkpt_dir) + logdir = os.path.join(self.get_temp_dir(), 'tmp_logs2/') + gfile.MakeDirs(logdir) + + # Save initialized variables to checkpoint directory. + saver = tf.train.Saver() + with self.test_session() as sess: + init_op.run() + saver.save(sess, os.path.join(chkpt_dir, 'chkpt')) + + # Run the evaluation loop with a timeout. + with self.test_session() as sess: + start = time.time() + slim.evaluation.evaluation_loop( + '', chkpt_dir, logdir, eval_op=update_op, + eval_interval_secs=2.0, timeout=6.0) + end = time.time() + # Check we've waited for the timeout. + self.assertGreater(end - start, 6.0) + # Then the timeout kicked in and stops the loop. + self.assertLess(end - start, 7.5) + class SingleEvaluationTest(tf.test.TestCase): From 3efecc1be1b2bdd4e6cbdcdeabfaf873f677d438 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 12:23:45 -0800 Subject: [PATCH 008/130] Fix broken test. Remove unused logging mocks. Change: 135832964 --- .../framework/python/framework/decorator_utils.py | 5 +++-- .../framework/python/framework/deprecation_test.py | 10 ++++------ 2 files changed, 7 insertions(+), 8 deletions(-) diff --git a/tensorflow/contrib/framework/python/framework/decorator_utils.py b/tensorflow/contrib/framework/python/framework/decorator_utils.py index e8d6dbe249e..155003498ce 100644 --- a/tensorflow/contrib/framework/python/framework/decorator_utils.py +++ b/tensorflow/contrib/framework/python/framework/decorator_utils.py @@ -56,6 +56,7 @@ def add_notice_to_docstring( def validate_callable(func, decorator_name): if not hasattr(func, '__call__'): raise ValueError( - '%s is not a function. If this is a property, ' - 'apply @%s before @property:\n\n@property\n@%s\ndef method(...)' % ( + '%s is not a function. If this is a property, make sure' + ' @property appears before @%s in your source code:' + '\n\n@property\n@%s\ndef method(...)' % ( func, decorator_name, decorator_name)) diff --git a/tensorflow/contrib/framework/python/framework/deprecation_test.py b/tensorflow/contrib/framework/python/framework/deprecation_test.py index 409758b8531..c5422f47316 100644 --- a/tensorflow/contrib/framework/python/framework/deprecation_test.py +++ b/tensorflow/contrib/framework/python/framework/deprecation_test.py @@ -245,11 +245,10 @@ class DeprecationTest(tf.test.TestCase): self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) - @tf.test.mock.patch.object(logging, "warning", autospec=True) - def test_prop_wrong_order(self, mock_warning): - + def test_prop_wrong_order(self): with self.assertRaisesRegexp( - ValueError, "apply @deprecated before @property"): + ValueError, + "make sure @property appears before @deprecated in your source code"): # pylint: disable=unused-variable class _Object(object): @@ -357,8 +356,7 @@ class DeprecatedArgsTest(tf.test.TestCase): with self.assertRaisesRegexp(ValueError, "argument"): deprecation.deprecated_args(date, instructions) - @tf.test.mock.patch.object(logging, "warning", autospec=True) - def test_deprecated_missing_args(self, mock_warning): + def test_deprecated_missing_args(self): date = "2016-07-04" instructions = "This is how you update..." From 4fb7746064f072048af6985de94f32ddca7c554c Mon Sep 17 00:00:00 2001 From: Noah Fiedel Date: Tue, 11 Oct 2016 12:24:03 -0800 Subject: [PATCH 009/130] Decrease verbosity of failed SessionBundle loads to include the export directory instead of the full MetaGraph. Change: 135833001 --- tensorflow/contrib/session_bundle/session_bundle.cc | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/tensorflow/contrib/session_bundle/session_bundle.cc b/tensorflow/contrib/session_bundle/session_bundle.cc index 7e0242c9981..0c5810d0ede 100644 --- a/tensorflow/contrib/session_bundle/session_bundle.cc +++ b/tensorflow/contrib/session_bundle/session_bundle.cc @@ -158,8 +158,7 @@ Status LoadSessionBundleFromPathUsingRunOptionsInternal( // Use serving graph_def in MetaGraphDef collection_def. if (graph_collection_def.any_list().value_size() != 1) { return errors::FailedPrecondition( - "Expected exactly one serving GraphDef in : ", - DebugStringIfAvailable(bundle->meta_graph_def)); + "Expected exactly one serving GraphDef in : ", export_dir); } const auto& any = graph_collection_def.any_list().value(0); GraphDef graph_def; @@ -194,9 +193,8 @@ Status LoadSessionBundleFromPathUsingRunOptionsInternal( const auto init_op_it = collection_def_map.find(kInitOpKey); if (init_op_it != collection_def_map.end()) { if (init_op_it->second.node_list().value_size() != 1) { - return errors::FailedPrecondition( - strings::StrCat("Expected exactly one serving init op in : ", - DebugStringIfAvailable(bundle->meta_graph_def))); + return errors::FailedPrecondition(strings::StrCat( + "Expected exactly one serving init op in : ", export_dir)); } TF_RETURN_IF_ERROR(RunInitOp(run_options, export_dir, asset_files, init_op_it->second.node_list().value(0), From 8ff0f0b97d7ab62a949ab24726610ba54d0f3c42 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 12:26:27 -0800 Subject: [PATCH 010/130] Avoid crashing if sequence_length is a Tensor. Change: 135833298 --- tensorflow/contrib/rnn/python/kernel_tests/lstm_ops_test.py | 4 ++-- tensorflow/contrib/rnn/python/ops/lstm_ops.py | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/tensorflow/contrib/rnn/python/kernel_tests/lstm_ops_test.py b/tensorflow/contrib/rnn/python/kernel_tests/lstm_ops_test.py index 5fd9653b50b..30134016845 100644 --- a/tensorflow/contrib/rnn/python/kernel_tests/lstm_ops_test.py +++ b/tensorflow/contrib/rnn/python/kernel_tests/lstm_ops_test.py @@ -359,7 +359,7 @@ class LSTMBlockCellTest(tf.test.TestCase): inp = tf.convert_to_tensor( np.random.randn(batch_size, input_size), dtype=tf.float32) inputs.append(inp) - seq_lengths = [3, 4, 5] + seq_lengths = tf.constant([3, 4, 5]) initializer = tf.random_uniform_initializer(-0.01, 0.01, seed=19890213) with tf.variable_scope("basic", initializer=initializer): @@ -400,7 +400,7 @@ class LSTMBlockCellTest(tf.test.TestCase): outputs = [] state = None for i, inp in enumerate(inputs): - lengths = [int(i < l) for l in seq_lengths] + lengths = [int(i < l) for l in seq_lengths.eval()] output, state = cell( [inp], initial_state=state, diff --git a/tensorflow/contrib/rnn/python/ops/lstm_ops.py b/tensorflow/contrib/rnn/python/ops/lstm_ops.py index 329016e71e0..2ca5c039e27 100644 --- a/tensorflow/contrib/rnn/python/ops/lstm_ops.py +++ b/tensorflow/contrib/rnn/python/ops/lstm_ops.py @@ -532,7 +532,7 @@ class LSTMBlockWrapper(fused_rnn_cell.FusedRNNCell): dtype = initial_state[0].dtype # create the actual cell - if sequence_length: + if sequence_length is not None: sequence_length = ops.convert_to_tensor(sequence_length) initial_cell_state, initial_output = initial_state # pylint: disable=unpacking-non-sequence cell_states, outputs = self._call_cell(inputs, initial_cell_state, From 13c8ee73ed54c3b6229d1cc2c5dfa057d56c1b9e Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 12:37:04 -0800 Subject: [PATCH 011/130] Add a placeholder of utility to transfer a graph to SoC Change: 135834593 --- .../quantization/kernels/hexagon/BUILD | 34 +++++++++++ .../kernels/hexagon/graph_transferer.cc | 23 ++++++++ .../kernels/hexagon/graph_transferer.h | 40 +++++++++++++ .../kernels/hexagon/graph_transferer_test.cc | 57 +++++++++++++++++++ 4 files changed, 154 insertions(+) create mode 100644 tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.cc create mode 100644 tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.h create mode 100644 tensorflow/contrib/quantization/kernels/hexagon/graph_transferer_test.cc diff --git a/tensorflow/contrib/quantization/kernels/hexagon/BUILD b/tensorflow/contrib/quantization/kernels/hexagon/BUILD index b57a2ac1b59..df0dbf94ce3 100644 --- a/tensorflow/contrib/quantization/kernels/hexagon/BUILD +++ b/tensorflow/contrib/quantization/kernels/hexagon/BUILD @@ -11,6 +11,7 @@ licenses(["notice"]) # Apache 2.0 load( "//tensorflow:tensorflow.bzl", "tf_cc_test", + "tf_kernel_library", ) filegroup( @@ -43,3 +44,36 @@ tf_cc_test( "//tensorflow/core/kernels:ops_util", ], ) + +tf_cc_test( + name = "graph_transferer_test", + size = "small", + srcs = ["graph_transferer_test.cc"], + deps = [ + "//tensorflow/cc:cc_ops", + "//tensorflow/contrib/quantization/kernels/hexagon:graph_transferer", + "//tensorflow/core:core_cpu", + "//tensorflow/core:direct_session", + "//tensorflow/core:lib", + "//tensorflow/core:ops", + "//tensorflow/core:protos_all_cc", + "//tensorflow/core:test", + "//tensorflow/core:test_main", + "//tensorflow/core:testlib", + ], +) + +tf_kernel_library( + name = "graph_transferer", + srcs = [ + "graph_transferer.cc", + ], + hdrs = [ + "graph_transferer.h", + ], + deps = [ + "//tensorflow/core", + "//tensorflow/core:framework", + "//third_party/eigen3", + ], +) diff --git a/tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.cc b/tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.cc new file mode 100644 index 00000000000..2bcb6ac652c --- /dev/null +++ b/tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.cc @@ -0,0 +1,23 @@ +/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.h" + +namespace tensorflow { +void GraphTransferer::LoadGraphFromProto( + ::tensorflow::protobuf::MessageLite* proto) { + // TODO(satok): implement +} +} // namespace tensorflow diff --git a/tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.h b/tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.h new file mode 100644 index 00000000000..5d83283c1b9 --- /dev/null +++ b/tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.h @@ -0,0 +1,40 @@ +/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +vcyou may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_QUANTIZATION_KERNELS_HEXAGON_GRAPH_LOADER_H_ +#define THIRD_PARTY_TENSORFLOW_CONTRIB_QUANTIZATION_KERNELS_HEXAGON_GRAPH_LOADER_H_ + +#include "tensorflow/core/platform/macros.h" +#include "tensorflow/core/platform/protobuf.h" + +namespace tensorflow { + +// GraphTransferer transfers graph definitions into SoC memory. +// This functionality is effective if SoC is capable to run +// the graph on that chip. +// TODO(satok): support transferring subgraphs to be able to split graphs +// to avoid unsupported ops in SoC. +class GraphTransferer { + public: + GraphTransferer() = default; + void LoadGraphFromProto(::tensorflow::protobuf::MessageLite* proto); + + private: + TF_DISALLOW_COPY_AND_ASSIGN(GraphTransferer); +}; + +} // namespace tensorflow + +#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_QUANTIZATION_KERNELS_HEXAGON_GRAPH_TRANSFERER_H diff --git a/tensorflow/contrib/quantization/kernels/hexagon/graph_transferer_test.cc b/tensorflow/contrib/quantization/kernels/hexagon/graph_transferer_test.cc new file mode 100644 index 00000000000..21d53816559 --- /dev/null +++ b/tensorflow/contrib/quantization/kernels/hexagon/graph_transferer_test.cc @@ -0,0 +1,57 @@ +/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/contrib/quantization/kernels/hexagon/graph_transferer.h" +#include "tensorflow/cc/ops/const_op.h" +#include "tensorflow/cc/ops/standard_ops.h" +#include "tensorflow/core/graph/graph_def_builder.h" +#include "tensorflow/core/lib/core/status.h" +#include "tensorflow/core/platform/test.h" +#include "tensorflow/core/public/session.h" +#include "tensorflow/core/public/session_options.h" + +namespace tensorflow { + +class GraphTransfererTest : public ::testing::Test { + protected: + void SetUp() final { + SessionOptions session_options; + session_options.env = Env::Default(); + _session = std::unique_ptr(NewSession(session_options)); + } + + std::unique_ptr _session; +}; + +static GraphDef CreateSmallGraphDef() { + Scope root = Scope::NewRootScope(); + ops::Output node_a = ops::Const(root.WithOpName("a"), 1); + ops::Output node_b = ops::Const(root.WithOpName("b"), 2); + ops::Add(root.WithOpName("a_plus_b"), node_a, node_b); + + GraphDef def; + TF_CHECK_OK(root.ToGraphDef(&def)); + return def; +} + +TEST_F(GraphTransfererTest, LoadGraph) { + GraphDef def = CreateSmallGraphDef(); + _session->Create(def); + + GraphTransferer gt; + gt.LoadGraphFromProto(&def); +} + +} // namespace tensorflow From b47c49a065c32a89c19ae383405d67d5d1b6f223 Mon Sep 17 00:00:00 2001 From: Mustafa Ispir Date: Tue, 11 Oct 2016 13:35:46 -0800 Subject: [PATCH 012/130] Fixing doc comment of high level feature_column functions. Change: 135842485 --- .../contrib/layers/python/layers/feature_column_ops.py | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) diff --git a/tensorflow/contrib/layers/python/layers/feature_column_ops.py b/tensorflow/contrib/layers/python/layers/feature_column_ops.py index 623c6093bc3..9b85997d1fa 100644 --- a/tensorflow/contrib/layers/python/layers/feature_column_ops.py +++ b/tensorflow/contrib/layers/python/layers/feature_column_ops.py @@ -214,10 +214,8 @@ def input_from_feature_columns(columns_to_tensors, age_buckets = bucketized_column( source_column=age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) - occupation_x_age = crossed_column(columns=[occupation, age_buckets], - hash_bucket_size=10000) - feature_columns=[occupation_emb, occupation_x_age] + feature_columns=[occupation_emb, age_buckets] Args: columns_to_tensors: A mapping from feature column to tensors. 