SOFTMAX tests for XNNPACK delegate
PiperOrigin-RevId: 307631610 Change-Id: I7615d500c4b707fd2bfb343d08c801ae57fe2f74
This commit is contained in:
parent
98a5b3b6d1
commit
203c417a20
@ -90,6 +90,21 @@ cc_library(
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "softmax_tester",
|
||||
testonly = 1,
|
||||
srcs = ["softmax_tester.cc"],
|
||||
hdrs = ["softmax_tester.h"],
|
||||
deps = [
|
||||
"//tensorflow/lite:framework",
|
||||
"//tensorflow/lite:schema_fbs_version",
|
||||
"//tensorflow/lite/kernels:builtin_ops",
|
||||
"//tensorflow/lite/schema:schema_fbs",
|
||||
"@com_google_googletest//:gtest",
|
||||
"@flatbuffers",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "unary_elementwise_tester",
|
||||
testonly = 1,
|
||||
@ -289,4 +304,19 @@ cc_test(
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "softmax_test",
|
||||
srcs = ["softmax_test.cc"],
|
||||
linkopts = select({
|
||||
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||
"//conditions:default": [],
|
||||
}),
|
||||
deps = [
|
||||
":softmax_tester",
|
||||
":test_main",
|
||||
":xnnpack_delegate_test_mode",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
tflite_portable_test_suite_combined(combine_conditions = {"deps": [":test_main"]})
|
||||
|
140
tensorflow/lite/delegates/xnnpack/softmax_test.cc
Normal file
140
tensorflow/lite/delegates/xnnpack/softmax_test.cc
Normal file
@ -0,0 +1,140 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <random>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/delegates/xnnpack/softmax_tester.h"
|
||||
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
TEST(Softmax, 4D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
SoftmaxTester()
|
||||
.Shape({batch, height, width, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Softmax, 3D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
SoftmaxTester().Shape({batch, width, channels}).Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Softmax, 2D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
SoftmaxTester().Shape({batch, channels}).Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Softmax, 1D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
|
||||
SoftmaxTester().Shape({batch}).Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Softmax, DISABLED_Beta) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
SoftmaxTester()
|
||||
.Shape({batch, height, width, channels})
|
||||
.Beta(0.1f)
|
||||
.Test(xnnpack_delegate.get());
|
||||
|
||||
SoftmaxTester()
|
||||
.Shape({batch, height, width, channels})
|
||||
.Beta(10.0f)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Softmax, MultiThreading) {
|
||||
TfLiteXNNPackDelegateOptions delegate_options =
|
||||
TfLiteXNNPackDelegateOptionsDefault();
|
||||
delegate_options.num_threads = 2;
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
SoftmaxTester()
|
||||
.Shape({batch, height, width, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
156
tensorflow/lite/delegates/xnnpack/softmax_tester.cc
Normal file
156
tensorflow/lite/delegates/xnnpack/softmax_tester.cc
Normal file
@ -0,0 +1,156 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/delegates/xnnpack/softmax_tester.h"
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <numeric>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/interpreter.h"
|
||||
#include "tensorflow/lite/kernels/register.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
void SoftmaxTester::Test(TfLiteDelegate* delegate) const {
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto input_rng = std::bind(
|
||||
std::uniform_real_distribution<float>(-15.0f, 15.0f), std::ref(rng));
|
||||
|
||||
std::vector<char> buffer = CreateTfLiteModel();
|
||||
const Model* model = GetModel(buffer.data());
|
||||
|
||||
std::unique_ptr<Interpreter> delegate_interpreter;
|
||||
ASSERT_EQ(
|
||||
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||
&delegate_interpreter),
|
||||
kTfLiteOk);
|
||||
std::unique_ptr<Interpreter> default_interpreter;
|
||||
ASSERT_EQ(
|
||||
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||
&default_interpreter),
|
||||
kTfLiteOk);
|
||||
|
||||
ASSERT_TRUE(delegate_interpreter);
|
||||
ASSERT_TRUE(default_interpreter);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
||||
|
||||
float* default_input_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->inputs()[0]);
|
||||
std::generate(default_input_data, default_input_data + Size(),
|
||||
std::ref(input_rng));
|
||||
|
||||
float* delegate_input_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->inputs()[0]);
|
||||
std::copy(default_input_data, default_input_data + Size(),
|
||||
delegate_input_data);
|
||||
|
||||
