fix: typos using misspell
fix: typos This PR is part of a campaign to fix a lot of typos on github! You can see the progress on https://github.com/fixTypos/fix_typos/ https://github.com/client9/misspell
This commit is contained in:
parent
f2a46993e3
commit
1f6ed06221
configure
tensorflow
compiler/xla
array4d.h
client
literal_util.hservice
buffer_liveness_test.cccopy_insertion.cccopy_insertion_test.cc
gpu
hlo_constant_folding.hhlo_cost_analysis.hhlo_evaluator.hhlo_ordering.cclayout_assignment.hllvm_ir
tests
contrib
bayesflow/python/ops
boosted_trees/lib/testutil
cloud
cudnn_rnn/python/ops
data/python/framework
distributions/python
graph_editor
hooks
image
keras/python/keras
kernel_methods/python/mappers
labeled_tensor/python/ops
layers/python/layers
learn/python/learn
legacy_seq2seq/python/kernel_tests
memory_stats/python/kernel_tests
metrics/python/ops
rnn/python/ops
seq2seq/python/ops
slim
tensorboard/plugins/projector
training/python/training
core
common_runtime
debug
distributed_runtime
framework
graph
grappler
kernels
cast_op.hconv_ops_fused.cccuda_solvers.hdeep_conv2d.ccdeep_conv2d.hhinge-loss.himage_resizer_state.hmap_stage_op.ccmeta_support.hmkl_conv_grad_input_ops.ccpadded_batch_dataset_op.ccquantization_utils.hsmooth-hinge-loss.hsparse_tensor_dense_add_op.h
lib/gtl
4
configure
vendored
4
configure
vendored
@ -230,7 +230,7 @@ if [ "$TF_NEED_MKL" == "1" ]; then # TF_NEED_MKL
|
||||
if [ -z "$MKL_INSTALL_PATH" ]; then
|
||||
MKL_INSTALL_PATH=$default_mkl_path
|
||||
fi
|
||||
# Result returned from "read" will be used unexpanded. That make "~" unuseable.
|
||||
# Result returned from "read" will be used unexpanded. That make "~" unusable.
|
||||
# Going through one more level of expansion to handle that.
|
||||
MKL_INSTALL_PATH=`${PYTHON_BIN_PATH} -c "import os; print(os.path.realpath(os.path.expanduser('${MKL_INSTALL_PATH}')))"`
|
||||
fi
|
||||
@ -565,7 +565,7 @@ while true; do
|
||||
if [ -z "$CUDNN_INSTALL_PATH" ]; then
|
||||
CUDNN_INSTALL_PATH=$default_cudnn_path
|
||||
fi
|
||||
# Result returned from "read" will be used unexpanded. That make "~" unuseable.
|
||||
# Result returned from "read" will be used unexpanded. That make "~" unusable.
|
||||
# Going through one more level of expansion to handle that.
|
||||
CUDNN_INSTALL_PATH=`"${PYTHON_BIN_PATH}" -c "import os; print(os.path.realpath(os.path.expanduser('${CUDNN_INSTALL_PATH}')))"`
|
||||
fi
|
||||
|
@ -65,7 +65,7 @@ class Array4D {
|
||||
Fill(T());
|
||||
}
|
||||
|
||||
// Creates a 4D array, initalized to value.
|
||||
// Creates a 4D array, initialized to value.
|
||||
Array4D(int64 planes, int64 depth, int64 height, int64 width, T value)
|
||||
: Array4D(planes, depth, height, width) {
|
||||
Fill(value);
|
||||
|
@ -56,7 +56,7 @@ class ExecutableBuildOptions {
|
||||
|
||||
// If set, this specifies the layout of the result of the computation. If not
|
||||
// set, the service will chose the layout of the result. A Shape is used to
|
||||
// store the layout to accomodate tuple result shapes. A value of nullptr
|
||||
// store the layout to accommodate tuple result shapes. A value of nullptr
|
||||
// indicates the option has not been set.
|
||||
ExecutableBuildOptions& set_result_layout(const Shape& shape_with_layout);
|
||||
const Shape* result_layout() const;
|
||||
|
@ -128,7 +128,7 @@ class LiteralUtil {
|
||||
|
||||
// Creates a new value that has the equivalent value as literal, but conforms
|
||||
// to new_layout; e.g. a literal matrix that was in {0, 1} minor-to-major
|
||||
// dimension layout can be re-layed-out as {1, 0} minor-to-major dimension
|
||||
// dimension layout can be re-laid-out as {1, 0} minor-to-major dimension
|
||||
// layout and the value in the cell at any given logical index (i0, i1) will
|
||||
// be the same.
|
||||
//
|
||||
|
@ -628,7 +628,7 @@ class FusedDynamicUpdateSliceLivenessTest : public BufferLivenessTest {
|
||||
BufferLiveness::Run(module.get(),
|
||||
MakeUnique<DependencyHloOrdering>(module.get()))
|
||||
.ConsumeValueOrDie();
|
||||
// Return whether or not buffers interfernce is detected between
|
||||
// Return whether or not buffers interference is detected between
|
||||
// 'tuple_param0' and 'tuple_root' at shape index '{1}'.
|
||||
return TupleElementsMayInterfere(*liveness, tuple_param0, tuple_root, {1});
|
||||
}
|
||||
@ -740,7 +740,7 @@ class DynamicUpdateSliceLivenessTest : public BufferLivenessTest {
|
||||
BufferLiveness::Run(module.get(),
|
||||
MakeUnique<DependencyHloOrdering>(module.get()))
|
||||
.ConsumeValueOrDie();
|
||||
// Return whether or not buffers interfernce is detected between
|
||||
// Return whether or not buffers interference is detected between
|
||||
// 'tuple_param0' and 'tuple_root' at shape index '{1}'.