'string' key @@ -488,8 +486,6 @@ def weighted_sum_from_feature_columns(columns_to_tensors, occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) - occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16, - combiner="sum") age = real_valued_column("age") age_buckets = bucketized_column( source_column=age, @@ -497,7 +493,7 @@ def weighted_sum_from_feature_columns(columns_to_tensors, occupation_x_age = crossed_column(columns=[occupation, age_buckets], hash_bucket_size=10000) - feature_columns=[occupation_emb, occupation_x_age] + feature_columns=[age_buckets, occupation, occupation_x_age] Args: columns_to_tensors: A mapping from feature column to tensors. 'string' key From b7f72ea16cecfb3ac138233df20875f2a9aefe88 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 14:12:14 -0800 Subject: [PATCH 013/130] Internal only change Change: 135847535 --- tensorflow/core/BUILD | 2 +- tensorflow/core/platform/env.cc | 4 ++++ 2 files changed, 5 insertions(+), 1 deletion(-) diff --git a/tensorflow/core/BUILD b/tensorflow/core/BUILD index 635f14d45db..c8030d40641 100644 --- a/tensorflow/core/BUILD +++ b/tensorflow/core/BUILD @@ -703,6 +703,7 @@ cc_library( name = "android_tensorflow_lib_lite", srcs = if_android(["//tensorflow/core:android_srcs"]), copts = tf_copts() + ["-Os"], + linkopts = ["-lz"], tags = [ "manual", "notap", @@ -760,7 +761,6 @@ cc_library( name = "android_tensorflow_lib", srcs = if_android([":android_op_registrations_and_gradients"]), copts = tf_copts(), - linkopts = ["-lz"], tags = [ "manual", "notap", diff --git a/tensorflow/core/platform/env.cc b/tensorflow/core/platform/env.cc index e4bd54cbb61..a5dd7b45c4a 100644 --- a/tensorflow/core/platform/env.cc +++ b/tensorflow/core/platform/env.cc @@ -315,6 +315,7 @@ Status ReadBinaryProto(Env* env, const string& fname, Status ReadTextProto(Env* env, const string& fname, ::tensorflow::protobuf::Message* proto) { +#if !defined(TENSORFLOW_LITE_PROTOS) std::unique_ptr file; TF_RETURN_IF_ERROR(env->NewRandomAccessFile(fname, &file)); std::unique_ptr stream(new FileStream(file.get())); @@ -324,6 +325,9 @@ Status ReadTextProto(Env* env, const string& fname, return errors::DataLoss("Can't parse ", fname, " as text proto"); } return Status::OK(); +#else + return errors::Unimplemented("Can't parse text protos with protolite."); +#endif } } // namespace tensorflow From 652c0e3bb2a593f03fcd9c1562e9b2a4b3771a44 Mon Sep 17 00:00:00 2001 From: Sukriti Ramesh Date: Tue, 11 Oct 2016 14:12:24 -0800 Subject: [PATCH 014/130] Add assets to SavedModel example. Change: 135847555 --- .../example/saved_model_half_plus_two.py | 39 ++++++++++++++++++- 1 file changed, 38 insertions(+), 1 deletion(-) diff --git a/tensorflow/python/saved_model/example/saved_model_half_plus_two.py b/tensorflow/python/saved_model/example/saved_model_half_plus_two.py index 5d084a319f0..71cff17c6ac 100644 --- a/tensorflow/python/saved_model/example/saved_model_half_plus_two.py +++ b/tensorflow/python/saved_model/example/saved_model_half_plus_two.py @@ -29,13 +29,36 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +import os import tensorflow as tf from tensorflow.core.protobuf import meta_graph_pb2 +from tensorflow.python.lib.io import file_io from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import constants from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import utils +from tensorflow.python.util import compat + + +def _write_assets(assets_directory, assets_filename): + """Writes asset files to be used with SavedModel for half plus two. + + Args: + assets_directory: The directory to which the assets should be written. + assets_filename: Name of the file to which the asset contents should be + written. + + Returns: + The path to which the assets file was written. + """ + if not file_io.file_exists(assets_directory): + file_io.recursive_create_dir(assets_directory) + + path = os.path.join( + compat.as_bytes(assets_directory), compat.as_bytes(assets_filename)) + file_io.write_string_to_file(path, "asset-file-contents") + return path def _generate_saved_model_for_half_plus_two(export_dir, as_text=False): @@ -64,6 +87,17 @@ def _generate_saved_model_for_half_plus_two(export_dir, as_text=False): x = tf.identity(tf_example["x"], name="x") y = tf.add(tf.mul(a, x), b, name="y") + # Create an assets file that can be saved and restored as part of the + # SavedModel. + original_assets_directory = "/tmp/original/export/assets" + original_assets_filename = "foo.txt" + original_assets_filepath = _write_assets(original_assets_directory, + original_assets_filename) + + # Set up the assets collection. + assets_filepath = tf.constant(original_assets_filepath) + tf.add_to_collection(tf.GraphKeys.ASSET_FILEPATHS, assets_filepath) + # Set up the signature for regression with input and output tensor # specification. input_tensor = meta_graph_pb2.TensorInfo() @@ -84,16 +118,19 @@ def _generate_saved_model_for_half_plus_two(export_dir, as_text=False): signature_def_map={ signature_constants.REGRESS_METHOD_NAME: signature_def - }) + }, + assets_collection=tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS)) builder.save(as_text) def main(_): export_dir_pb = "/tmp/saved_model/half_plus_two" _generate_saved_model_for_half_plus_two(export_dir_pb) + print("SavedModel generated at: %s" % export_dir_pb) export_dir_pbtxt = "/tmp/saved_model/half_plus_two_pbtxt" _generate_saved_model_for_half_plus_two(export_dir_pbtxt, as_text=True) + print("SavedModel generated at: %s" % export_dir_pbtxt) if __name__ == "__main__": From 7362afc124375c75f071fb2df7bbe53ec6e2e1b3 Mon Sep 17 00:00:00 2001 From: Zongheng Yang Date: Tue, 11 Oct 2016 14:56:23 -0800 Subject: [PATCH 015/130] tensor_bundle: expose a minimal lib containing the naming logic. The actual tensor_bundle module contains many dependencies, which may not be compilable on platforms our clients desire. Change: 135853017 --- tensorflow/core/util/tensor_bundle/BUILD | 10 ++++ tensorflow/core/util/tensor_bundle/naming.cc | 36 +++++++++++++++ tensorflow/core/util/tensor_bundle/naming.h | 46 +++++++++++++++++++ .../core/util/tensor_bundle/tensor_bundle.cc | 13 ------ .../core/util/tensor_bundle/tensor_bundle.h | 6 +-- 5 files changed, 93 insertions(+), 18 deletions(-) create mode 100644 tensorflow/core/util/tensor_bundle/naming.cc create mode 100644 tensorflow/core/util/tensor_bundle/naming.h diff --git a/tensorflow/core/util/tensor_bundle/BUILD b/tensorflow/core/util/tensor_bundle/BUILD index 729853f09ed..6b2c37fe392 100644 --- a/tensorflow/core/util/tensor_bundle/BUILD +++ b/tensorflow/core/util/tensor_bundle/BUILD @@ -13,6 +13,8 @@ exports_files(["LICENSE"]) filegroup( name = "android_srcs", srcs = [ + "naming.cc", + "naming.h", "tensor_bundle.cc", "tensor_bundle.h", ], @@ -23,6 +25,7 @@ cc_library( srcs = ["tensor_bundle.cc"], hdrs = ["tensor_bundle.h"], deps = [ + ":naming", "//tensorflow/core:core_cpu_internal", "//tensorflow/core:framework", "//tensorflow/core:framework_headers_lib", @@ -34,6 +37,13 @@ cc_library( ], ) +cc_library( + name = "naming", + srcs = ["naming.cc"], + hdrs = ["naming.h"], + deps = ["//tensorflow/core:lib"], +) + cc_test( name = "tensor_bundle_test", srcs = ["tensor_bundle_test.cc"], diff --git a/tensorflow/core/util/tensor_bundle/naming.cc b/tensorflow/core/util/tensor_bundle/naming.cc new file mode 100644 index 00000000000..db3d7ec3acc --- /dev/null +++ b/tensorflow/core/util/tensor_bundle/naming.cc @@ -0,0 +1,36 @@ +/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/core/util/tensor_bundle/naming.h" + +#include "tensorflow/core/lib/strings/stringprintf.h" +#include "tensorflow/core/platform/logging.h" + +namespace tensorflow { + +string MetaFilename(StringPiece prefix) { + return strings::Printf("%.*s.index", static_cast(prefix.size()), + prefix.data()); +} + +string DataFilename(StringPiece prefix, int32 shard_id, int32 num_shards) { + DCHECK_GT(num_shards, 0); + DCHECK_LT(shard_id, num_shards); + return strings::Printf("%.*s.data-%05d-of-%05d", + static_cast(prefix.size()), prefix.data(), + shard_id, num_shards); +} + +} // namespace tensorflow diff --git a/tensorflow/core/util/tensor_bundle/naming.h b/tensorflow/core/util/tensor_bundle/naming.h new file mode 100644 index 00000000000..3d21570c742 --- /dev/null +++ b/tensorflow/core/util/tensor_bundle/naming.h @@ -0,0 +1,46 @@ +/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// A minimal library exposing the naming logic used in tensor_bundle. +// +// A tensor bundle contains a metadata file and sharded data files, which all +// share a common pathname prefix. +// +// Given the prefix, the actual pathnames of the files can be queried via: +// +// MetaFilename(prefix): pathname of the metadata file. +// DataFilename(prefix, shard_id, num_shards): pathname of a data file. +// +// Typical usage includes forming a filepattern to match files on disk: +// +// // To find the unique metadata file. +// const string metadata_file = MetaFilename("/fs/train/ckpt-step"); +// Env::Default()->GetMatchingFiles(metadata_file, &path); +// +// Regexp can also be used: e.g. R".data-\d{5}-of-\d{5}" for data files. + +#ifndef TENSORFLOW_UTIL_TENSOR_BUNDLE_NAMING_H_ +#define TENSORFLOW_UTIL_TENSOR_BUNDLE_NAMING_H_ + +#include "tensorflow/core/lib/core/stringpiece.h" + +namespace tensorflow { + +string MetaFilename(StringPiece prefix); +string DataFilename(StringPiece prefix, int32 shard_id, int32 num_shards); + +} // namespace tensorflow + +#endif // TENSORFLOW_UTIL_TENSOR_BUNDLE_NAMING_H_ diff --git a/tensorflow/core/util/tensor_bundle/tensor_bundle.cc b/tensorflow/core/util/tensor_bundle/tensor_bundle.cc index 27677b57476..61a69a3840f 100644 --- a/tensorflow/core/util/tensor_bundle/tensor_bundle.cc +++ b/tensorflow/core/util/tensor_bundle/tensor_bundle.cc @@ -239,19 +239,6 @@ bool IsFullSlice(const TensorSlice& slice_spec, } // namespace -string DataFilename(StringPiece prefix, int32 shard_id, int32 num_shards) { - DCHECK_GT(num_shards, 0); - DCHECK_LT(shard_id, num_shards); - return strings::Printf("%.*s.data-%05d-of-%05d", - static_cast(prefix.size()), prefix.data(), - shard_id, num_shards); -} - -string MetaFilename(StringPiece prefix) { - return strings::Printf("%.*s.index", static_cast(prefix.size()), - prefix.data()); -} - BundleWriter::BundleWriter(Env* env, StringPiece prefix) : env_(env), prefix_(prefix.ToString()), out_(nullptr), size_(0) { status_ = diff --git a/tensorflow/core/util/tensor_bundle/tensor_bundle.h b/tensorflow/core/util/tensor_bundle/tensor_bundle.h index b5ca97b5117..46f6749ed89 100644 --- a/tensorflow/core/util/tensor_bundle/tensor_bundle.h +++ b/tensorflow/core/util/tensor_bundle/tensor_bundle.h @@ -78,6 +78,7 @@ limitations under the License. #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" +#include "tensorflow/core/util/tensor_bundle/naming.h" #include "tensorflow/core/util/tensor_slice_set.h" namespace tensorflow { @@ -309,11 +310,6 @@ class FileOutputBuffer { uint32 crc32c_ = 0; }; -// Pattern: ".data--of-". -string DataFilename(StringPiece prefix, int32 shard_id, int32 num_shards); -// Pattern: ".index." -string MetaFilename(StringPiece prefix); - } // namespace tensorflow #endif // TENSORFLOW_UTIL_TENSOR_BUNDLE_TENSOR_BUNDLE_H_ From b5b05b859c0562e11b7f40470be66803c8b2a6c0 Mon Sep 17 00:00:00 2001 From: Sukriti Ramesh Date: Tue, 11 Oct 2016 15:04:16 -0800 Subject: [PATCH 016/130] Remove checkpoint testdata files. Change: 135854059 --- .../cc/saved_model/testdata/half_plus_two/variables/checkpoint | 2 -- .../testdata/half_plus_two_pbtxt/variables/checkpoint | 2 -- .../testdata/half_plus_two_sharded/variables/checkpoint | 2 -- 3 files changed, 6 deletions(-) delete mode 100644 tensorflow/cc/saved_model/testdata/half_plus_two/variables/checkpoint delete mode 100644 tensorflow/cc/saved_model/testdata/half_plus_two_pbtxt/variables/checkpoint delete mode 100644 tensorflow/cc/saved_model/testdata/half_plus_two_sharded/variables/checkpoint diff --git a/tensorflow/cc/saved_model/testdata/half_plus_two/variables/checkpoint b/tensorflow/cc/saved_model/testdata/half_plus_two/variables/checkpoint deleted file mode 100644 index 88f46487280..00000000000 --- a/tensorflow/cc/saved_model/testdata/half_plus_two/variables/checkpoint +++ /dev/null @@ -1,2 +0,0 @@ -model_checkpoint_path: "/tmp/saved_model/half_plus_two/variables/variables" -all_model_checkpoint_paths: "/tmp/saved_model/half_plus_two/variables/variables" diff --git a/tensorflow/cc/saved_model/testdata/half_plus_two_pbtxt/variables/checkpoint b/tensorflow/cc/saved_model/testdata/half_plus_two_pbtxt/variables/checkpoint deleted file mode 100644 index 76c6cefbbbd..00000000000 --- a/tensorflow/cc/saved_model/testdata/half_plus_two_pbtxt/variables/checkpoint +++ /dev/null @@ -1,2 +0,0 @@ -model_checkpoint_path: "/tmp/saved_model/half_plus_two_pbtxt/variables/variables-?????-of-00001" -all_model_checkpoint_paths: "/tmp/saved_model/half_plus_two_pbtxt/variables/variables-?????