SOFTMAX tests for XNNPACK delegate
PiperOrigin-RevId: 307631610 Change-Id: I7615d500c4b707fd2bfb343d08c801ae57fe2f74
This commit is contained in:
parent
98a5b3b6d1
commit
203c417a20
@ -90,6 +90,21 @@ cc_library(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cc_library(
|
||||||
|
name = "softmax_tester",
|
||||||
|
testonly = 1,
|
||||||
|
srcs = ["softmax_tester.cc"],
|
||||||
|
hdrs = ["softmax_tester.h"],
|
||||||
|
deps = [
|
||||||
|
"//tensorflow/lite:framework",
|
||||||
|
"//tensorflow/lite:schema_fbs_version",
|
||||||
|
"//tensorflow/lite/kernels:builtin_ops",
|
||||||
|
"//tensorflow/lite/schema:schema_fbs",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
"@flatbuffers",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
cc_library(
|
cc_library(
|
||||||
name = "unary_elementwise_tester",
|
name = "unary_elementwise_tester",
|
||||||
testonly = 1,
|
testonly = 1,
|
||||||
@ -289,4 +304,19 @@ cc_test(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cc_test(
|
||||||
|
name = "softmax_test",
|
||||||
|
srcs = ["softmax_test.cc"],
|
||||||
|
linkopts = select({
|
||||||
|
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||||
|
"//conditions:default": [],
|
||||||
|
}),
|
||||||
|
deps = [
|
||||||
|
":softmax_tester",
|
||||||
|
":test_main",
|
||||||
|
":xnnpack_delegate_test_mode",
|
||||||
|
"@com_google_googletest//:gtest",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
tflite_portable_test_suite_combined(combine_conditions = {"deps": [":test_main"]})
|
tflite_portable_test_suite_combined(combine_conditions = {"deps": [":test_main"]})
|
||||||
|
|||||||
140
tensorflow/lite/delegates/xnnpack/softmax_test.cc
Normal file
140
tensorflow/lite/delegates/xnnpack/softmax_test.cc
Normal file
@ -0,0 +1,140 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <memory>
|
||||||
|
#include <random>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/softmax_tester.h"
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
TEST(Softmax, 4D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
SoftmaxTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, 3D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
SoftmaxTester().Shape({batch, width, channels}).Test(xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, 2D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
SoftmaxTester().Shape({batch, channels}).Test(xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, 1D) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
|
||||||
|
SoftmaxTester().Shape({batch}).Test(xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, DISABLED_Beta) {
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
SoftmaxTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Beta(0.1f)
|
||||||
|
.Test(xnnpack_delegate.get());
|
||||||
|
|
||||||
|
SoftmaxTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Beta(10.0f)
|
||||||
|
.Test(xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, MultiThreading) {
|
||||||
|
TfLiteXNNPackDelegateOptions delegate_options =
|
||||||
|
TfLiteXNNPackDelegateOptionsDefault();
|
||||||
|
delegate_options.num_threads = 2;
|
||||||
|
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||||
|
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||||
|
TfLiteXNNPackDelegateDelete);
|
||||||
|
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto shape_rng =
|
||||||
|
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||||
|
const auto batch = shape_rng();
|
||||||
|
const auto height = shape_rng();
|
||||||
|
const auto width = shape_rng();
|
||||||
|
const auto channels = shape_rng();
|
||||||
|
|
||||||
|
SoftmaxTester()
|
||||||
|
.Shape({batch, height, width, channels})
|
||||||
|
.Test(xnnpack_delegate.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
||||||
156
tensorflow/lite/delegates/xnnpack/softmax_tester.cc
Normal file
156
tensorflow/lite/delegates/xnnpack/softmax_tester.cc
Normal file
@ -0,0 +1,156 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "tensorflow/lite/delegates/xnnpack/softmax_tester.h"
|
||||||