|
||||
return TupleElementsMayInterfere(*liveness, tuple_param0, tuple_root, {1});
|
||||
}
|
||||
|
@ -141,7 +141,7 @@ class InstructionCopier {
|
||||
Status RecordAmbiguousOrNonDistinctIndices(
|
||||
const TuplePointsToAnalysis& points_to_analysis);
|
||||
|
||||
// Records instruction buffer indices which have interferring live ranges
|
||||
// Records instruction buffer indices which have interfering live ranges
|
||||
// with 'other_instruction' buffers at same index.
|
||||
Status RecordIndicesWhichInterfereWithOtherInstruction(
|
||||
const BufferLiveness& liveness, const HloInstruction* other_instruction,
|
||||
@ -431,7 +431,7 @@ HloInstruction* InstructionCopier::Copy() {
|
||||
return copy;
|
||||
}
|
||||
|
||||
// The 'read_only_indices' are initalized based on points-to analysis on the
|
||||
// The 'read_only_indices' are initialized based on points-to analysis on the
|
||||
// while body corresponding to 'while_hlo'. If the init buffer corresponding to
|
||||
// a read-only index aliases with an entry parameter (or constant), it cannot be
|
||||
// considered read-only, and must be copied. This is necessary because some
|
||||
|
@ -972,7 +972,7 @@ TEST_F(WhileCopyInsertionTest, InitPointsToNonDistinct) {
|
||||
op::Copy(old_init->operand(1)->operand(0)))));
|
||||
}
|
||||
|
||||
// Tests while init instruction buffer which interfers with while result buffer.
|
||||
// Tests while init instruction buffer which interferes with while result buffer.
|
||||
//
|
||||
// init_data = Broadcast(...)
|
||||
// add_unrelated = Add(init_data) // takes a reference to cause interference
|
||||
|
@ -125,7 +125,7 @@ tensorflow::Status ConvolutionThunk::ExecuteOnStream(
|
||||
CHECK_LE(num_dimensions, 3);
|
||||
// cuDNN does not support 1D convolutions. We therefore express 1D
|
||||
// convolutions as 2D convolutions where the first spatial dimension is 1.
|
||||
// This matches the behaviour of TF (see definition of conv1d in
|
||||
// This matches the behavior of TF (see definition of conv1d in
|
||||
// tensorflow/python/ops/nn_ops.py).
|
||||
const int effective_num_dimensions = std::max(2, num_dimensions);
|
||||
|
||||
|
@ -405,9 +405,9 @@ StatusOr<string> CompileModuleToPtx(llvm::Module* module,
|
||||
|
||||
AddOptimizationPasses(flags->opt_level, /*size_level=*/0,
|
||||
target_machine.get(), &module_passes, &function_passes);
|
||||
// Loop unrolling exposes more opportunites for SROA. Therefore, we run SROA
|
||||
// Loop unrolling exposes more opportunities for SROA. Therefore, we run SROA
|
||||
// again after the standard optimization passes [http://b/13329423].
|
||||
// TODO(jingyue): SROA may further expose more optimization opportunites, such
|
||||
// TODO(jingyue): SROA may further expose more optimization opportunities, such
|
||||
// as more precise alias analysis and more function inlining (SROA may change
|
||||
// the inlining cost of a function). For now, running SROA already emits good
|
||||
// enough code for the evaluated benchmarks. We may want to run more
|
||||
|
@ -33,7 +33,7 @@ namespace gpu {
|
||||
enum class PartitionStrategy {
|
||||
// Optimized for latency by allowing maximum number of registers per thread.
|
||||
kLatency,
|
||||
// Optimized for throughtput. This may limit registers per thread and cause
|
||||
// Optimized for throughput. This may limit registers per thread and cause
|
||||
// longer latency.
|
||||
kThroughput
|
||||
};
|
||||
|
@ -37,7 +37,7 @@ namespace {
|
||||
// patterns to match.
|
||||
//
|
||||
// Each ExprTree node is comprised of an HloOpcode, and a set of operands (each
|
||||
// of type ExprTree). Operands can be added by specifing the index and HloOpcode
|
||||
// of type ExprTree). Operands can be added by specifying the index and HloOpcode
|
||||
// of the operand.
|
||||
//
|
||||
// For example, the following computation:
|
||||
|
@ -21,7 +21,7 @@ limitations under the License.
|
||||
|
||||
namespace xla {
|
||||
|
||||
// A pass which performs constant folding in order to avoid unecessary
|
||||
// A pass which performs constant folding in order to avoid unnecessary
|
||||
// computation on constants.
|
||||
class HloConstantFolding : public HloPassInterface {
|
||||
public:
|
||||
|
@ -133,7 +133,7 @@ class HloCostAnalysis : public DfsHloVisitor {
|
||||
int64 bytes_accessed() const { return bytes_accessed_; }
|
||||
|
||||
private:
|
||||
// An FMA counts as two floating point operations in these analyses.
|
||||
// An FMA counts as two floating point operations in these analyzes.
|
||||
static constexpr int64 kFmaFlops = 2;
|
||||
|
||||
// Utility function to handle all element-wise operations.
|
||||
|
@ -104,7 +104,7 @@ class HloEvaluator : public DfsHloVisitorWithDefault {
|
||||
std::hash<int>>
|
||||
typed_visitors_;
|
||||
|
||||
// Tracks the HLO instruciton and its evaluated literal result.
|
||||
// Tracks the HLO instruction and its evaluated literal result.
|
||||
// TODO(b/35950897): have better memory management here to free instructions
|
||||
// that are no longer a parent for any other subsequent instruction in
|
||||
// post-orderring.
|
||||
|
@ -343,7 +343,7 @@ class ListScheduler {
|
||||
return freed_bytes;
|
||||
}
|
||||
|
||||
// Construct the scheduling priority of the given instruciton.
|
||||
// Construct the scheduling priority of the given instruction.
|
||||
Priority GetPriority(const HloInstruction* instruction) {
|
||||
return {BytesFreedIfScheduled(instruction), instruction->user_count()};
|
||||
}
|
||||
|
@ -273,7 +273,7 @@ class LayoutAssignment : public HloPassInterface {
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// This method can be overriden to mark instructions as requiring the operands
|
||||
// This method can be overridden to mark instructions as requiring the operands
|
||||
// to have the same layout as the result, for performance or correctness. This
|
||||
// will propagate constraints through the instruction from the result into the
|
||||
// operands.