-of-00001" diff --git a/tensorflow/cc/saved_model/testdata/half_plus_two_sharded/variables/checkpoint b/tensorflow/cc/saved_model/testdata/half_plus_two_sharded/variables/checkpoint deleted file mode 100644 index 1065013315f..00000000000 --- a/tensorflow/cc/saved_model/testdata/half_plus_two_sharded/variables/checkpoint +++ /dev/null @@ -1,2 +0,0 @@ -model_checkpoint_path: "/tmp/saved_model/half_plus_two/variables/variables-?????-of-00001" -all_model_checkpoint_paths: "/tmp/saved_model/half_plus_two/variables/variables-?????-of-00001" From 72a757e78b41f0b8e5968789981fea86111865e3 Mon Sep 17 00:00:00 2001 From: Sukriti Ramesh Date: Tue, 11 Oct 2016 15:08:14 -0800 Subject: [PATCH 017/130] Switch SavedModel loader tests to use sharded variables, by default. Change: 135854547 --- tensorflow/cc/saved_model/loader_test.cc | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/tensorflow/cc/saved_model/loader_test.cc b/tensorflow/cc/saved_model/loader_test.cc index b3366dec4a3..817fd8fa952 100644 --- a/tensorflow/cc/saved_model/loader_test.cc +++ b/tensorflow/cc/saved_model/loader_test.cc @@ -65,7 +65,7 @@ TEST_F(LoaderTest, ResourceLeakTest) { RunOptions run_options; const string export_dir = - io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPb); + io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataSharded); for (int i = 0; i < 100; ++i) { TF_ASSERT_OK(LoadSavedModel(session_options, run_options, export_dir, {kSavedModelTagServe}, &bundle)); @@ -79,7 +79,7 @@ TEST_F(LoaderTest, TagMatch) { RunOptions run_options; const string export_dir = - io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPb); + io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataSharded); TF_ASSERT_OK(LoadSavedModel(session_options, run_options, export_dir, {kSavedModelTagServe}, &bundle)); CheckSavedModelBundle(bundle); @@ -91,7 +91,7 @@ TEST_F(LoaderTest, NoTagMatch) { SessionOptions session_options; const string export_dir = - io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPb); + io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataSharded); Status st = LoadSavedModel(session_options, run_options, export_dir, {"missing-tag"}, &bundle); EXPECT_FALSE(st.ok()); @@ -107,7 +107,7 @@ TEST_F(LoaderTest, NoTagMatchMultiple) { SessionOptions session_options; const string export_dir = - io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPb); + io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataSharded); Status st = LoadSavedModel(session_options, run_options, export_dir, {kSavedModelTagServe, "missing-tag"}, &bundle); EXPECT_FALSE(st.ok()); @@ -129,13 +129,13 @@ TEST_F(LoaderTest, PbtxtFormat) { CheckSavedModelBundle(bundle); } -TEST_F(LoaderTest, ShardedVariables) { +TEST_F(LoaderTest, SingleShardVariables) { SavedModelBundle bundle; SessionOptions session_options; RunOptions run_options; const string export_dir = - io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataSharded); + io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPb); TF_ASSERT_OK(LoadSavedModel(session_options, run_options, export_dir, {kSavedModelTagServe}, &bundle)); CheckSavedModelBundle(bundle); @@ -156,7 +156,7 @@ TEST_F(LoaderTest, InvalidExportPath) { TEST_F(LoaderTest, MaybeSavedModelDirectory) { // Valid SavedModel directory. const string export_dir = - io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPb); + io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataSharded); EXPECT_TRUE(MaybeSavedModelDirectory(export_dir)); // Directory that does not exist. From fc3b501338484df6b683c581225ff7c4cae90813 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 15:28:53 -0800 Subject: [PATCH 018/130] Reduce lock contention in BlockingCounter. This matters mostly when the shard count is large, so this change does not have a significant effect on existing use cases, where typically count == number of threads. However, it opens the door to using smaller shards (i.e. less static scheduling) to improve load balancing. Change: 135857020 --- tensorflow/core/lib/core/blocking_counter.h | 31 ++++++++++++------- .../core/lib/core/blocking_counter_test.cc | 28 +++++++++++++++-- 2 files changed, 46 insertions(+), 13 deletions(-) diff --git a/tensorflow/core/lib/core/blocking_counter.h b/tensorflow/core/lib/core/blocking_counter.h index ebe7de6b3be..b2411f5951f 100644 --- a/tensorflow/core/lib/core/blocking_counter.h +++ b/tensorflow/core/lib/core/blocking_counter.h @@ -16,40 +16,49 @@ limitations under the License. #ifndef TENSORFLOW_LIB_CORE_BLOCKING_COUNTER_H_ #define TENSORFLOW_LIB_CORE_BLOCKING_COUNTER_H_ +#include + #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" -#include "tensorflow/core/platform/types.h" namespace tensorflow { class BlockingCounter { public: - BlockingCounter(int initial_count) : count_(initial_count) { - CHECK_GE(count_, 0); + BlockingCounter(int initial_count) + : state_(initial_count << 1), notified_(false) { + CHECK_GE(initial_count, 0); + DCHECK_EQ((initial_count << 1) >> 1, initial_count); } - ~BlockingCounter() {} + ~BlockingCounter() { DCHECK_EQ(state_ >> 1, 0); } inline void DecrementCount() { - mutex_lock l(mu_); - --count_; - CHECK(count_ >= 0); - if (count_ == 0) { - cond_var_.notify_all(); + unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2; + if (v != 1) { + DCHECK_NE(((v + 2) & ~1), 0); + return; // either count has not dropped to 0, or waiter is not waiting } + mutex_lock l(mu_); + DCHECK(!notified_); + notified_ = true; + cond_var_.notify_all(); } inline void Wait() { + unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel); + if ((v >> 1) == 0) return; mutex_lock l(mu_); - while (count_ > 0) { + while (!notified_) { cond_var_.wait(l); } } private: - int count_; mutex mu_; condition_variable cond_var_; + std::atomic state_; // low bit is waiter flag + bool notified_; }; } // namespace tensorflow diff --git a/tensorflow/core/lib/core/blocking_counter_test.cc b/tensorflow/core/lib/core/blocking_counter_test.cc index 12a30af8210..af56f624e55 100644 --- a/tensorflow/core/lib/core/blocking_counter_test.cc +++ b/tensorflow/core/lib/core/blocking_counter_test.cc @@ -13,10 +13,10 @@ See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ -#include "tensorflow/core/platform/test.h" - #include "tensorflow/core/lib/core/blocking_counter.h" #include "tensorflow/core/lib/core/threadpool.h" +#include "tensorflow/core/platform/test.h" +#include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { @@ -48,4 +48,28 @@ TEST(BlockingCounterTest, TestMultipleThread) { } } // namespace + +static void BM_BlockingCounter(int iters, int num_threads, + int shards_per_thread) { + testing::StopTiming(); + std::unique_ptr thread_pool( + new thread::ThreadPool(Env::Default(), "test", num_threads)); + const int num_shards = num_threads * shards_per_thread; + testing::StartTiming(); + for (int i = 0; i < iters; ++i) { + BlockingCounter bc(num_shards); + for (int j = 0; j < num_threads; ++j) { + thread_pool->Schedule([&bc, shards_per_thread] { + for (int k = 0; k < shards_per_thread; ++k) { + bc.DecrementCount(); + } + }); + } + bc.Wait(); + } + testing::StopTiming(); +} + +BENCHMARK(BM_BlockingCounter)->RangePair(1, 12, 1, 1000); + } // namespace tensorflow From d534987f3dd682f35d69a54f92b93f6d8b212571 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Oct 2016 15:48:49 -0800 Subject: [PATCH 019/130] Added support for tensorflow::internal::LogString routine. Change: 135859392 --- tensorflow/core/platform/default/logging.cc | 5 +++++ tensorflow/core/platform/logging.h | 8 ++++++++ tensorflow/core/platform/logging_test.cc | 6 ++++++ 3 files changed, 19 insertions(+) diff --git a/tensorflow/core/platform/default/logging.cc b/tensorflow/core/platform/default/logging.cc index 454fb64e2c3..e7808ca08d5 100644 --- a/tensorflow/core/platform/default/logging.cc +++ b/tensorflow/core/platform/default/logging.cc @@ -92,6 +92,11 @@ LogMessageFatal::~LogMessageFatal() { abort(); } +void LogString(const char* fname, int line, int severity, + const string& message) { + LogMessage(fname, line, severity) << message; +} + template <> void MakeCheckOpValueString(std::ostream* os, const char& v) { if (v >= 32 && v <= 126) { diff --git a/tensorflow/core/platform/logging.h b/tensorflow/core/platform/logging.h index 963dc798294..1ca36db548b 100644 --- a/tensorflow/core/platform/logging.h +++ b/tensorflow/core/platform/logging.h @@ -36,6 +36,14 @@ namespace port { void AdjustFilenameForLogging(string* filename); } // namespace port + +namespace internal { +// Emit "message" as a log message to the log for the specified +// "severity" as if it came from a LOG call at "fname:line" +void LogString(const char* fname, int line, int severity, + const string& message); +} // namespace internal + } // namespace tensorflow #endif // TENSORFLOW_PLATFORM_LOGGING_H_ diff --git a/tensorflow/core/platform/logging_test.cc b/tensorflow/core/platform/logging_test.cc index c82dc1b5fdb..f395f6419d1 100644 --- a/tensorflow/core/platform/logging_test.cc +++ b/tensorflow/core/platform/logging_test.cc @@ -88,4 +88,10 @@ TEST(LoggingDeathTest, FailedChecks) { #endif } +TEST(InternalLogString, Basic) { + // Just make sure that this code compiles (we don't actually verify + // the output) + internal::LogString(__FILE__, __LINE__, INFO, "Hello there"); +} + } // namespace tensorflow From 9de604862c111276819736a2c694020137d52b8f Mon Sep 17 00:00:00 2001 From: Zakaria Haque Date: Tue, 11 Oct 2016 15:53:53 -0800 Subject: [PATCH 020/130] Provides an abstraction for a the head/top of a model. Change: 135859957 --- .../layers/python/layers/target_column.py | 26 + tensorflow/contrib/learn/BUILD | 12 + .../learn/python/learn/estimators/__init__.py | 3 +- .../learn/estimators/composable_model_test.py | 54 +- .../learn/estimators/dnn_linear_combined.py | 159 ++-- .../estimators/dnn_linear_combined_test.py | 8 +- .../learn/python/learn/estimators/dnn_test.py | 3 +- .../python/learn/estimators/estimator.py | 10 + .../learn/python/learn/estimators/head.py | 844 ++++++++++++++++++ .../python/learn/estimators/head_test.py | 148 +++ .../learn/python/learn/estimators/linear.py | 28 +- .../python/learn/estimators/linear_test.py | 2 +- .../learn/python/learn/utils/export.py | 20 +- .../learn/python/learn/utils/export_test.py | 22 + 14 files changed, 1202 insertions(+), 137 deletions(-) create mode 100644 tensorflow/contrib/learn/python/learn/estimators/head.py create mode 100644 tensorflow/contrib/learn/python/learn/estimators/head_test.py diff --git a/tensorflow/contrib/layers/python/layers/target_column.py b/tensorflow/contrib/layers/python/layers/target_column.py index 711510f32cf..7ccc26298f3 100644 --- a/tensorflow/contrib/layers/python/layers/target_column.py +++ b/tensorflow/contrib/layers/python/layers/target_column.py @@ -22,6 +22,7 @@ import six from tensorflow.contrib import losses from tensorflow.contrib import metrics as metrics_lib +from tensorflow.contrib.framework import deprecated from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops @@ -30,6 +31,11 @@ from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn +@deprecated( + "2016-11-07", + "This file will be removed after the deprecation date." + "Please switch to " + "third_party/tensorflow/contrib/learn/python/learn/estimators/head.py") def regression_target(label_name=None, weight_column_name=None, target_dimension=1): @@ -54,6 +60,11 @@ def regression_target(label_name=None, # TODO(zakaria): Add logistic_regression_target +@deprecated( + "2016-11-07", + "This file will be removed after the deprecation date." + "Please switch to " + "third_party/tensorflow/contrib/learn/python/learn/estimators/head.py") def multi_class_target(n_classes, label_name=None, weight_column_name=None): """Creates a _TargetColumn for multi class single label classification. @@ -85,6 +96,11 @@ def multi_class_target(n_classes, label_name=None, weight_column_name=None): weight_column_name=weight_column_name) +@deprecated( + "2016-11-07", + "This file will be removed after the deprecation date." + "Please switch to " + "third_party/tensorflow/contrib/learn/python/learn/estimators/head.py") def binary_svm_target(label_name=None, weight_column_name=None): """Creates a _TargetColumn for binary classification with SVMs. @@ -105,6 +121,11 @@ def binary_svm_target(label_name=None, weight_column_name=None): weight_column_name=weight_column_name) +@deprecated( + "2016-11-07", + "This file will be removed after the deprecation date." + "Please switch to " + "third_party/tensorflow/contrib/learn/python/learn/estimators/head.py") class ProblemType(object): UNSPECIFIED = 0 CLASSIFICATION = 1 @@ -416,6 +437,11 @@ def _run_metrics(predictions, targets, metrics, weights): return result +@deprecated( + "2016-11-07", + "This file will be removed after the deprecation date." + "Please switch to " + "third_party/tensorflow/contrib/learn/python/learn/estimators/head.py") def get_default_binary_metrics_for_eval(thresholds): """Returns a dictionary of basic metrics for logistic regression. diff --git a/tensorflow/contrib/learn/BUILD b/tensorflow/contrib/learn/BUILD index 40e014a4409..917063a55e0 100644 --- a/tensorflow/contrib/learn/BUILD +++ b/tensorflow/contrib/learn/BUILD @@ -429,6 +429,18 @@ py_test( ], ) +py_test( + name = "head_test", + size = "small", + srcs = ["python/learn/estimators/head_test.py"], + srcs_version = "PY2AND3", + deps = [ + ":learn", + "//tensorflow:tensorflow_py", + "//tensorflow/python:framework_test_lib", + ], +) + py_test( name = "dnn_test", size = "medium", diff --git a/tensorflow/contrib/learn/python/learn/estimators/__init__.py b/tensorflow/contrib/learn/python/learn/estimators/__init__.py index a46f6ec364b..b2033add2f4 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/__init__.py +++ b/tensorflow/contrib/learn/python/learn/estimators/__init__.py @@ -14,7 +14,6 @@ # ============================================================================== """Estimators.""" - from __future__ import absolute_import from __future__ import division from __future__ import print_function @@ -32,6 +31,8 @@ from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn from tensorflow.contrib.learn.python.learn.estimators.estimator import ModeKeys +from tensorflow.contrib.learn.python.learn.estimators.head import MetricKey +from tensorflow.contrib.learn.python.learn.estimators.head import PedictionKey from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor diff --git a/tensorflow/contrib/learn/python/learn/estimators/composable_model_test.py b/tensorflow/contrib/learn/python/learn/estimators/composable_model_test.py index ae8fb6944d8..88cafc655fc 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/composable_model_test.py +++ b/tensorflow/contrib/learn/python/learn/estimators/composable_model_test.py @@ -23,11 +23,11 @@ import tempfile import tensorflow as tf -from tensorflow.contrib import layers from tensorflow.contrib import metrics as metrics_lib from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.learn.python.learn.estimators import composable_model from tensorflow.contrib.learn.python.learn.estimators import estimator +from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.python.framework import ops from tensorflow.python.ops import state_ops @@ -42,10 +42,10 @@ def _iris_input_fn(): class _BaseEstimatorForTest(estimator.BaseEstimator): def __init__(self, - target_column, + head, feature_columns): super(_BaseEstimatorForTest, self).__init__(model_dir=tempfile.mkdtemp()) - self._target_column = target_column + self._head = head self._feature_columns = feature_columns def _get_train_ops(self, features, targets): @@ -54,18 +54,22 @@ class _BaseEstimatorForTest(estimator.BaseEstimator): logits = self._model.build_model( features, self._feature_columns, is_training=True) - loss = self._target_column.loss(logits, targets, features) - train_step = self._model.get_train_step(loss) + model_fn_ops = self._head.head_ops(features, targets, + tf.contrib.learn.ModeKeys.TRAIN, + _noop_training_fn, logits=logits) + train_step = self._model.get_train_step(model_fn_ops.loss) with ops.control_dependencies(train_step): with ops.get_default_graph().colocate_with(global_step): - return state_ops.assign_add(global_step, 1).op, loss + return state_ops.assign_add(global_step, 1).op, model_fn_ops.loss def _get_eval_ops(self, features, targets, metrics=None): logits = self._model.build_model( features, self._feature_columns, is_training=False) - loss = self._target_column.loss(logits, targets, features) - return {'loss': metrics_lib.streaming_mean(loss)} + model_fn_ops = self._head.head_ops(features, targets, + tf.contrib.learn.ModeKeys.TRAIN, + _noop_training_fn, logits=logits) + return {'loss': metrics_lib.streaming_mean(model_fn_ops.loss)} def _get_predict_ops(self, features): raise NotImplementedError @@ -74,32 +78,32 @@ class _BaseEstimatorForTest(estimator.BaseEstimator): class LinearEstimator(_BaseEstimatorForTest): def __init__(self, - target_column, + head, feature_columns): - super(LinearEstimator, self).__init__(target_column, feature_columns) + super(LinearEstimator, self).__init__(head, feature_columns) self._model = composable_model.LinearComposableModel( - num_label_columns=target_column.num_label_columns) + num_label_columns=head.logits_dimension) class JointLinearEstimator(_BaseEstimatorForTest): def __init__(self, - target_column, + head, feature_columns): - super(JointLinearEstimator, self).__init__(target_column, feature_columns) + super(JointLinearEstimator, self).__init__(head, feature_columns) self._model = composable_model.LinearComposableModel( - num_label_columns=target_column.num_label_columns, _joint_weights=True) + num_label_columns=head.logits_dimension, _joint_weights=True) class DNNEstimator(_BaseEstimatorForTest): def __init__(self, - target_column, + head, feature_columns, hidden_units): - super(DNNEstimator, self).__init__(target_column, feature_columns) + super(DNNEstimator, self).__init__(head, feature_columns) self._model = composable_model.DNNComposableModel( - num_label_columns=target_column.num_label_columns, + num_label_columns=head.logits_dimension, hidden_units=hidden_units) @@ -119,8 +123,8 @@ class ComposableModelTest(tf.test.TestCase): language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') - target_column = layers.multi_class_target(n_classes=2) - classifier = LinearEstimator(target_column, + head = head_lib._multi_class_head(n_classes=2) + classifier = LinearEstimator(head, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=1000) @@ -144,8 +148,8 @@ class ComposableModelTest(tf.test.TestCase): language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.sparse_column_with_hash_bucket('age', 2) - target_column = layers.multi_class_target(n_classes=2) - classifier = JointLinearEstimator(target_column, + head = head_lib._multi_class_head(n_classes=2) + classifier = JointLinearEstimator(head, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=1000) @@ -160,8 +164,8 @@ class ComposableModelTest(tf.test.TestCase): cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] - target_column = layers.multi_class_target(n_classes=3) - classifier = DNNEstimator(target_column, + head = head_lib._multi_class_head(n_classes=3) + classifier = DNNEstimator(head, feature_columns=cont_features, hidden_units=[3, 3]) @@ -169,5 +173,9 @@ class ComposableModelTest(tf.test.TestCase): classifier.evaluate(input_fn=_iris_input_fn, steps=100) +def _noop_training_fn(unused_loss): + return tf.no_op() + + if __name__ == '__main__': tf.test.main() diff --git a/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py b/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py index e61511134f7..eb2083b05e9 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py +++ b/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py @@ -20,6 +20,7 @@ from __future__ import division from __future__ import print_function import numpy as np +import six from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated @@ -28,15 +29,12 @@ from tensorflow.contrib.framework.python.ops import variables as contrib_variabl from tensorflow.contrib.layers.python.layers import feature_column_ops from tensorflow.contrib.learn.python.learn.estimators import composable_model from tensorflow.contrib.learn.python.learn.estimators import estimator +from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.python.framework import ops -from tensorflow.python.ops import array_ops -from tensorflow.python.ops import logging_ops from tensorflow.python.ops import nn from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import state_ops -from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.training import training def _changing_default_center_bias(): @@ -67,7 +65,7 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): """ def __init__(self, # _joint_linear_weights pylint: disable=invalid-name - target_column, + head, model_dir=None, linear_feature_columns=None, linear_optimizer=None, @@ -78,13 +76,13 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): dnn_activation_fn=nn.relu, dnn_dropout=None, gradient_clip_norm=None, - enable_centered_bias=True, config=None, - feature_engineering_fn=None): + feature_engineering_fn=None, + default_prediction_key=None): """Initializes a _DNNLinearCombinedBaseEstimator instance. Args: - target_column: A _TargetColumn object. + head: A _Head object. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. @@ -111,14 +109,12 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. - enable_centered_bias: A bool. If True, estimator will learn a centered - bias variable for each class. Rest of the model structure learns the - residual after centered bias. config: RunConfig object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and targets which are the output of `input_fn` and returns features and targets which will be fed into the model. + default_prediction_key: Default prediction key to use with metrics. Raises: ValueError: If both linear_feature_columns and dnn_features_columns are @@ -130,14 +126,14 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): num_ps_replicas = config.num_ps_replicas if config else 0 self._linear_model = composable_model.LinearComposableModel( - num_label_columns=target_column.num_label_columns, + num_label_columns=head.logits_dimension, optimizer=linear_optimizer, _joint_weights=_joint_linear_weights, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas) self._dnn_model = composable_model.DNNComposableModel( - num_label_columns=target_column.num_label_columns, + num_label_columns=head.logits_dimension, hidden_units=dnn_hidden_units, optimizer=dnn_optimizer, activation_fn=dnn_activation_fn, @@ -149,9 +145,8 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): self._linear_optimizer = linear_optimizer self._dnn_feature_columns = dnn_feature_columns self._dnn_hidden_units = dnn_hidden_units - self._centered_bias_weight_collection = "centered_bias" - self._enable_centered_bias = enable_centered_bias - self._target_column = target_column + self._head = head + self._default_prediction_key = default_prediction_key self._feature_engineering_fn = ( feature_engineering_fn or (lambda features, targets: (features, targets))) @@ -194,9 +189,12 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): return (self._dnn_model.get_bias(model_dir=self._model_dir) + [self.get_variable_value("centered_bias_weight")]) - def _get_target_column(self): - """Returns the target column of this Estimator.""" - return self._target_column + # TODO(zakaria): Remove this function once export. export_estimator is + # obsolete. + def _create_signature_fn(self): + """Returns a function to create export signature of this Estimator.""" + # pylint: disable=protected-access + return self._head._create_signature_fn() def _get_feature_dict(self, features): if isinstance(features, dict): @@ -205,45 +203,60 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): def _get_train_ops(self, features, targets): """See base class.""" - global_step = contrib_variables.get_global_step() - assert global_step features = self._get_feature_dict(features) features, targets = self._feature_engineering_fn(features, targets) logits = self._logits(features, is_training=True) - if self._enable_centered_bias: - centered_bias_step = [self._centered_bias_step(targets, features)] - else: - centered_bias_step = [] - with ops.control_dependencies(centered_bias_step): - training_loss = self._target_column.training_loss(logits, targets, - features) - weighted_average_loss = self._target_column.loss(logits, targets, - features) - logging_ops.scalar_summary("loss", weighted_average_loss) + def _make_training_op(training_loss): + global_step = contrib_variables.get_global_step() + assert global_step - linear_train_step = self._linear_model.get_train_step(training_loss) - dnn_train_step = (self._dnn_model.get_train_step(training_loss) if - self._dnn_model else []) + linear_train_step = self._linear_model.get_train_step(training_loss) + dnn_train_step = (self._dnn_model.get_train_step(training_loss) if + self._dnn_model else []) + with ops.control_dependencies(linear_train_step + dnn_train_step): + with ops.get_default_graph().colocate_with(global_step): + return state_ops.assign_add(global_step, 1).op - with ops.control_dependencies(linear_train_step + dnn_train_step): - with ops.get_default_graph().colocate_with(global_step): - return state_ops.assign_add(global_step, 1).op, weighted_average_loss + model_fn_ops = self._head.head_ops(features, targets, + estimator.ModeKeys.TRAIN, + _make_training_op, + logits=logits) + return model_fn_ops.training_op, model_fn_ops.loss def _get_eval_ops(self, features, targets, metrics=None): """See base class.""" features = self._get_feature_dict(features) features, targets = self._feature_engineering_fn(features, targets) logits = self._logits(features) - return self._target_column.get_eval_ops(features, logits, targets, metrics) + + model_fn_ops = self._head.head_ops(features, targets, + estimator.ModeKeys.EVAL, None, + logits=logits) + all_metrics = model_fn_ops.default_metrics + if metrics: + for name, metric in six.iteritems(metrics): + if not isinstance(name, tuple): + # TODO(zakaria): remove once deprecation is finished (b/31229024) + all_metrics[(name, self._default_prediction_key)] = metric + else: + all_metrics[name] = metric + # TODO(zakaria): Remove this once we refactor this class to delegate + # to estimator. + # pylint: disable=protected-access + result = estimator._make_metrics_ops(all_metrics, features, targets, + model_fn_ops.predictions) + return result def _get_predict_ops(self, features): """See base class.""" features = self._get_feature_dict(features) features, _ = self._feature_engineering_fn(features, None) logits = self._logits(features) - return self._target_column.logits_to_predictions(logits, proba=True) + model_fn_ops = self._head.head_ops(features, None, estimator.ModeKeys.INFER, + None, logits=logits) + return model_fn_ops.predictions @deprecated( "2016-09-23", @@ -278,32 +291,6 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): return self._linear_model.build_model( features, self._linear_feature_columns, is_training) - def _centered_bias(self): - centered_bias = variables.Variable( - array_ops.zeros([self._target_column.num_label_columns]), - collections=[self._centered_bias_weight_collection, - ops.GraphKeys.VARIABLES], - name="centered_bias_weight") - logging_ops.scalar_summary( - ["centered_bias_%d" % cb for cb in range( - self._target_column.num_label_columns)], - array_ops.reshape(centered_bias, [-1])) - return centered_bias - - def _centered_bias_step(self, targets, features): - centered_bias = ops.get_collection(self._centered_bias_weight_collection) - batch_size = array_ops.shape(targets)[0] - logits = array_ops.reshape( - array_ops.tile(centered_bias[0], [batch_size]), - [batch_size, self._target_column.num_label_columns]) - with ops.name_scope(None, "centered_bias", (targets, features)): - training_loss = self._target_column.training_loss( - logits, targets, features) - # Learn central bias by an optimizer. 