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
||||
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
||||
|
||||
float* default_output_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->outputs()[0]);
|
||||
float* delegate_output_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->outputs()[0]);
|
||||
|
||||
for (size_t i = 0; i < Size(); i++) {
|
||||
ASSERT_NEAR(default_output_data[i], delegate_output_data[i],
|
||||
std::numeric_limits<float>::epsilon() *
|
||||
std::max(std::abs(default_output_data[i]) * 10.0f, 1.0f));
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<char> SoftmaxTester::CreateTfLiteModel() const {
|
||||
flatbuffers::FlatBufferBuilder builder;
|
||||
flatbuffers::Offset<OperatorCode> operator_code =
|
||||
CreateOperatorCode(builder, BuiltinOperator_SOFTMAX);
|
||||
|
||||
const std::array<flatbuffers::Offset<Buffer>, 1> buffers{{
|
||||
CreateBuffer(builder, builder.CreateVector({})),
|
||||
}};
|
||||
|
||||
const std::array<flatbuffers::Offset<Tensor>, 2> tensors{{
|
||||
CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(Shape().data(), Shape().size()),
|
||||
TensorType_FLOAT32),
|
||||
CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(Shape().data(), Shape().size()),
|
||||
TensorType_FLOAT32),
|
||||
}};
|
||||
|
||||
flatbuffers::Offset<SoftmaxOptions> softmax_options =
|
||||
CreateSoftmaxOptions(builder, Beta());
|
||||
|
||||
const std::array<int32_t, 1> op_inputs{{0}};
|
||||
const std::array<int32_t, 1> op_outputs{{1}};
|
||||
flatbuffers::Offset<Operator> op = CreateOperator(
|
||||
builder, /*opcode_index=*/0,
|
||||
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
||||
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()),
|
||||
BuiltinOptions_SoftmaxOptions, softmax_options.Union());
|
||||
|
||||
const std::array<int32_t, 1> subgraph_inputs{{0}};
|
||||
const std::array<int32_t, 1> subgraph_outputs{{1}};
|
||||
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
|
||||
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
||||
subgraph_inputs.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
||||
subgraph_outputs.size()),
|
||||
builder.CreateVector(&op, 1));
|
||||
|
||||
flatbuffers::Offset<flatbuffers::String> description =
|
||||
builder.CreateString("Softmax model");
|
||||
|
||||
flatbuffers::Offset<Model> model_buffer = CreateModel(
|
||||
builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1),
|
||||
builder.CreateVector(&subgraph, 1), description,
|
||||
builder.CreateVector(buffers.data(), buffers.size()));
|
||||
|
||||
builder.Finish(model_buffer);
|
||||
|
||||
return std::vector<char>(builder.GetBufferPointer(),
|
||||
builder.GetBufferPointer() + builder.GetSize());
|
||||
}
|
||||
|
||||
int32_t SoftmaxTester::ComputeSize(const std::vector<int32_t>& shape) {
|
||||
return std::accumulate(shape.cbegin(), shape.cend(), 1,
|
||||
std::multiplies<int32_t>());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
77
tensorflow/lite/delegates/xnnpack/softmax_tester.h
Normal file
77
tensorflow/lite/delegates/xnnpack/softmax_tester.h
Normal file
@ -0,0 +1,77 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_SOFTMAX_TESTER_H_
|
||||
#define TENSORFLOW_LITE_DELEGATES_XNNPACK_SOFTMAX_TESTER_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/interpreter.h"
|
||||
#include "tensorflow/lite/kernels/register.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
class SoftmaxTester {
|
||||
public:
|
||||
SoftmaxTester() = default;
|
||||
SoftmaxTester(const SoftmaxTester&) = delete;
|
||||
SoftmaxTester& operator=(const SoftmaxTester&) = delete;
|
||||
|
||||
inline SoftmaxTester& Shape(std::initializer_list<int32_t> shape) {
|
||||
EXPECT_GT(shape.size(), 0);
|
||||
for (auto it = shape.begin(); it != shape.end(); ++it) {
|
||||
EXPECT_GT(*it, 0);
|
||||
}
|
||||
shape_ = std::vector<int32_t>(shape.begin(), shape.end());
|
||||
size_ = SoftmaxTester::ComputeSize(shape_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
const std::vector<int32_t>& Shape() const { return shape_; }
|
||||
|
||||
int32_t Size() const { return size_; }
|
||||
|
||||
inline SoftmaxTester& Beta(float beta) {
|
||||
beta_ = beta;
|
||||
return *this;
|
||||
}
|
||||
|
||||
float Beta() const { return beta_; }
|
||||
|
||||
void Test(TfLiteDelegate* delegate) const;
|
||||
|
||||
private:
|
||||
std::vector<char> CreateTfLiteModel() const;
|
||||
|
||||
static int32_t ComputeSize(const std::vector<int32_t>& shape);
|
||||
|
||||
std::vector<int32_t> shape_;
|
||||
int32_t size_;
|
||||
float beta_ = 1.0f;
|
||||
};
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_DELEGATES_XNNPACK_SOFTMAX_TESTER_H_
|
Loading…
Reference in New Issue
Block a user