|
||||
|
@ -130,7 +130,7 @@ llvm::AllocaInst* EmitAllocaAtFunctionEntryWithCount(
|
||||
llvm::Type* type, llvm::Value* element_count, tensorflow::StringPiece name,
|
||||
llvm::IRBuilder<>* ir_builder, int alignment = 0);
|
||||
|
||||
// Creates a basic block with the same context and funtion as for the
|
||||
// Creates a basic block with the same context and function as for the
|
||||
// builder. Inserts at the end of the function if insert_before is
|
||||
// null.
|
||||
llvm::BasicBlock* CreateBasicBlock(llvm::BasicBlock* insert_before,
|
||||
|
@ -65,7 +65,7 @@ class HloTestBase : public ::testing::Test {
|
||||
perftools::gputools::DeviceMemoryBase TransferToDevice(
|
||||
const Literal& literal);
|
||||
|
||||
// Transfers the array refered to by the given handle from the device and
|
||||
// Transfers the array referred to by the given handle from the device and
|
||||
// returns as a Literal.
|
||||
std::unique_ptr<Literal> TransferFromDevice(
|
||||
const Shape& shape, perftools::gputools::DeviceMemoryBase device_base);
|
||||
|
@ -194,7 +194,7 @@ XLA_TEST_F(PrngTest, MapUsingRng) {
|
||||
}
|
||||
}
|
||||
|
||||
// This tests demonstrates the global seeding behaviour.
|
||||
// This tests demonstrates the global seeding behavior.
|
||||
// * If a seed is passed in via Execute (ExecuteAndTransfer) then the output is
|
||||
// fixed (i.e., there is a single output for a given seed);
|
||||
// * If no seed is passed in then the output of every call can be different;
|
||||
|
@ -177,7 +177,7 @@ def _logspace_mean(log_values):
|
||||
`Log[Mean[values]]`.
|
||||
"""
|
||||
# center = Max[Log[values]], with stop-gradient
|
||||
# The center hopefully keep the exponentiated term small. It is cancelled
|
||||
# The center hopefully keep the exponentiated term small. It is canceled
|
||||
# from the final result, so putting stop gradient on it will not change the
|
||||
# final result. We put stop gradient on to eliminate unnecessary computation.
|
||||
center = array_ops.stop_gradient(_sample_max(log_values))
|
||||
|
@ -42,7 +42,7 @@ class RandomTreeGen {
|
||||
boosted_trees::trees::DecisionTreeConfig Generate(
|
||||
const boosted_trees::trees::DecisionTreeConfig& tree);
|
||||
|
||||
// Requried: depth >= 1; tree_count >= 1.
|
||||
// Required: depth >= 1; tree_count >= 1.
|
||||
boosted_trees::trees::DecisionTreeEnsembleConfig GenerateEnsemble(
|
||||
int dept, int tree_count);
|
||||
|
||||
|
@ -46,7 +46,7 @@ Status GetTableAttrs(OpKernelConstruction* context, string* project_id,
|
||||
|
||||
} // namespace
|
||||
|
||||
// Note that overriden methods with names ending in "Locked" are called by
|
||||
// Note that overridden methods with names ending in "Locked" are called by
|
||||
// ReaderBase while a mutex is held.
|
||||
// See comments for ReaderBase.
|
||||
class BigQueryReader : public ReaderBase {
|
||||
|
@ -46,7 +46,7 @@ _TABLE = "test-table"
|
||||
# The values for rows are generated such that some columns have null values. The
|
||||
# general formula here is:
|
||||
# - The int64 column is present in every row.
|
||||
# - The string column is only avaiable in even rows.
|
||||
# - The string column is only available in even rows.
|
||||
# - The float column is only available in every third row.
|
||||
_ROWS = [[0, "s_0", 0.1], [1, None, None], [2, "s_2", None], [3, None, 3.1],
|
||||
[4, "s_4", None], [5, None, None], [6, "s_6", 6.1], [7, None, None],
|
||||
|
@ -141,7 +141,7 @@ _cudnn_rnn_common_doc_string = """
|
||||
* Once a while, the user saves the parameter buffer into model checkpoints
|
||||
with Saver.save().
|
||||
* When restoring, the user creates a RNNParamsSaveable object and uses
|
||||
Saver.restore() to restore the paramter buffer from the canonical format
|
||||
Saver.restore() to restore the parameter buffer from the canonical format
|
||||
to a user-defined format, as well as to restore other savable objects
|
||||
in the checkpoint file.
|
||||
"""
|
||||
|
@ -39,7 +39,7 @@ class _ExperimentalFuncGraph(function._FuncGraph):
|
||||
_ExperimentalFuncGraph overrides ops.Graph's create_op() so that we can keep
|
||||
track of every inputs into every op created inside the function. If
|
||||
any input is from other graphs, we keep track of it in self.capture
|
||||
and substitue the input with a place holder.
|
||||
and substitute the input with a place holder.
|
||||
|
||||
Each captured input's corresponding place holder is converted into a
|
||||
function argument and the caller passes in the captured tensor.
|
||||
|
@ -38,7 +38,7 @@ class _FakeVectorStudentT(object):
|
||||
|
||||
Other `Vector*` implementations need only test new code. That we don't need
|
||||
to test every Vector* distribution is good because there aren't SciPy
|
||||
analogues and reimplementing everything in NumPy sort of defeats the point of
|
||||
analogs and reimplementing everything in NumPy sort of defeats the point of
|
||||
having the `TransformedDistribution + Affine` API.
|
||||
"""
|
||||
|
||||
|
@ -269,7 +269,7 @@ class Binomial(distribution.Distribution):
|
||||
message="total_count must be non-negative."),
|
||||
distribution_util.assert_integer_form(
|
||||
total_count,
|
||||
message="total_count cannot contain fractional componentes."),
|
||||
message="total_count cannot contain fractional components."),
|
||||
], total_count)
|
||||
|
||||
def _maybe_assert_valid_sample(self, counts, check_integer=True):
|
||||
|
@ -130,7 +130,7 @@ def transform_tree(tree, fn, iterable_type=tuple):
|
||||
tree: iterable or not. If iterable, its elements (child) can also be
|
||||
iterable or not.