|
|
||||||
|
#include <array>
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <numeric>
|
||||||
|
#include <random>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||||
|
#include "tensorflow/lite/interpreter.h"
|
||||||
|
#include "tensorflow/lite/kernels/register.h"
|
||||||
|
#include "tensorflow/lite/model.h"
|
||||||
|
#include "tensorflow/lite/schema/schema_generated.h"
|
||||||
|
#include "tensorflow/lite/version.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
void SoftmaxTester::Test(TfLiteDelegate* delegate) const {
|
||||||
|
std::random_device random_device;
|
||||||
|
auto rng = std::mt19937(random_device());
|
||||||
|
auto input_rng = std::bind(
|
||||||
|
std::uniform_real_distribution<float>(-15.0f, 15.0f), std::ref(rng));
|
||||||
|
|
||||||
|
std::vector<char> buffer = CreateTfLiteModel();
|
||||||
|
const Model* model = GetModel(buffer.data());
|
||||||
|
|
||||||
|
std::unique_ptr<Interpreter> delegate_interpreter;
|
||||||
|
ASSERT_EQ(
|
||||||
|
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||||
|
&delegate_interpreter),
|
||||||
|
kTfLiteOk);
|
||||||
|
std::unique_ptr<Interpreter> default_interpreter;
|
||||||
|
ASSERT_EQ(
|
||||||
|
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||||
|
&default_interpreter),
|
||||||
|
kTfLiteOk);
|
||||||
|
|
||||||
|
ASSERT_TRUE(delegate_interpreter);
|
||||||
|
ASSERT_TRUE(default_interpreter);
|
||||||
|
|
||||||
|
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
||||||
|
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
||||||
|
|
||||||
|
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
||||||
|
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
||||||
|
|
||||||
|
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
||||||
|
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
||||||
|
|
||||||
|
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
||||||
|
|
||||||
|
float* default_input_data = default_interpreter->typed_tensor<float>(
|
||||||
|
default_interpreter->inputs()[0]);
|
||||||
|
std::generate(default_input_data, default_input_data + Size(),
|
||||||
|
std::ref(input_rng));
|
||||||
|
|
||||||
|
float* delegate_input_data = delegate_interpreter->typed_tensor<float>(
|
||||||
|
delegate_interpreter->inputs()[0]);
|
||||||
|
std::copy(default_input_data, default_input_data + Size(),
|
||||||
|
delegate_input_data);
|
||||||
|
|
||||||
|
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
||||||
|
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
||||||
|
|
||||||
|
float* default_output_data = default_interpreter->typed_tensor<float>(
|
||||||
|
default_interpreter->outputs()[0]);
|
||||||
|
float* delegate_output_data = delegate_interpreter->typed_tensor<float>(
|
||||||
|
delegate_interpreter->outputs()[0]);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < Size(); i++) {
|
||||||
|
ASSERT_NEAR(default_output_data[i], delegate_output_data[i],
|
||||||
|
std::numeric_limits<float>::epsilon() *
|
||||||
|
std::max(std::abs(default_output_data[i]) * 10.0f, 1.0f));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<char> SoftmaxTester::CreateTfLiteModel() const {
|
||||||
|
flatbuffers::FlatBufferBuilder builder;
|
||||||
|
flatbuffers::Offset<OperatorCode> operator_code =
|
||||||
|
CreateOperatorCode(builder, BuiltinOperator_SOFTMAX);
|
||||||
|
|
||||||
|
const std::array<flatbuffers::Offset<Buffer>, 1> buffers{{
|
||||||
|
CreateBuffer(builder, builder.CreateVector({})),
|
||||||
|
}};
|
||||||
|
|
||||||
|
const std::array<flatbuffers::Offset<Tensor>, 2> tensors{{
|
||||||
|
CreateTensor(
|
||||||
|
builder,
|
||||||
|
builder.CreateVector<int32_t>(Shape().data(), Shape().size()),
|
||||||
|
TensorType_FLOAT32),
|
||||||
|
CreateTensor(
|
||||||
|
builder,
|
||||||
|
builder.CreateVector<int32_t>(Shape().data(), Shape().size()),
|
||||||
|
TensorType_FLOAT32),
|
||||||
|
}};
|
||||||
|
|
||||||
|
flatbuffers::Offset<SoftmaxOptions> softmax_options =
|
||||||
|
CreateSoftmaxOptions(builder, Beta());
|
||||||
|
|
||||||
|