0.1 is a convervative lr for a - # single variable. - return training.AdagradOptimizer(0.1).minimize( - training_loss, var_list=centered_bias) - def _logits(self, features, is_training=False): linear_feature_columns = self._get_linear_feature_columns() dnn_feature_columns = self._get_dnn_feature_columns() @@ -319,10 +306,7 @@ class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): else: logits = self._linear_logits(features, is_training) - if self._enable_centered_bias: - return nn.bias_add(logits, self._centered_bias()) - else: - return logits + return logits class DNNLinearCombinedClassifier(_DNNLinearCombinedBaseEstimator): @@ -448,10 +432,11 @@ class DNNLinearCombinedClassifier(_DNNLinearCombinedBaseEstimator): if enable_centered_bias is None: enable_centered_bias = True _changing_default_center_bias() - - target_column = layers.multi_class_target( + # pylint: disable=protected-access + head = head_lib._multi_class_head( n_classes=n_classes, - weight_column_name=weight_column_name) + weight_column_name=weight_column_name, + enable_centered_bias=enable_centered_bias) super(DNNLinearCombinedClassifier, self).__init__( model_dir=model_dir, linear_feature_columns=linear_feature_columns, @@ -463,10 +448,10 @@ class DNNLinearCombinedClassifier(_DNNLinearCombinedBaseEstimator): dnn_activation_fn=dnn_activation_fn, dnn_dropout=dnn_dropout, gradient_clip_norm=gradient_clip_norm, - enable_centered_bias=enable_centered_bias, - target_column=target_column, + head=head, config=config, - feature_engineering_fn=feature_engineering_fn) + feature_engineering_fn=feature_engineering_fn, + default_prediction_key=head_lib.PedictionKey.CLASSES) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, @@ -517,6 +502,11 @@ class DNNLinearCombinedClassifier(_DNNLinearCombinedBaseEstimator): return super(DNNLinearCombinedClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, as_iterable=as_iterable) + def _get_predict_ops(self, features): + """See base class.""" + return super(DNNLinearCombinedClassifier, self)._get_predict_ops(features)[ + head_lib.PedictionKey.PROBABILITIES] + class DNNLinearCombinedRegressor(_DNNLinearCombinedBaseEstimator): """A regressor for TensorFlow Linear and DNN joined training models. @@ -642,9 +632,11 @@ class DNNLinearCombinedRegressor(_DNNLinearCombinedBaseEstimator): if enable_centered_bias is None: enable_centered_bias = True _changing_default_center_bias() - target_column = layers.regression_target( + # pylint: disable=protected-access + head = head_lib._regression_head( weight_column_name=weight_column_name, - target_dimension=target_dimension) + target_dimension=target_dimension, + enable_centered_bias=enable_centered_bias) super(DNNLinearCombinedRegressor, self).__init__( model_dir=model_dir, linear_feature_columns=linear_feature_columns, @@ -656,7 +648,14 @@ class DNNLinearCombinedRegressor(_DNNLinearCombinedBaseEstimator): dnn_activation_fn=dnn_activation_fn, dnn_dropout=dnn_dropout, gradient_clip_norm=gradient_clip_norm, - enable_centered_bias=enable_centered_bias, - target_column=target_column, + head=head, config=config, - feature_engineering_fn=feature_engineering_fn) + feature_engineering_fn=feature_engineering_fn, + default_prediction_key=head_lib.PedictionKey.SCORES) + + def _get_predict_ops(self, features): + """See base class.""" + return super(DNNLinearCombinedRegressor, self)._get_predict_ops(features)[ + head_lib.PedictionKey.SCORES] + + diff --git a/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_test.py b/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_test.py index 452973f7528..827670bacaf 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_test.py +++ b/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_test.py @@ -254,7 +254,6 @@ class DNNLinearCombinedClassifierTest(tf.test.TestCase): dnn_feature_columns=[tf.contrib.layers.real_valued_column('x')], dnn_hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) - classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted cross entropy = (-7*log(0.25)-3*log(0.75))/10 = 1.06 @@ -289,7 +288,6 @@ class DNNLinearCombinedClassifierTest(tf.test.TestCase): dnn_feature_columns=[tf.contrib.layers.real_valued_column('x')], dnn_hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) - classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the accuracy @@ -411,6 +409,7 @@ class DNNLinearCombinedClassifierTest(tf.test.TestCase): def _my_metric_op(predictions, targets): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. + targets = tf.to_float(targets) predictions = tf.slice(predictions, [0, 1], [-1, 1]) return tf.reduce_sum(tf.mul(predictions, targets)) @@ -437,7 +436,7 @@ class DNNLinearCombinedClassifierTest(tf.test.TestCase): # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". - with self.assertRaises(ValueError): + with self.assertRaises(KeyError): classifier.evaluate( input_fn=_input_fn_train, steps=100, @@ -536,7 +535,6 @@ class DNNLinearCombinedClassifierTest(tf.test.TestCase): self.assertNotIn('dnn/logits/weights', classifier.get_variable_names()) self.assertEquals(1, len(classifier.linear_bias_)) self.assertEquals(2, len(classifier.linear_weights_)) - print(classifier.linear_weights_) self.assertEquals(1, len(classifier.linear_weights_['linear/age/weight'])) self.assertEquals( 100, len(classifier.linear_weights_['linear/language/weights'])) @@ -842,7 +840,7 @@ class DNNLinearCombinedRegressorTest(tf.test.TestCase): scores['my_error']) # Tests that when the key is a tuple, an error is raised. - with self.assertRaises(TypeError): + with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn_train, steps=1, diff --git a/tensorflow/contrib/learn/python/learn/estimators/dnn_test.py b/tensorflow/contrib/learn/python/learn/estimators/dnn_test.py index 7bd013baa8a..ab9e1b43b66 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/dnn_test.py +++ b/tensorflow/contrib/learn/python/learn/estimators/dnn_test.py @@ -416,6 +416,7 @@ class DNNClassifierTest(tf.test.TestCase): def _my_metric_op(predictions, targets): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. + targets = tf.to_float(targets) predictions = tf.slice(predictions, [0, 1], [-1, 1]) targets = math_ops.cast(targets, predictions.dtype) return tf.reduce_sum(tf.mul(predictions, targets)) @@ -850,7 +851,7 @@ class DNNRegressorTest(tf.test.TestCase): scores['my_error']) # Tests that when the key is a tuple, an error is raised. - with self.assertRaises(TypeError): + with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn_train, steps=1, diff --git a/tensorflow/contrib/learn/python/learn/estimators/estimator.py b/tensorflow/contrib/learn/python/learn/estimators/estimator.py index 99afefe084e..16f8fd72c05 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/estimator.py +++ b/tensorflow/contrib/learn/python/learn/estimators/estimator.py @@ -20,6 +20,7 @@ from __future__ import division from __future__ import print_function import abc +import collections import copy import inspect import itertools @@ -81,6 +82,12 @@ class ModeKeys(object): INFER = 'infer' +class ModelFnOps( + collections.namedtuple('ModelFnOps', ['predictions', 'loss', 'training_op', + 'default_metrics', 'signature_fn'])): + pass + + def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): """Make inputs into input and feed functions.""" if input_fn is None: @@ -230,6 +237,9 @@ def _make_metrics_ops(metrics, features, targets, predictions): if isinstance(name, tuple): # Multi-head metrics. + if len(name) != 2: + raise ValueError('Invalid metric for {}. It returned a tuple with ' + 'len {}, expected 2.'.format(name, len(name))) if not isinstance(predictions, dict): raise ValueError( 'Metrics passed provide (name, prediction), ' diff --git a/tensorflow/contrib/learn/python/learn/estimators/head.py b/tensorflow/contrib/learn/python/learn/estimators/head.py new file mode 100644 index 00000000000..5f919cbe218 --- /dev/null +++ b/tensorflow/contrib/learn/python/learn/estimators/head.py @@ -0,0 +1,844 @@ +# Copyright 2016 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Abstractions for the head(s) of a model. +""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import abc + +from tensorflow.contrib import losses +from tensorflow.contrib import metrics as metrics_lib +from tensorflow.contrib.learn.python.learn import metric_spec +from tensorflow.contrib.learn.python.learn.estimators import estimator +from tensorflow.contrib.session_bundle import exporter +from tensorflow.python.framework import dtypes +from tensorflow.python.framework import ops +from tensorflow.python.ops import array_ops +from tensorflow.python.ops import control_flow_ops +from tensorflow.python.ops import logging_ops +from tensorflow.python.ops import math_ops +from tensorflow.python.ops import nn +from tensorflow.python.ops import variables +from tensorflow.python.training import training + + +# TODO(zakaria): add functions that creates a head and returns ModelOpFn + + +def _regression_head(label_name=None, + weight_column_name=None, + target_dimension=1, + enable_centered_bias=False, head_name=None): + """Creates a _Head for linear regression. + + Args: + label_name: String, name of the key in label dict. Can be null if label + is a tensor (single headed models). + weight_column_name: A string defining feature column name representing + weights. It is used to down weight or boost examples during training. It + will be multiplied by the loss of the example. + target_dimension: dimension of the target for multilabels. + enable_centered_bias: A bool. If True, estimator will learn a centered + bias variable for each class. Rest of the model structure learns the + residual after centered bias. + head_name: name of the head. If provided, predictions, summary and metrics + keys will be prefixed by the head_name and an underscore. + + Returns: + An instance of _Head + """ + return _RegressionHead(train_loss_fn=_mean_squared_loss, + eval_loss_fn=_mean_squared_loss, + label_name=label_name, + weight_column_name=weight_column_name, + target_dimension=target_dimension, + enable_centered_bias=enable_centered_bias, + head_name=head_name) + +# TODO(zakaria): Add logistic_regression_head + + +def _multi_class_head(n_classes, label_name=None, weight_column_name=None, + enable_centered_bias=False, head_name=None, + thresholds=None): + """Creates a _Head for multi class single label classification. + + The Head uses softmax cross entropy loss. + + Args: + n_classes: Integer, number of classes, must be >= 2 + label_name: String, name of the key in label dict. Can be null if label + is a tensor (single headed models). + weight_column_name: A string defining feature column name representing + weights. It is used to down weight or boost examples during training. It + will be multiplied by the loss of the example. + enable_centered_bias: A bool. If True, estimator will learn a centered + bias variable for each class. Rest of the model structure learns the + residual after centered bias. + head_name: name of the head. If provided, predictions, summary and metrics + keys will be prefixed by the head_name and an underscore. + thresholds: thresholds for eval metrics, defaults to [.5] + + Returns: + An instance of _MultiClassHead. + + Raises: + ValueError: if n_classes is < 2 + """ + if n_classes < 2: + raise ValueError("n_classes must be > 1 for classification.") + if n_classes == 2: + loss_fn = _log_loss_with_two_classes + else: + loss_fn = _softmax_cross_entropy_loss + return _MultiClassHead(train_loss_fn=loss_fn, + eval_loss_fn=loss_fn, + n_classes=n_classes, + label_name=label_name, + weight_column_name=weight_column_name, + enable_centered_bias=enable_centered_bias, + head_name=head_name, + thresholds=thresholds) + + +def _binary_svm_head(label_name=None, weight_column_name=None, + enable_centered_bias=False, head_name=None, + thresholds=None,): + """Creates a _TargetColumn for binary classification with SVMs. + + The target column uses binary hinge loss. + + Args: + label_name: String, name of the key in label dict. Can be null if label + is a tensor (single headed models). + weight_column_name: A string defining feature column name representing + weights. It is used to down weight or boost examples during training. It + will be multiplied by the loss of the example. + enable_centered_bias: A bool. If True, estimator will learn a centered + bias variable for each class. Rest of the model structure learns the + residual after centered bias. + head_name: name of the head. If provided, predictions, summary and metrics + keys will be prefixed by the head_name and an underscore. + thresholds: thresholds for eval metrics, defaults to [.5] + + Returns: + An instance of _TargetColumn. + + """ + return _BinarySvmHead(label_name=label_name, + weight_column_name=weight_column_name, + enable_centered_bias=enable_centered_bias, + head_name=head_name, + thresholds=thresholds) + + +def _multi_label_head(n_classes, label_name=None, weight_column_name=None, + enable_centered_bias=False, head_name=None, + thresholds=None): + """Creates a _Head for multi label classification. + + The Head uses softmax cross entropy loss. + + Args: + n_classes: Integer, number of classes, must be >= 2 + label_name: String, name of the key in label dict. Can be null if label + is a tensor (single headed models). + weight_column_name: A string defining feature column name representing + weights. It is used to down weight or boost examples during training. It + will be multiplied by the loss of the example. + enable_centered_bias: A bool. If True, estimator will learn a centered + bias variable for each class. Rest of the model structure learns the + residual after centered bias. + head_name: name of the head. If provided, predictions, summary and metrics + keys will be prefixed by the head_name and an underscore. + thresholds: thresholds for eval metrics, defaults to [.5] + + Returns: + An instance of _MultiClassHead. + + Raises: + ValueError: if n_classes is < 2 + """ + if n_classes < 2: + raise ValueError("n_classes must be > 1 for classification.") + return _MultiLabelHead(n_classes=n_classes, + label_name=label_name, + weight_column_name=weight_column_name, + enable_centered_bias=enable_centered_bias, + head_name=head_name, + thresholds=thresholds) + + +# TODO(zakaria): Make the classes public once we are ready for users to subclass +# them. +class _Head(object): + """Interface for the head/top of a model. + + Given logits or output of a hidden layer, a Head knows how to compute + predictions, loss, default metric and export signature. + """ + __metaclass__ = abc.ABCMeta + + @abc.abstractproperty + def logits_dimension(self): + raise NotImplementedError("Calling an abstract method.") + + def head_ops(self, features, target, mode, train_op_fn, logits=None, + logits_input=None): + """Returns ops for a model_fn. + + Args: + features: input dict. + target: target dict or tensor. + mode: estimator's ModeKeys + train_op_fn: function that takes a scalar loss and returns an op to + optimize with the loss. + logits: logits to be used for the head. + logits_input: tensor to build logits from. + + Returns: + `estimator.ModelFnOps` + + Raises: + ValueError: if mode is not recognized. + """ + _check_logits_input_not_supported(logits, logits_input) + if mode == estimator.ModeKeys.TRAIN: + loss, additional_train_op = self._training_loss(features, target, + logits, logits_input) + + train_op = train_op_fn(loss) if train_op_fn else None + + if additional_train_op: + if train_op: + train_op = control_flow_ops.group(train_op, *additional_train_op) + else: + train_op = control_flow_ops.group(*additional_train_op) + + return estimator.ModelFnOps(None, loss, train_op, + self._default_metric(), + self._create_signature_fn()) + if mode == estimator.ModeKeys.INFER: + predictions = self._infer_op(logits, logits_input) + return estimator.ModelFnOps(predictions, None, None, + self._default_metric(), + self._create_signature_fn()) + if mode == estimator.ModeKeys.EVAL: + predictions, loss = self._eval_op(features, target, logits, logits_input) + return estimator.ModelFnOps(predictions, loss, None, + self._default_metric(), + self._create_signature_fn()) + raise ValueError("mode=%s unrecognized" % str(mode)) + + @abc.abstractmethod + def _training_loss(self, features, target, logits=None, logits_input=None, + name="training_loss"): + raise NotImplementedError("Calling an abstract method.") + + @abc.abstractmethod + def _infer_op(self, logits=None, logits_input=None, name="infer_op"): + raise NotImplementedError("Calling an abstract method.") + + @abc.abstractmethod + def _eval_op(self, features, target, logits=None, logits_input=None, + name="eval_op"): + raise NotImplementedError("Calling an abstract method.") + + @abc.abstractmethod + def _default_metric(self): + raise NotImplementedError("Calling an abstract method.") + + @abc.abstractmethod + def _create_signature_fn(self): + """Creates signature function for the Head. + """ + raise NotImplementedError("Calling an abstract method.") + + +class _RegressionHead(_Head): + """_Head for regression.""" + + def __init__(self, train_loss_fn, eval_loss_fn, label_name, + weight_column_name, target_dimension, enable_centered_bias, + head_name): + """Base type for all single heads. + + Args: + train_loss_fn: loss_fn for training. + eval_loss_fn: loss_fn for eval. + label_name: String, name of the key in label dict. Can be null if label + is a tensor (single headed models). + weight_column_name: A string defining feature column name representing + weights. It is used to down weight or boost examples during training. It + will be multiplied by the loss of the example. + target_dimension: Integer, number of label columns. + enable_centered_bias: A bool. If True, estimator will learn a centered + bias variable for each class. Rest of the model structure learns the + residual after centered bias. + head_name: name of the head. If provided, predictions, summary and metrics + keys will be prefixed by the head_name and an underscore. + """ + self._train_loss_fn = train_loss_fn + self._eval_loss_fn = eval_loss_fn + self._logits_dimension = target_dimension + self._label_name = label_name + self._weight_column_name = weight_column_name + self._head_name = head_name + self._enable_centered_bias = enable_centered_bias + self._centered_bias_weight_collection = _head_prefixed(head_name, + "centered_bias") + + @property + def logits_dimension(self): + return self._logits_dimension + + def _training_loss(self, features, target, logits=None, + logits_input=None, name="training_loss"): + """Returns training loss tensor for this head. + + Training loss is different from the loss reported on the tensorboard as we + should respect the example weights when computing the gradient. + + L = sum_{i} w_{i} * l_{i} / B + + where B is the number of examples in the batch, l_{i}, w_{i} are individual + losses, and example weight. + + Args: + features: features dict. + target: either a tensor for labels or in multihead case, a dict of string + to target tensor. + logits: logits, a float tensor. + logits_input: Output of last hidden layer. + name: Op name. + + Returns: + A tuple of training Loss and additional_train_op (possibly None) + """ + target = target[self._label_name] if isinstance(target, dict) else target + + centered_bias_step = None + if self._enable_centered_bias: + logits = nn.bias_add(logits, _centered_bias( + self.logits_dimension, + self._centered_bias_weight_collection)) + centered_bias_step = [_centered_bias_step( + self.logits_dimension, + self._centered_bias_weight_collection, + target, + self._train_loss_fn)] + + loss_unweighted = self._train_loss_fn(logits, target) + loss, weighted_average_loss = _loss( + loss_unweighted, + _weight_tensor(features, self._weight_column_name), + name=name) + logging_ops.scalar_summary(_head_prefixed(self._head_name, "loss"), + weighted_average_loss) + return loss, centered_bias_step + + def _eval_op(self, features, target, logits=None, logits_input=None, + name="eval_op"): + target = target[self._label_name] if isinstance(target, dict) else target + if self._enable_centered_bias: + logits = nn.bias_add(logits, _centered_bias( + self.logits_dimension, + self._centered_bias_weight_collection)) + loss_unweighted = self._eval_loss_fn(logits, target) + loss, _ = _loss(loss_unweighted, + _weight_tensor(features, self._weight_column_name), + name=name) + + predictions = self._logits_to_prediction(logits) + + return predictions, loss + + def _infer_op(self, logits=None, logits_input=None): + if self._enable_centered_bias: + logits = nn.bias_add(logits, _centered_bias( + self.logits_dimension, + self._centered_bias_weight_collection)) + return self._logits_to_prediction(logits) + + def _logits_to_prediction(self, logits=None): + predictions = {} + if self.logits_dimension == 1: + predictions[PedictionKey.SCORES] = array_ops.squeeze( + logits, squeeze_dims=[1]) + else: + predictions[PedictionKey.SCORES] = logits + return predictions + + # pylint: disable=undefined-variable + def _create_signature_fn(self): + def _regression_signature_fn(examples, unused_features, predictions): + if isinstance(predictions, dict): + score = predictions[PedictionKey.SCORES] + else: + score = predictions + + default_signature = exporter.regression_signature( + input_tensor=examples, output_tensor=score) + # TODO(zakaria): add validation + return default_signature, {} + return _regression_signature_fn + + def _default_metric(self): + return {_head_prefixed(self._head_name, MetricKey.LOSS): + _weighted_average_loss_metric_spec(self._eval_loss_fn, + PedictionKey.SCORES, + self._label_name, + self._weight_column_name)} + + +class _MultiClassHead(_Head): + """_Head for classification.""" + + def __init__(self, train_loss_fn, eval_loss_fn, n_classes, label_name, + weight_column_name, enable_centered_bias, head_name, + thresholds=None): + """Base type for all single heads. + + Args: + train_loss_fn: loss_fn for training. + eval_loss_fn: loss_fn for eval. + n_classes: number of classes. + label_name: String, name of the key in label dict. Can be null if label + is a tensor (single headed models). + weight_column_name: A string defining feature column name representing + weights. It is used to down weight or boost examples during training. It + will be multiplied by the loss of the example. + enable_centered_bias: A bool. If True, estimator will learn a centered + bias variable for each class. Rest of the model structure learns the + residual after centered bias. + head_name: name of the head. If provided, predictions, summary and metrics + keys will be prefixed by the head_name and an underscore. + thresholds: thresholds for eval. + + Raises: + ValueError: if n_classes is invalid. + """ + if n_classes < 2: + raise ValueError("n_classes must be >= 2") + self._thresholds = thresholds if thresholds else [.5] + + self._train_loss_fn = train_loss_fn + self._eval_loss_fn = eval_loss_fn + self._logits_dimension = 1 if n_classes == 2 else n_classes + self._label_name = label_name + self._weight_column_name = weight_column_name + self._head_name = head_name + self._enable_centered_bias = enable_centered_bias + self._centered_bias_weight_collection = _head_prefixed(head_name, + "centered_bias") + + @property + def logits_dimension(self): + return self._logits_dimension + + def _training_loss(self, features, target, logits=None, + logits_input=None, name="training_loss"): + """Returns training loss tensor for this head. + + Training loss is different from the loss reported on the tensorboard as we + should respect the example weights when computing the gradient. + + L = sum_{i} w_{i} * l_{i} / B + + where B is the number of examples in the batch, l_{i}, w_{i} are individual + losses, and example weight. + + Args: + features: features dict. + target: either a tensor for labels or in multihead case, a dict of string + to target tensor. + logits: logits, a float tensor. + logits_input: Output of last hidden layer. + name: Op name. + + Returns: + A tuple of training Loss and additional_train_op (possibly None) + """ + target = target[self._label_name] if isinstance(target, dict) else target + + centered_bias_step = None + if self._enable_centered_bias: + logits = nn.bias_add(logits, _centered_bias( + self.logits_dimension, + self._centered_bias_weight_collection)) + centered_bias_step = [_centered_bias_step( + self.logits_dimension, + self._centered_bias_weight_collection, + target, + self._train_loss_fn)] + + loss_unweighted = self._train_loss_fn(logits, target) + loss, weighted_average_loss = _loss( + loss_unweighted, + _weight_tensor(features, self._weight_column_name), + name=name) + logging_ops.scalar_summary(_head_prefixed(self._head_name, "loss"), + weighted_average_loss) + return loss, centered_bias_step + + def _eval_op(self, features, target, logits=None, logits_input=None, + name="eval_op"): + target = target[self._label_name] if isinstance(target, dict) else target + if self._enable_centered_bias: + logits = nn.bias_add(logits, _centered_bias( + self.logits_dimension, + self._centered_bias_weight_collection)) + loss_unweighted = self._eval_loss_fn(logits, target) + loss, _ = _loss(loss_unweighted, + _weight_tensor(features, self._weight_column_name), + name=name) + + predictions = self._logits_to_prediction(logits) + + return predictions, loss + + def _infer_op(self, logits=None, logits_input=None): + if self._enable_centered_bias: + logits = nn.bias_add(logits, _centered_bias( + self.logits_dimension, + self._centered_bias_weight_collection)) + return self._logits_to_prediction(logits) + + def _logits_to_prediction(self, logits=None): + predictions = {PedictionKey.LOGITS: logits} + if self.logits_dimension == 1: + predictions[PedictionKey.LOGISTIC] = math_ops.sigmoid(logits) + logits = array_ops.concat(1, [array_ops.zeros_like(logits), logits]) + predictions[PedictionKey.PROBABILITIES] = nn.softmax(logits) + # Workaround for argmax dropping the second demension. + predictions[PedictionKey.CLASSES] = array_ops.expand_dims( + math_ops.argmax(logits, 1), 1) + return predictions + + def _create_signature_fn(self): + """See superclass.""" + def _classification_signature_fn(examples, unused_features, predictions): + """Servo signature function.""" + if isinstance(predictions, dict): + default_signature = exporter.classification_signature( + input_tensor=examples, + classes_tensor=predictions[PedictionKey.CLASSES], + scores_tensor=predictions[PedictionKey.PROBABILITIES]) + else: + default_signature = exporter.classification_signature( + input_tensor=examples, + scores_tensor=predictions) + + # TODO(zakaria): add validation + return default_signature, {} + return _classification_signature_fn + + def _default_metric(self): + metrics = {_head_prefixed(self._head_name, MetricKey.LOSS): + _weighted_average_loss_metric_spec(self._eval_loss_fn, + PedictionKey.LOGITS, + self._label_name, + self._weight_column_name)} + + # TODO(b/29366811): This currently results in both an "accuracy" and an + # "accuracy/threshold_0.500000_mean" metric for binary classification. + metrics[_head_prefixed(self._head_name, MetricKey.ACCURACY)] = ( + metric_spec.MetricSpec(metrics_lib.streaming_accuracy, + PedictionKey.CLASSES, self._label_name, + self._weight_column_name)) + if self.logits_dimension == 1: + def _add_binary_metric(metric_key, metric_fn): + metrics[_head_prefixed(self._head_name, metric_key)] = ( + metric_spec.MetricSpec(metric_fn, + PedictionKey.LOGISTIC, + self._label_name)) + _add_binary_metric(MetricKey.PREDICTION_MEAN, _predictions_streaming_mean) + _add_binary_metric(MetricKey.TARGET_MEAN, _target_streaming_mean) + + # Also include the streaming mean of the label as an accuracy baseline, as + # a reminder to users. + _add_binary_metric(MetricKey.ACCURACY_BASELINE, _target_streaming_mean) + + _add_binary_metric(MetricKey.AUC, _streaming_auc) + + for threshold in self._thresholds: + _add_binary_metric(MetricKey.ACCURACY_MEAN % threshold, + _accuracy_at_threshold(threshold)) + # Precision for positive examples. + _add_binary_metric(MetricKey.PRECISION_MEAN % threshold, + _streaming_at_threshold( + metrics_lib.streaming_precision_at_thresholds, + threshold),) + # Recall for positive examples. + _add_binary_metric(MetricKey.RECALL_MEAN % threshold, + _streaming_at_threshold( + metrics_lib.streaming_recall_at_thresholds, + threshold)) + return metrics + + +class _BinarySvmHead(_MultiClassHead): + """_Head for binary classification using SVMs.""" + + def __init__(self, label_name, weight_column_name, enable_centered_bias, + head_name, thresholds): + def loss_fn(logits, target): + check_shape_op = control_flow_ops.Assert( + math_ops.less_equal(array_ops.rank(target), 2), + ["target's shape should be either [batch_size, 1] or [batch_size]"]) + with ops.control_dependencies([check_shape_op]): + target = array_ops.reshape( + target, shape=[array_ops.shape(target)[0], 1]) + return losses.hinge_loss(logits, target) + + super(_BinarySvmHead, self).__init__( + train_loss_fn=loss_fn, + eval_loss_fn=loss_fn, + n_classes=2, + label_name=label_name, + weight_column_name=weight_column_name, + enable_centered_bias=enable_centered_bias, + head_name=head_name, + thresholds=thresholds) + + def _logits_to_prediction(self, logits=None): + predictions = {} + # Workaround for argmax dropping the second demension. + predictions[PedictionKey.LOGITS] = array_ops.expand_dims( + math_ops.argmax(logits, 1), 1) + logits = array_ops.concat(1, [array_ops.zeros_like(logits), logits]) + predictions[PedictionKey.CLASSES] = array_ops.expand_dims( + math_ops.argmax(logits, 1), 1) + + return predictions + + +class _MultiLabelHead(_MultiClassHead): + """_Head for multlabel classification.""" + + # TODO(zakaria): add signature and metric for multilabel. + def __init__(self, n_classes, label_name, + weight_column_name, enable_centered_bias, head_name, + thresholds): + + super(_MultiLabelHead, self).__init__( + train_loss_fn=_sigmoid_cross_entropy_loss, + eval_loss_fn=_sigmoid_cross_entropy_loss, + n_classes=n_classes, + label_name=label_name, + weight_column_name=weight_column_name, + enable_centered_bias=enable_centered_bias, + head_name=head_name, + thresholds=thresholds) + + def _logits_to_prediction(self, logits=None): + predictions = {PedictionKey.LOGITS: logits} + if self.logits_dimension == 1: + predictions[PedictionKey.LOGISTIC] = math_ops.sigmoid(logits) + logits = array_ops.concat(1, [array_ops.zeros_like(logits), logits]) + predictions[PedictionKey.PROBABILITIES] = math_ops.sigmoid(logits) + # Workaround for argmax dropping the second demension. + predictions[PedictionKey.CLASSES] = math_ops.to_int64( + math_ops.greater(logits, 0)) + return predictions + + +def _weighted_loss(loss, weight): + """Returns cumulative weighted loss.""" + unweighted_loss = array_ops.reshape(loss, shape=(-1,)) + weighted_loss = math_ops.mul(unweighted_loss, + array_ops.reshape( + weight, shape=(-1,))) + return weighted_loss + + +def _weight_tensor(features, weight_column_name): + if not weight_column_name: + return None + else: + return array_ops.reshape( + math_ops.to_float(features[weight_column_name]), + shape=(-1,)) + + +def _loss(loss_unweighted, weight, name): + """Returns loss.""" + if weight is None: + loss = math_ops.reduce_mean(loss_unweighted, name=name) + return loss, loss + else: + loss_weighted = _weighted_loss(loss_unweighted, weight) + weighted_average_loss = math_ops.div( + math_ops.reduce_sum(loss_weighted), + math_ops.to_float(math_ops.reduce_sum(weight)), + name="weighted_average_loss") + loss = math_ops.reduce_mean(loss_weighted, name=name) + return loss, weighted_average_loss + + +def _check_logits_input_not_supported(logits, logits_input): + if logits_input is not None or logits is None: + raise NotImplementedError("logits_input is not supported yet, " + "must pass logits") + + +def _centered_bias(logits_dimension, weight_collection): + """Creates and returns centered bias.""" + centered_bias = variables.Variable( + array_ops.zeros([logits_dimension]), + collections=[weight_collection, ops.GraphKeys.VARIABLES], + name="centered_bias_weight") + logging_ops.scalar_summary( + ["centered_bias_%d" % cb for cb in range(logits_dimension)], + array_ops.reshape(centered_bias, [-1])) + return centered_bias + + +def _centered_bias_step(logits_dimension, weight_collection, target, + train_loss_fn): + """Creates and returns training op for centered bias.""" + centered_bias = ops.get_collection(weight_collection) + batch_size = array_ops.shape(target)[0] + logits = array_ops.reshape( + array_ops.tile(centered_bias[0], [batch_size]), + [batch_size, logits_dimension]) + with ops.name_scope(None, "centered_bias", (target, logits)): + centered_bias_loss = math_ops.reduce_mean( + train_loss_fn(logits, target), name="training_loss") + # Learn central bias by an optimizer. 0.1 is a convervative lr for a + # single variable. + return training.AdagradOptimizer(0.1).minimize( + centered_bias_loss, var_list=centered_bias) + + +def _head_prefixed(head_name, val): + return "%s_%s" % (head_name, val) if head_name else val + + +# TODO(zakaria): use contrib losses. +def _mean_squared_loss(logits, target): + # To prevent broadcasting inside "-". + if len(target.get_shape()) == 1: + target = array_ops.expand_dims(target, dim=[1]) + # TODO(zakaria): make sure it does not recreate the broadcast bug. + if len(logits.get_shape()) == 1: + logits = array_ops.expand_dims(logits, dim=[1]) + logits.get_shape().assert_is_compatible_with(target.get_shape()) + return math_ops.square(logits - math_ops.to_float(target)) + + +def _log_loss_with_two_classes(logits, target): + # sigmoid_cross_entropy_with_logits requires [batch_size, 1] target. + if len(target.get_shape()) == 1: + target = array_ops.expand_dims(target, dim=[1]) + loss_vec = nn.sigmoid_cross_entropy_with_logits(logits, + math_ops.to_float(target)) + return loss_vec + + +def _softmax_cross_entropy_loss(logits, target): + # sigmoid_cross_entropy_with_logits requires [batch_size, 1] target. + # Check that we got int32/int64 for classification. + if (not target.dtype.is_compatible_with(dtypes.int64) and + not target.dtype.is_compatible_with(dtypes.int32)): + raise ValueError("Target's dtype should be int32, int64 or compatible. " + "Instead got %s." % target.dtype) + # sparse_softmax_cross_entropy_with_logits requires [batch_size] target. + if len(target.get_shape()) == 2: + target = array_ops.squeeze(target, squeeze_dims=[1]) + loss_vec = nn.sparse_softmax_cross_entropy_with_logits(logits, target) + return loss_vec + + +def _sigmoid_cross_entropy_loss(logits, target): + # sigmoid_cross_entropy_with_logits requires [batch_size, n_classes] target. + return nn.sigmoid_cross_entropy_with_logits(logits, math_ops.to_float(target)) + + +def _float_weights_or_none(weights): + if weights is None: + return None + return math_ops.to_float(weights) + + +def _weighted_average_loss_metric_spec(loss_fn, predictoin_key, + label_key, weight_key): + def _streaming_weighted_average_loss(predictions, target, weights=None): + loss_unweighted = loss_fn(predictions, target) + _, weighted_average_loss = _loss(loss_unweighted, + weights, + name="eval_loss") + return metrics_lib.streaming_mean(weighted_average_loss) + return metric_spec.MetricSpec(_streaming_weighted_average_loss, + predictoin_key, label_key, weight_key) + + +def _target_streaming_mean(unused_predictions, target, weights=None): + return metrics_lib.streaming_mean(target, weights=weights) + + +def _predictions_streaming_mean(predictions, unused_target, weights=None): + return metrics_lib.streaming_mean(predictions, weights=weights) + + +def _streaming_auc(predictions, target, weights=None): + return metrics_lib.streaming_auc(predictions, target, + weights=_float_weights_or_none(weights)) + + +def _accuracy_at_threshold(threshold): + + def _accuracy_metric(predictions, target, weights=None): + threshold_predictions = math_ops.to_float( + math_ops.greater_equal(predictions, threshold)) + return metrics_lib.streaming_accuracy(predictions=threshold_predictions, + labels=target, + weights=weights) + + return _accuracy_metric + + +def _streaming_at_threshold(streaming_metrics_fn, threshold): + + def _streaming_metrics(predictions, target, weights=None): + precision_tensor, update_op = streaming_metrics_fn( + predictions, labels=target, thresholds=[threshold], + weights=_float_weights_or_none(weights)) + return array_ops.squeeze(precision_tensor), update_op + + return _streaming_metrics + + +# PedictionKey.CLASSES +class PedictionKey(object): + CLASSES = "classes" + PROBABILITIES = "probabilities" + LOGITS = "logits" + LOGISTIC = "logistic" + SCORES = "scores" + + +class MetricKey(object): + LOSS = "loss" + AUC = "auc" + PREDICTION_MEAN = "labels/prediction_mean" + TARGET_MEAN = "labels/actual_target_mean" + ACCURACY = "accuracy" + ACCURACY_BASELINE = "accuracy/baseline_target_mean" + ACCURACY_MEAN = "accuracy/threshold_%f_mean" + PRECISION_MEAN = "precision/positive_threshold_%f_mean" + RECALL_MEAN = "recall/positive_threshold_%f_mean" diff --git a/tensorflow/contrib/learn/python/learn/estimators/head_test.py b/tensorflow/contrib/learn/python/learn/estimators/head_test.py new file mode 100644 index 00000000000..94362144731 --- /dev/null +++ b/tensorflow/contrib/learn/python/learn/estimators/head_test.py @@ -0,0 +1,148 @@ +# Copyright 2016 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Tests for head.py.