|
||||
fn: function to apply to each leaves.
|
||||
iterable_type: type use to construct the resulting tree for unknwon
|
||||
iterable_type: type use to construct the resulting tree for unknown
|
||||
iterable, typically `list` or `tuple`.
|
||||
Returns:
|
||||
A tree whose leaves has been transformed by `fn`.
|
||||
|
@ -5,7 +5,7 @@ of `SessionRunHook` and are to be used with helpers like `MonitoredSession`
|
||||
and `learn.Estimator` that wrap `tensorflow.Session`.
|
||||
|
||||
The hooks are called between invocations of `Session.run()` to perform custom
|
||||
behaviour.
|
||||
behavior.
|
||||
|
||||
For example the `ProfilerHook` periodically collects `RunMetadata` after
|
||||
`Session.run()` and saves profiling information that can be viewed in a
|
||||
|
@ -77,7 +77,7 @@ REGISTER_OP("BipartiteMatch")
|
||||
.Doc(R"doc(
|
||||
Find bipartite matching based on a given distance matrix.
|
||||
|
||||
A greedy bi-partite matching alogrithm is used to obtain the matching with the
|
||||
A greedy bi-partite matching algorithm is used to obtain the matching with the
|
||||
(greedy) minimum distance.
|
||||
|
||||
distance_mat: A 2-D float tensor of shape `[num_rows, num_columns]`. It is a
|
||||
|
@ -266,7 +266,7 @@ def bipartite_match(
|
||||
top_k=-1):
|
||||
"""Find bipartite matching based on a given distance matrix.
|
||||
|
||||
A greedy bi-partite matching alogrithm is used to obtain the matching with
|
||||
A greedy bi-partite matching algorithm is used to obtain the matching with
|
||||
the (greedy) minimum distance.
|
||||
|
||||
Args:
|
||||
|
@ -59,7 +59,7 @@ def identity_block(input_tensor, kernel_size, filters, stage, block):
|
||||
|
||||
Arguments:
|
||||
input_tensor: input tensor
|
||||
kernel_size: defualt 3, the kernel size of middle conv layer at main path
|
||||
kernel_size: default 3, the kernel size of middle conv layer at main path
|
||||
filters: list of integers, the filterss of 3 conv layer at main path
|
||||
stage: integer, current stage label, used for generating layer names
|
||||
block: 'a','b'..., current block label, used for generating layer names
|
||||
@ -98,7 +98,7 @@ def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2,
|
||||
|
||||
Arguments:
|
||||
input_tensor: input tensor
|
||||
kernel_size: defualt 3, the kernel size of middle conv layer at main path
|
||||
kernel_size: default 3, the kernel size of middle conv layer at main path
|
||||
filters: list of integers, the filterss of 3 conv layer at main path
|
||||
stage: integer, current stage label, used for generating layer names
|
||||
block: 'a','b'..., current block label, used for generating layer names
|
||||
|
@ -91,7 +91,7 @@ _IMAGE_DATA_FORMAT = 'channels_last'
|
||||
def backend():
|
||||
"""Publicly accessible method for determining the current backend.
|
||||
|
||||
Only exists for API compatibily with multi-backend Keras.
|
||||
Only exists for API compatibility with multi-backend Keras.
|
||||
|
||||
Returns:
|
||||
The string "tensorflow".
|
||||
@ -2617,7 +2617,7 @@ def in_train_phase(x, alt, training=None):
|
||||
(tensor or callable that returns a tensor).
|
||||
training: Optional scalar tensor
|
||||
(or Python boolean, or Python integer)
|
||||
specifing the learning phase.
|
||||
specifying the learning phase.
|
||||
|
||||
Returns:
|
||||
Either `x` or `alt` based on the `training` flag.
|
||||
@ -2660,7 +2660,7 @@ def in_test_phase(x, alt, training=None):
|
||||
(tensor or callable that returns a tensor).
|
||||
training: Optional scalar tensor
|
||||
(or Python boolean, or Python integer)
|
||||
specifing the learning phase.
|
||||
specifying the learning phase.
|
||||
|
||||
Returns:
|
||||
Either `x` or `alt` based on `K.learning_phase`.
|
||||
|
@ -1546,7 +1546,7 @@ class Container(Layer):
|
||||
"""Retrieve the model's updates.
|
||||
|
||||
Will only include updates that are either
|
||||
inconditional, or conditional on inputs to this model
|
||||
unconditional, or conditional on inputs to this model
|
||||
(e.g. will not include updates that depend on tensors
|
||||
that aren't inputs to this model).
|
||||
|
||||
@ -1573,7 +1573,7 @@ class Container(Layer):
|
||||
"""Retrieve the model's losses.
|
||||
|
||||
Will only include losses that are either
|
||||
inconditional, or conditional on inputs to this model
|
||||
unconditional, or conditional on inputs to this model
|
||||
(e.g. will not include losses that depend on tensors
|
||||
that aren't inputs to this model).
|
||||
|
||||
|
@ -109,7 +109,7 @@ class BaseWrapper(object):
|
||||
"""Gets parameters for this estimator.
|
||||
|
||||
Arguments:
|
||||
**params: ignored (exists for API compatiblity).
|
||||
**params: ignored (exists for API compatibility).
|
||||
|
||||
Returns:
|
||||
Dictionary of parameter names mapped to their values.
|
||||
|
@ -85,7 +85,7 @@ class RandomFourierFeatureMapperTest(TensorFlowTestCase):
|
||||
mapped_x = rffm.map(x)
|
||||
mapped_x_copy = rffm.map(x)
|
||||
# Two different evaluations of tensors output by map on the same input
|
||||
# are identical because the same paramaters are used for the mappings.
|
||||
# are identical because the same parameters are used for the mappings.
|
||||
self.assertAllClose(mapped_x.eval(), mapped_x_copy.eval(), atol=0.001)
|
||||
|
||||
def testTwoMapperObjects(self):
|
||||
|
@ -618,7 +618,7 @@ def identity(labeled_tensor, name=None):
|
||||
def slice_function(labeled_tensor, selection, name=None):
|
||||
"""Slice out a subset of the tensor.