const std::array<int32_t, 1> op_inputs{{0}};
|
||||||
|
const std::array<int32_t, 1> op_outputs{{1}};
|
||||||
|
flatbuffers::Offset<Operator> op = CreateOperator(
|
||||||
|
builder, /*opcode_index=*/0,
|
||||||
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
||||||
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()),
|
||||||
|
BuiltinOptions_SoftmaxOptions, softmax_options.Union());
|
||||||
|
|
||||||
|
const std::array<int32_t, 1> subgraph_inputs{{0}};
|
||||||
|
const std::array<int32_t, 1> subgraph_outputs{{1}};
|
||||||
|
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
|
||||||
|
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
||||||
|
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
||||||
|
subgraph_inputs.size()),
|
||||||
|
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
||||||
|
subgraph_outputs.size()),
|
||||||
|
builder.CreateVector(&op, 1));
|
||||||
|
|
||||||
|
flatbuffers::Offset<flatbuffers::String> description =
|
||||||
|
builder.CreateString("Softmax model");
|
||||||
|
|
||||||
|
flatbuffers::Offset<Model> model_buffer = CreateModel(
|
||||||
|
builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1),
|
||||||
|
builder.CreateVector(&subgraph, 1), description,
|
||||||
|
builder.CreateVector(buffers.data(), buffers.size()));
|
||||||
|
|
||||||
|
builder.Finish(model_buffer);
|
||||||
|
|
||||||
|
return std::vector<char>(builder.GetBufferPointer(),
|
||||||
|
builder.GetBufferPointer() + builder.GetSize());
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t SoftmaxTester::ComputeSize(const std::vector<int32_t>& shape) {
|
||||||
|
return std::accumulate(shape.cbegin(), shape.cend(), 1,
|
||||||
|
std::multiplies<int32_t>());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
||||||
77
tensorflow/lite/delegates/xnnpack/softmax_tester.h
Normal file
77
tensorflow/lite/delegates/xnnpack/softmax_tester.h
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_SOFTMAX_TESTER_H_
|
||||||
|
#define TENSORFLOW_LITE_DELEGATES_XNNPACK_SOFTMAX_TESTER_H_
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
#include <functional>
|
||||||
|
#include <random>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||||
|
#include "tensorflow/lite/interpreter.h"
|
||||||
|
#include "tensorflow/lite/kernels/register.h"
|
||||||
|
#include "tensorflow/lite/model.h"
|
||||||
|
#include "tensorflow/lite/schema/schema_generated.h"
|
||||||
|
#include "tensorflow/lite/version.h"
|
||||||
|
|
||||||
|
namespace tflite {
|
||||||
|
namespace xnnpack {
|
||||||
|
|
||||||
|
class SoftmaxTester {
|
||||||
|
public:
|
||||||
|
SoftmaxTester() = default;
|
||||||
|
SoftmaxTester(const SoftmaxTester&) = delete;
|
||||||
|
SoftmaxTester& operator=(const SoftmaxTester&) = delete;
|
||||||
|
|
||||||
|
inline SoftmaxTester& Shape(std::initializer_list<int32_t> shape) {
|
||||||
|
EXPECT_GT(shape.size(), 0);
|
||||||
|
for (auto it = shape.begin(); it != shape.end(); ++it) {
|
||||||
|
EXPECT_GT(*it, 0);
|
||||||
|
}
|
||||||
|
shape_ = std::vector<int32_t>(shape.begin(), shape.end());
|
||||||
|
size_ = SoftmaxTester::ComputeSize(shape_);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::vector<int32_t>& Shape() const { return shape_; }
|
||||||
|
|
||||||
|
int32_t Size() const { return size_; }
|
||||||
|
|
||||||
|
inline SoftmaxTester& Beta(float beta) {
|
||||||
|
beta_ = beta;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
float Beta() const { return beta_; }
|
||||||
|
|
||||||
|
void Test(TfLiteDelegate* delegate) const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
std::vector<char> CreateTfLiteModel() const;
|
||||||
|
|
||||||
|
static int32_t ComputeSize(const std::vector<int32_t>& shape);
|
||||||
|
|
||||||
|
std::vector<int32_t> shape_;
|
||||||
|
int32_t size_;
|
||||||
|
float beta_ = 1.0f;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace xnnpack
|
||||||
|
} // namespace tflite
|
||||||
|
|
||||||
|
#endif // TENSORFLOW_LITE_DELEGATES_XNNPACK_SOFTMAX_TESTER_H_
|
||||||
Loading…
x
Reference in New Issue
Block a user