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import tensorflow as tf + +from tensorflow.contrib.learn.python.learn.estimators import head as head_lib + + +class RegressionModelHeadTest(tf.test.TestCase): + + # TODO(zakaria): test multilabel regresssion. + def testRegression(self): + head = head_lib._regression_head() + with tf.Graph().as_default(), tf.Session() as sess: + prediction = tf.constant([[1.], [1.], [3.]]) + targets = tf.constant([[0.], [1.], [1.]]) + model_fn_ops = head.head_ops({}, targets, + tf.contrib.learn.ModeKeys.TRAIN, + None, logits=prediction) + self.assertAlmostEqual(5. / 3, sess.run(model_fn_ops.loss)) + + def testRegressionWithWeights(self): + head = head_lib._regression_head( + weight_column_name="label_weight") + with tf.Graph().as_default(), tf.Session() as sess: + features = {"label_weight": tf.constant([[2.], [5.], [0.]])} + prediction = tf.constant([[1.], [1.], [3.]]) + targets = tf.constant([[0.], [1.], [1.]]) + model_fn_ops = head.head_ops(features, targets, + tf.contrib.learn.ModeKeys.TRAIN, + None, logits=prediction) + self.assertAlmostEqual(2. / 3, sess.run(model_fn_ops.loss), places=3) + + +class MultiClassModelHeadTest(tf.test.TestCase): + + def testBinaryClassification(self): + head = head_lib._multi_class_head(n_classes=2) + with tf.Graph().as_default(), tf.Session() as sess: + logits = tf.constant([[1.], [1.]]) + targets = tf.constant([[1.], [0.]]) + # logloss: z:label, x:logit + # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) + model_fn_ops = head.head_ops({}, targets, + tf.contrib.learn.ModeKeys.TRAIN, + None, logits=logits) + self.assertAlmostEqual(.81326163, sess.run(model_fn_ops.loss)) + + def testBinaryClassificationWithWeights(self): + head = head_lib._multi_class_head( + n_classes=2, weight_column_name="label_weight") + with tf.Graph().as_default(), tf.Session() as sess: + features = {"label_weight": tf.constant([[1.], [0.]])} + logits = tf.constant([[1.], [1.]]) + targets = tf.constant([[1.], [0.]]) + # logloss: z:label, x:logit + # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) + model_fn_ops = head.head_ops(features, targets, + tf.contrib.learn.ModeKeys.TRAIN, + None, logits=logits) + self.assertAlmostEqual(.31326166 / 2, sess.run(model_fn_ops.loss)) + + def testMultiClass(self): + head = head_lib._multi_class_head(n_classes=3) + with tf.Graph().as_default(), tf.Session() as sess: + logits = tf.constant([[1., 0., 0.]]) + targets = tf.constant([2]) + # logloss: z:label, x:logit + # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) + model_fn_ops = head.head_ops({}, targets, + tf.contrib.learn.ModeKeys.TRAIN, + None, logits=logits) + self.assertAlmostEqual(1.5514446, sess.run(model_fn_ops.loss)) + + def testMultiClassWithWeight(self): + head = head_lib._multi_class_head( + n_classes=3, weight_column_name="label_weight") + with tf.Graph().as_default(), tf.Session() as sess: + features = {"label_weight": tf.constant([0.1])} + logits = tf.constant([[1., 0., 0.]]) + targets = tf.constant([2]) + # logloss: z:label, x:logit + # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) + model_fn_ops = head.head_ops(features, targets, + tf.contrib.learn.ModeKeys.TRAIN, + None, logits=logits) + self.assertAlmostEqual(.15514446, sess.run(model_fn_ops.loss)) + + def testMultiClassWithInvalidNClass(self): + try: + head_lib._multi_class_head(n_classes=1) + self.fail("Softmax with no n_classes did not raise error.") + except ValueError: + # Expected + pass + + +class BinarySvmModelHeadTest(tf.test.TestCase): + + def testBinarySVMDefaultWeights(self): + head = head_lib._binary_svm_head() + predictions = tf.constant([[-0.5], [1.2]]) + targets = tf.constant([0, 1]) + model_fn_ops = head.head_ops({}, targets, + tf.contrib.learn.ModeKeys.TRAIN, + None, logits=predictions) + # Prediction for first example is in the right side of the hyperplane (i.e., + # < 0) but it is within the [-1,1] margin. There is a 0.5 loss incurred by + # this example. The 2nd prediction is outside the margin so it incurs no + # loss at all. The overall (normalized) loss is therefore 0.5/(1+1) = 0.25. + with tf.Session() as sess: + self.assertAlmostEqual(0.25, sess.run(model_fn_ops.loss)) + + def testBinarySVMWithWeights(self): + head = head_lib._binary_svm_head( + weight_column_name="weights") + predictions = tf.constant([[-0.7], [0.2]]) + targets = tf.constant([0, 1]) + features = {"weights": tf.constant([2.0, 10.0])} + model_fn_ops = head.head_ops(features, targets, + tf.contrib.learn.ModeKeys.TRAIN, + None, logits=predictions) + # Prediction for both examples are in the right side of the hyperplane but + # within the margin. The (weighted) loss incurred is 2*0.3=0.6 and 10*0.8=8 + # respectively. The overall (normalized) loss is therefore 8.6/12. + with tf.Session() as sess: + self.assertAlmostEqual(8.6 / 2, sess.run(model_fn_ops.loss), places=3) + + +if __name__ == "__main__": + tf.test.main() diff --git a/tensorflow/contrib/learn/python/learn/estimators/linear.py b/tensorflow/contrib/learn/python/learn/estimators/linear.py index e7ed35712a9..dd5de0bd09f 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/linear.py +++ b/tensorflow/contrib/learn/python/learn/estimators/linear.py @@ -53,6 +53,7 @@ from tensorflow.python.ops import nn from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables +from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import training as train _CLASSES = "classes" @@ -712,6 +713,12 @@ class LinearRegressor(dnn_linear_combined.DNNLinearCombinedRegressor): if enable_centered_bias is None: enable_centered_bias = True dnn_linear_combined._changing_default_center_bias() # pylint: disable=protected-access + + if isinstance(optimizer, sdca_optimizer.SDCAOptimizer): + enable_centered_bias = False + logging.warning("centered_bias is not supported with SDCA, " + "please disable it explicitly.") + self._weight_column_name = weight_column_name self._joint_weights = _joint_weights super(LinearRegressor, self).__init__( model_dir=model_dir, @@ -737,20 +744,21 @@ class LinearRegressor(dnn_linear_combined.DNNLinearCombinedRegressor): layers.weighted_sum_from_feature_columns( columns_to_tensors=features, feature_columns=self._linear_feature_columns, - num_outputs=self._target_column.num_label_columns, + num_outputs=self._head.logits_dimension, weight_collections=[self._linear_model.get_scope_name()], scope=self._linear_model.get_scope_name())) - with ops.control_dependencies([self._centered_bias()]): - loss = self._target_column.loss(logits, targets, features) - logging_ops.scalar_summary("loss", loss) + _add_bias_column(self._linear_feature_columns, features, bias, targets, + columns_to_variables) - _add_bias_column(self._linear_feature_columns, features, bias, targets, - columns_to_variables) + def _train_op_fn(unused_loss): + return self._linear_optimizer.get_train_step( + columns_to_variables, self._weight_column_name, + self._loss_type(), features, targets, global_step) - train_op = self._linear_optimizer.get_train_step( - columns_to_variables, self._target_column.weight_column_name, - self._loss_type(), features, targets, global_step) - return train_op, loss + model_fn_ops = self._head.head_ops(features, targets, + estimator.ModeKeys.TRAIN, _train_op_fn, + logits=logits) + return model_fn_ops.training_op, model_fn_ops.loss def _loss_type(self): return "squared_loss" diff --git a/tensorflow/contrib/learn/python/learn/estimators/linear_test.py b/tensorflow/contrib/learn/python/learn/estimators/linear_test.py index 3156b86970e..e3e50c29ed9 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/linear_test.py +++ b/tensorflow/contrib/learn/python/learn/estimators/linear_test.py @@ -1017,7 +1017,7 @@ class LinearRegressorTest(tf.test.TestCase): scores['my_error']) # Tests that when the key is a tuple, an error is raised. - with self.assertRaises(TypeError): + with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn_train, steps=1, diff --git a/tensorflow/contrib/learn/python/learn/utils/export.py b/tensorflow/contrib/learn/python/learn/utils/export.py index 00ad08dc110..5313dd3a4ea 100644 --- a/tensorflow/contrib/learn/python/learn/utils/export.py +++ b/tensorflow/contrib/learn/python/learn/utils/export.py @@ -19,7 +19,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.framework.python.ops import variables as contrib_variables @@ -312,21 +311,10 @@ def _export_estimator(estimator, predictions) else: try: - # Some estimators provide a target_column of known type - target_column = estimator._get_target_column() - problem_type = target_column.problem_type - - if problem_type == layers.ProblemType.CLASSIFICATION: - signature_fn = classification_signature_fn - elif problem_type == layers.ProblemType.LINEAR_REGRESSION: - signature_fn = regression_signature_fn - elif problem_type == layers.ProblemType.LOGISTIC_REGRESSION: - signature_fn = logistic_regression_signature_fn - else: - raise ValueError( - 'signature_fn must be provided because the TargetColumn is a %s, ' - 'which does not have a standard problem type and so cannot use a ' - 'standard export signature.' % type(target_column).__name__) + # Some estimators provide a signature function. + # TODO(zakaria): check if the estimator has this function, + # raise helpful error if not + signature_fn = estimator._create_signature_fn() default_signature, named_graph_signatures = ( signature_fn(examples, features, predictions)) diff --git a/tensorflow/contrib/learn/python/learn/utils/export_test.py b/tensorflow/contrib/learn/python/learn/utils/export_test.py index 54e3e8962f7..0f1c7e6d807 100644 --- a/tensorflow/contrib/learn/python/learn/utils/export_test.py +++ b/tensorflow/contrib/learn/python/learn/utils/export_test.py @@ -47,6 +47,28 @@ class ExportTest(tf.test.TestCase): default_signature = signatures.default_signature return default_signature + def testExportMonitor_EstimatorProvidesSignature(self): + random.seed(42) + x = np.random.rand(1000) + y = 2 * x + 3 + cont_features = [tf.contrib.layers.real_valued_column('', dimension=1)] + regressor = learn.LinearRegressor(feature_columns=cont_features) + export_dir = tempfile.mkdtemp() + 'export/' + export_monitor = learn.monitors.ExportMonitor( + every_n_steps=1, export_dir=export_dir, exports_to_keep=2) + regressor.fit(x, y, steps=10, + monitors=[export_monitor]) + + self.assertTrue(tf.gfile.Exists(export_dir)) + # Only the written checkpoints are exported. + self.assertTrue(tf.gfile.Exists(export_dir + '00000001/export')) + self.assertTrue(tf.gfile.Exists(export_dir + '00000010/export')) + self.assertEquals(export_monitor.last_export_dir, os.path.join(export_dir, + '00000010')) + # Validate the signature + signature = self._get_default_signature(export_dir + '00000010/export.meta') + self.assertTrue(signature.HasField('regression_signature')) + def testExportMonitor(self): random.seed(42) x = np.random.rand(1000) From c204efdcb48258a8f5d3ccbf386233575b0775b2 Mon Sep 17 00:00:00 2001 From: Dan Smilkov Date: Tue, 11 Oct 2016 16:17:35 -0800 Subject: [PATCH 021/130] Add TB warning message when no data was found for the projector. Also (motivated by poking real TF models): - Load the first tensor that has metadata by default - Make sure the projector can still work even though TensorBoard detected no event files. - Treat tensor names "A" and "A:0" the same (the latter is the canonical name version, which is returned by tf.Variable.name) Change: 135862630 --- tensorflow/tensorboard/backend/handler.py | 3 +- .../tf-no-data-warning.html | 47 +++++++++++++++-- .../tf-tensorboard/tf-tensorboard.html | 8 +-- .../components/vz-projector/data-loader.ts | 11 +++- .../vz-projector/vz-projector-dashboard.html | 52 +++++++++++++++++++ .../components/vz-projector/vz-projector.html | 4 +- tensorflow/tensorboard/plugins/base_plugin.py | 3 +- .../tensorboard/plugins/projector/plugin.py | 21 ++++++-- 8 files changed, 132 insertions(+), 17 deletions(-) create mode 100644 tensorflow/tensorboard/components/vz-projector/vz-projector-dashboard.html diff --git a/tensorflow/tensorboard/backend/handler.py b/tensorflow/tensorboard/backend/handler.py index ef484e36d59..2b1c65399e9 100644 --- a/tensorflow/tensorboard/backend/handler.py +++ b/tensorflow/tensorboard/backend/handler.py @@ -506,7 +506,8 @@ class TensorboardHandler(BaseHTTPServer.BaseHTTPRequestHandler): plugin = REGISTERED_PLUGINS[name]() # Initialize the plugin by passing the main http handler. plugin.initialize(self) - plugin_handlers = plugin.get_plugin_handlers(self._multiplexer.RunPaths()) + plugin_handlers = plugin.get_plugin_handlers(self._multiplexer.RunPaths(), + self._logdir) for route, handler in six.iteritems(plugin_handlers): path = DATA_PREFIX + PLUGIN_PREFIX + '/' + name + route data_handlers[path] = handler diff --git a/tensorflow/tensorboard/components/tf-dashboard-common/tf-no-data-warning.html b/tensorflow/tensorboard/components/tf-dashboard-common/tf-no-data-warning.html index ea0047f32ec..6a1a76bd267 100644 --- a/tensorflow/tensorboard/components/tf-dashboard-common/tf-no-data-warning.html +++ b/tensorflow/tensorboard/components/tf-dashboard-common/tf-no-data-warning.html @@ -24,7 +24,7 @@ Display a warning when there is no data found.