|
||||
|
||||
This is an analogue of tf.slice.
|
||||
This is an analog of tf.slice.
|
||||
For example:
|
||||
>>> tensor = tf.reshape(tf.range(0, 6), [3, 2])
|
||||
>>> labeled_tensor = lt.LabeledTensor(tensor, ['a', ('b', ['foo', 'bar'])])
|
||||
|
@ -28,7 +28,7 @@ from tensorflow.python.platform import test
|
||||
|
||||
class RegressionTargetColumnTest(test.TestCase):
|
||||
|
||||
# TODO(zakaria): test multilabel regresssion.
|
||||
# TODO(zakaria): test multilabel regression.
|
||||
def testRegression(self):
|
||||
target_column = target_column_lib.regression_target()
|
||||
with ops.Graph().as_default(), session.Session() as sess:
|
||||
|
@ -97,7 +97,7 @@ class TensorFlowDataFrame(df.DataFrame):
|
||||
graph: the `Graph` in which the `DataFrame` should be built.
|
||||
session: the `Session` in which to run the columns of the `DataFrame`.
|
||||
start_queues: if true, queues will be started before running and halted
|
||||
after producting `n` batches.
|
||||
after producing `n` batches.
|
||||
initialize_variables: if true, variables will be initialized.
|
||||
**kwargs: Additional keyword arguments e.g. `num_epochs`.
|
||||
|
||||
|
@ -89,7 +89,7 @@ SCIKIT_DECOUPLE_INSTRUCTIONS = (
|
||||
|
||||
|
||||
def _verify_input_args(x, y, input_fn, feed_fn, batch_size):
|
||||
"""Verifies validity of co-existance of input arguments."""
|
||||
"""Verifies validity of co-existence of input arguments."""
|
||||
if input_fn is None:
|
||||
if x is None:
|
||||
raise ValueError('Either x or input_fn must be provided.')
|
||||
@ -358,7 +358,7 @@ class BaseEstimator(
|
||||
"""
|
||||
__metaclass__ = abc.ABCMeta
|
||||
|
||||
# Note that for Google users, this is overriden with
|
||||
# Note that for Google users, this is overridden with
|
||||
# learn_runner.EstimatorConfig.
|
||||
# TODO(wicke): Remove this once launcher takes over config functionality
|
||||
_Config = run_config.RunConfig # pylint: disable=invalid-name
|
||||
@ -703,7 +703,7 @@ class BaseEstimator(
|
||||
def _get_eval_ops(self, features, labels, metrics):
|
||||
"""Method that builds model graph and returns evaluation ops.
|
||||
|
||||
Expected to be overriden by sub-classes that require custom support.
|
||||
Expected to be overridden by sub-classes that require custom support.
|
||||
|
||||
Args:
|
||||
features: `Tensor` or `dict` of `Tensor` objects.
|
||||
@ -1149,7 +1149,7 @@ class Estimator(BaseEstimator):
|
||||
def _get_train_ops(self, features, labels):
|
||||
"""Method that builds model graph and returns trainer ops.
|
||||
|
||||
Expected to be overriden by sub-classes that require custom support.
|
||||
Expected to be overridden by sub-classes that require custom support.
|
||||
This implementation uses `model_fn` passed as parameter to constructor to
|
||||
build model.
|
||||
|
||||
@ -1165,7 +1165,7 @@ class Estimator(BaseEstimator):
|
||||
def _get_eval_ops(self, features, labels, metrics):
|
||||
"""Method that builds model graph and returns evaluation ops.
|
||||
|
||||
Expected to be overriden by sub-classes that require custom support.
|
||||
Expected to be overridden by sub-classes that require custom support.
|
||||
This implementation uses `model_fn` passed as parameter to constructor to
|
||||
build model.
|
||||
|
||||
@ -1204,7 +1204,7 @@ class Estimator(BaseEstimator):
|
||||
def _get_predict_ops(self, features):
|
||||
"""Method that builds model graph and returns prediction ops.
|
||||
|
||||
Expected to be overriden by sub-classes that require custom support.
|
||||
Expected to be overridden by sub-classes that require custom support.
|
||||
This implementation uses `model_fn` passed as parameter to constructor to
|
||||
build model.
|
||||
|
||||
|
@ -620,7 +620,7 @@ def _create_model_fn_ops(features,
|
||||
weight_tensor = _weight_tensor(features, weight_column_name)
|
||||
loss, weighted_average_loss = loss_fn(labels, logits, weight_tensor)
|
||||
# Uses the deprecated API to set the tag explicitly.
|
||||
# Without it, trianing and eval losses will show up in different graphs.
|
||||
# Without it, training and eval losses will show up in different graphs.
|
||||
logging_ops.scalar_summary(
|
||||
_summary_key(head_name, mkey.LOSS), weighted_average_loss)
|
||||
|
||||
@ -1141,7 +1141,7 @@ def _to_labels_tensor(labels, label_name):
|
||||
"""Returns label as a tensor.
|
||||
|
||||
Args:
|
||||
labels: Label `Tensor` or `SparseTensor` or a dict containig labels.
|
||||
labels: Label `Tensor` or `SparseTensor` or a dict containing labels.
|
||||
label_name: Label name if labels is a dict.
|
||||
|
||||
Returns:
|
||||
@ -1575,7 +1575,7 @@ class _MultiHead(Head):
|
||||
Args:
|
||||
all_model_fn_ops: list of ModelFnOps for the individual heads.
|
||||
train_op_fn: Function to create train op. See `create_model_fn_ops`
|
||||
documentaion for more details.
|
||||
documentation for more details.
|
||||
|
||||
Returns:
|
||||
ModelFnOps that merges all heads for TRAIN.
|
||||
|
@ -119,7 +119,7 @@ def apply_dropout(cells, dropout_keep_probabilities, random_seed=None):
|
||||
"""
|
||||
if len(dropout_keep_probabilities) != len(cells) + 1:
|
||||
raise ValueError(
|
||||
'The number of dropout probabilites must be one greater than the '
|
||||
'The number of dropout probabilities must be one greater than the '
|
||||
'number of cells. Got {} cells and {} dropout probabilities.'.format(
|
||||
len(cells), len(dropout_keep_probabilities)))
|
||||
wrapped_cells = [
|
||||
|
@ -309,7 +309,7 @@ class RunConfig(ClusterConfig, core_run_config.RunConfig):
|
||||
Args:
|
||||
whitelist: A list of the string names of the properties uid should not
|
||||
include. If `None`, defaults to `_DEFAULT_UID_WHITE_LIST`, which
|
||||
includes most properites user allowes to change.
|
||||
includes most properties user allowes to change.
|
||||
|
||||
Returns:
|
||||
A uid string.
|
||||
|
@ -53,7 +53,7 @@ class Experiment(object):
|
||||
"""
|
||||
|
||||
# TODO(ispir): remove delay_workers_by_global_step and make global step based
|
||||
# waiting as only behaviour.
|
||||
# waiting as only behavior.
|
||||
@deprecated_args(
|
||||
"2016-10-23",
|
||||
"local_eval_frequency is deprecated as local_run will be renamed to "
|
||||
@ -550,7 +550,7 @@ class Experiment(object):
|
||||
eval_result = None
|
||||
|
||||
# Set the default value for train_steps_per_iteration, which will be
|
||||
# overriden by other settings.
|
||||
# overridden by other settings.
|
||||
train_steps_per_iteration = 1000
|
||||
if self._train_steps_per_iteration is not None:
|
||||
train_steps_per_iteration = self._train_steps_per_iteration
|
||||
|
@ -155,7 +155,7 @@ def run(experiment_fn, output_dir=None, schedule=None, run_config=None,
|
||||
to create the `Estimator` (passed as `model_dir` to its constructor). It
|
||||
must return an `Experiment`. For this case, `run_config` and `hparams`
|
||||
must be None.
|
||||
2) It accpets two arguments `run_config` and `hparams`, which should be
|
||||
2) It accepts two arguments `run_config` and `hparams`, which should be
|
||||
used to create the `Estimator` (`run_config` passed as `config` to its
|
||||
constructor; `hparams` used as the hyper-paremeters of the model).
|
||||
It must return an `Experiment`. For this case, `output_dir` must be None.
|
||||
|
@ -140,7 +140,7 @@ def rnn_seq2seq(encoder_inputs,
|
||||
scope: Scope to use, if None new will be produced.
|
||||
|
||||
Returns:
|
||||
List of tensors for outputs and states for trianing and sampling sub-graphs.
|
||||
List of tensors for outputs and states for training and sampling sub-graphs.
|
||||
"""
|
||||
with vs.variable_scope(scope or "rnn_seq2seq"):
|
||||
_, last_enc_state = rnn.static_rnn(
|
||||
|
@ -128,9 +128,9 @@ class CategoricalVocabulary(object):
|
||||
Class name.
|
||||
|
||||
Raises:
|
||||
ValueError: if this vocabulary wasn't initalized with support_reverse.
|
||||
ValueError: if this vocabulary wasn't initialized with support_reverse.
|
||||
"""
|
||||
if not self._support_reverse:
|
||||
raise ValueError("This vocabulary wasn't initalized with "
|
||||
raise ValueError("This vocabulary wasn't initialized with "
|
||||
"support_reverse to support reverse() function.")
|
||||
return self._reverse_mapping[class_id]
|
||||
|
@ -49,7 +49,7 @@ class Trainable(object):
|
||||
steps: Number of steps for which to train model. If `None`, train forever.
|
||||
'steps' works incrementally. If you call two times fit(steps=10) then
|
||||
training occurs in total 20 steps. If you don't want to have incremental
|
||||
behaviour please set `max_steps` instead. If set, `max_steps` must be
|
||||
behavior please set `max_steps` instead. If set, `max_steps` must be
|
||||
`None`.
|
||||
batch_size: minibatch size to use on the input, defaults to first
|
||||
dimension of `x`. Must be `None` if `input_fn` is provided.
|
||||
|
@ -89,7 +89,7 @@ def _export_graph(graph, saver, checkpoint_path, export_dir,
|
||||
def generic_signature_fn(examples, unused_features, predictions):
|
||||
"""Creates generic signature from given examples and predictions.
|
||||
|
||||
This is needed for backward compatibility with default behaviour of
|
||||
This is needed for backward compatibility with default behavior of
|
||||
export_estimator.
|
||||
|
||||
Args:
|
||||
|
@ -309,7 +309,7 @@ def get_most_recent_export(export_dir_base):
|
||||
directories.
|
||||
|
||||
Returns:
|
||||
A gc.Path, whith is just a namedtuple of (path, export_version).
|
||||
A gc.Path, with is just a namedtuple of (path, export_version).
|
||||
"""
|
||||
select_filter = gc.largest_export_versions(1)
|
||||
results = select_filter(gc.get_paths(export_dir_base,
|
||||
|
@ -109,7 +109,7 @@ class SavedModelExportUtilsTest(test.TestCase):
|
||||
self.assertEqual(actual_signature_def, expected_signature_def)
|
||||
|
||||
def test_build_standardized_signature_def_classification2(self):
|
||||
"""Tests multiple output tensors that include classes and probabilites."""
|
||||
"""Tests multiple output tensors that include classes and probabilities."""
|
||||
input_tensors = {
|
||||
"input-1":
|
||||
array_ops.placeholder(
|
||||
|
@ -837,7 +837,7 @@ class Seq2SeqTest(test.TestCase):
|
||||
# with variable_scope.variable_scope("new"):
|
||||
# _, losses2 = SampleGRUSeq2Seq
|
||||
# inp, out, weights, per_example_loss=True)
|
||||
# # First loss is scalar, the second one is a 1-dimensinal tensor.
|
||||
# # First loss is scalar, the second one is a 1-dimensional tensor.
|
||||
# self.assertEqual([], losses1[0].get_shape().as_list())
|
||||
# self.assertEqual([None], losses2[0].get_shape().as_list())
|
||||
|
||||
|
@ -49,7 +49,7 @@ class MemoryStatsOpsTest(test_util.TensorFlowTestCase):
|
||||
# The memory for matrix "a" can be reused for matrix "d". Therefore, this
|
||||
# computation needs space for only three matrix plus some small overhead.
|
||||
def testChainOfMatmul(self):
|
||||
# MaxBytesInUse is registerd on GPU only. See kernels/memory_stats_ops.cc.
|
||||
# MaxBytesInUse is registered on GPU only. See kernels/memory_stats_ops.cc.
|
||||
if not test.is_gpu_available():
|
||||
return
|
||||
|
||||
|
@ -1507,7 +1507,7 @@ class StreamingAUCTest(test.TestCase):
|
||||
self.assertAlmostEqual(1, auc.eval(), 6)
|
||||
|
||||
def np_auc(self, predictions, labels, weights):
|
||||
"""Computes the AUC explicitely using Numpy.
|
||||
"""Computes the AUC explicitly using Numpy.
|
||||
|
||||
Args:
|
||||
predictions: an ndarray with shape [N].
|
||||
|
@ -466,7 +466,7 @@ class GridLSTMCell(core_rnn_cell.RNNCell):
|
||||
state is clipped by this value prior to the cell output activation.
|
||||
initializer: (optional) The initializer to use for the weight and
|
||||
projection matrices, default None.
|
||||
num_unit_shards: (optional) int, defualt 1, How to split the weight
|
||||
num_unit_shards: (optional) int, default 1, How to split the weight
|
||||
matrix. If > 1,the weight matrix is stored across num_unit_shards.
|
||||
forget_bias: (optional) float, default 1.0, The initial bias of the
|
||||
forget gates, used to reduce the scale of forgetting at the beginning
|
||||
@ -1809,12 +1809,12 @@ class PhasedLSTMCell(core_rnn_cell.RNNCell):
|
||||
period during which the gates are open.
|
||||
trainable_ratio_on: bool, weather ratio_on is trainable.
|
||||
period_init_min: float or scalar float Tensor. With value > 0.
|
||||
Minimum value of the initalized period.
|
||||
Minimum value of the initialized period.
|
||||
The period values are initialized by drawing from the distribution:
|
||||
e^U(log(period_init_min), log(period_init_max))
|
||||
Where U(.,.) is the uniform distribution.
|
||||
period_init_max: float or scalar float Tensor.
|
||||
With value > period_init_min. Maximum value of the initalized period.
|
||||
With value > period_init_min. Maximum value of the initialized period.
|
||||
reuse: (optional) Python boolean describing whether to reuse variables
|
||||
in an existing scope. If not `True`, and the existing scope already has
|
||||
the given variables, an error is raised.
|
||||
|
@ -474,7 +474,7 @@ class AttentionWrapperState(
|
||||
|
||||
Returns:
|
||||
A new `AttentionWrapperState` whose properties are the same as
|
||||
this one, except any overriden properties as provided in `kwargs`.
|
||||
this one, except any overridden properties as provided in `kwargs`.
|
||||
"""
|
||||
return super(AttentionWrapperState, self)._replace(**kwargs)
|
||||
|
||||
|
@ -352,7 +352,7 @@ we can both ensure that each layer uses the same values and simplify the code:
|
||||
```
|
||||
|
||||
As the example illustrates, the use of arg_scope makes the code cleaner,
|
||||
simpler and easier to maintain. Notice that while argument values are specifed
|
||||
simpler and easier to maintain. Notice that while argument values are specified
|
||||
in the arg_scope, they can be overwritten locally. In particular, while
|
||||
the padding argument has been set to 'SAME', the second convolution overrides
|
||||
it with the value of 'VALID'.
|
||||
|
@ -33,7 +33,7 @@ To read data using multiple readers simultaneous with shuffling:
|
||||
shuffle=True)
|
||||
images, labels = pascal_voc_data_provider.get(['images', 'labels'])
|
||||
|
||||
Equivalently, one may request different fields of the same sample seperately:
|
||||
Equivalently, one may request different fields of the same sample separately:
|
||||
|
||||
[images] = pascal_voc_data_provider.get(['images'])
|
||||
[labels] = pascal_voc_data_provider.get(['labels'])
|
||||
|
@ -40,7 +40,7 @@ def visualize_embeddings(summary_writer, config):
|
||||
"""Stores a config file used by the embedding projector.
|
||||
|
||||
Args:
|
||||
summary_writer: The summary writer used for writting events.
|
||||
summary_writer: The summary writer used for writing events.
|
||||
config: `tf.contrib.tensorboard.plugins.projector.ProjectorConfig`
|
||||
proto that holds the configuration for the projector such as paths to
|
||||
checkpoint files and metadata files for the embeddings. If
|
||||
|
@ -46,7 +46,7 @@ class ProjectorApiTest(test.TestCase):
|
||||
writer = writer_lib.FileWriter(temp_dir)
|
||||
projector.visualize_embeddings(writer, config)
|
||||
|
||||
# Read the configuratin from disk and make sure it matches the original.
|
||||
# Read the configurations from disk and make sure it matches the original.
|
||||
with gfile.GFile(os.path.join(temp_dir, 'projector_config.pbtxt')) as f:
|
||||
config2 = projector_config_pb2.ProjectorConfig()
|
||||
text_format.Parse(f.read(), config2)
|
||||
|
@ -370,7 +370,7 @@ def evaluate_repeatedly(checkpoint_dir,
|
||||
|
||||
One may also consider using a `tf.contrib.training.SummaryAtEndHook` to record
|
||||
summaries after the `eval_ops` have run. If `eval_ops` is `None`, the
|
||||
summaries run immedietly after the model checkpoint has been restored.
|
||||
summaries run immediately after the model checkpoint has been restored.
|
||||
|
||||
Note that `evaluate_once` creates a local variable used to track the number of
|
||||
evaluations run via `tf.contrib.training.get_or_create_eval_step`.
|
||||
|
@ -422,7 +422,7 @@ class HParams(object):
|
||||
elif issubclass(param_type, float):
|
||||
typename = 'float'
|
||||
else:
|
||||
raise ValueError('Unsupported paramter type: %s' % str(param_type))
|
||||
raise ValueError('Unsupported parameter type: %s' % str(param_type))
|
||||
|
||||
suffix = 'list' if is_list else 'value'
|
||||
return '_'.join([typename, suffix])
|
||||
|
@ -344,7 +344,7 @@ def _prepare_sequence_inputs(inputs, states):
|
||||
key = _check_rank(inputs.key, 0)
|
||||
|
||||
if length.dtype != dtypes.int32:
|
||||
raise TypeError("length dtype must be int32, but recieved: %s" %
|
||||
raise TypeError("length dtype must be int32, but received: %s" %
|
||||
length.dtype)
|
||||
if key.dtype != dtypes.string:
|
||||
raise TypeError("key dtype must be string, but received: %s" % key.dtype)
|
||||
@ -1673,7 +1673,7 @@ def _move_sparse_tensor_out_context(input_context, input_sequences, num_unroll):
|
||||
shape = array_ops.concat(
|
||||
[array_ops.expand_dims(value_length, 0), sp_tensor.dense_shape], 0)
|
||||
|
||||
# Construct new indices by mutliplying old ones and prepending [0, n).
|
||||
# Construct new indices by multiplying old ones and prepending [0, n).
|
||||
# First multiply indices n times along a newly created 0-dimension.
|
||||
multiplied_indices = array_ops.tile(
|
||||
array_ops.expand_dims(sp_tensor.indices, 0),
|
||||
|
@ -83,7 +83,7 @@ bool IsConstantFoldable(const Node* n,
|
||||
}
|
||||
|
||||
// Returns the constant foldable nodes in `nodes` in topological order.
|
||||
// Populates `constant_control_deps` with the non-constant control depedencies
|
||||
// Populates `constant_control_deps` with the non-constant control dependencies
|
||||
// of each constant node.
|
||||
void FindConstantFoldableNodes(
|
||||
const Graph* graph, ConstantFoldingOptions opts, std::vector<Node*>* nodes,
|
||||
|
@ -74,8 +74,8 @@ class Executor {
|
||||
//
|
||||
// RunAsync() uses "cancellation_manager", if not nullptr, to
|
||||
// register callbacks that should be called if the graph computation
|
||||
// is cancelled. Note that the callbacks merely unblock any
|
||||
// long-running computation, and a cancelled step will terminate by
|
||||
// is canceled. Note that the callbacks merely unblock any
|
||||
// long-running computation, and a canceled step will terminate by
|
||||
// returning/calling the DoneCallback as usual.
|
||||
//
|
||||
// RunAsync() dispatches closures to "runner". Typically, "runner"
|
||||
|
@ -47,7 +47,7 @@ class SessionFactory {
|
||||
// Old sessions may continue to have side-effects on resources not in
|
||||
// containers listed in "containers", and thus may affect future
|
||||
// sessions' results in ways that are hard to predict. Thus, if well-defined
|
||||
// behaviour is desired, is it recommended that all containers be listed in
|
||||
// behavior is desired, is it recommended that all containers be listed in
|
||||
// "containers".
|
||||
//
|
||||
// If the "containers" vector is empty, the default container is assumed.
|
||||
|
@ -243,7 +243,7 @@ Status SimpleGraphExecutionState::InitBaseGraph(
|
||||
session_options_->config.graph_options().rewrite_options();
|
||||
|
||||
if (grappler::MetaOptimizerEnabled(rewrite_options)) {
|
||||
// Adding this functionalty in steps. The first step is to make sure
|
||||
// Adding this functionality in steps. The first step is to make sure
|
||||
// we don't break dependencies. The second step will be to turn the
|
||||
// functionality on by default.
|
||||
grappler::GrapplerItem item;
|
||||
|
@ -660,7 +660,7 @@ Status SimplePlacer::Run() {
|
||||
if (!edge->IsControlEdge() &&
|
||||
(IsRefType(node->input_type(edge->dst_input())) ||
|
||||
node->input_type(edge->dst_input()) == DT_RESOURCE)) {
|
||||
// If both the source node and this node have paritally
|
||||
// If both the source node and this node have partially
|
||||
// specified a device, then 'node's device should be
|
||||
// cleared: the reference edge forces 'node' to be on the
|
||||
// same device as the source node.
|
||||
|
@ -20,7 +20,7 @@ package tensorflow;
|
||||
import "tensorflow/core/util/event.proto";
|
||||
|
||||
// Reply message from EventListener to the client, i.e., to the source of the
|
||||
// Event protocal buffers, e.g., debug ops inserted by a debugged runtime to a
|
||||
// Event protocol buffers, e.g., debug ops inserted by a debugged runtime to a
|
||||
// TensorFlow graph being executed.
|
||||
message EventReply {
|
||||
message DebugOpStateChange {
|
||||
|
@ -108,9 +108,9 @@ class GraphMgr {
|
||||
};
|
||||
|
||||
struct Item : public core::RefCounted {
|
||||
// TOOD(zhifengc): Keeps a copy of the original graph if the need arises.
|
||||
// TOOD(zhifengc): Stats, updated by multiple runs potentially.
|
||||
// TOOD(zhifengc): Dup-detection. Ensure step_id only run once.
|
||||
// TODO(zhifengc): Keeps a copy of the original graph if the need arises.
|
||||
// TODO(zhifengc): Stats, updated by multiple runs potentially.
|
||||
// TODO(zhifengc): Dup-detection. Ensure step_id only run once.
|
||||
~Item() override;
|
||||
|
||||
// Session handle.
|
||||
@ -126,7 +126,7 @@ class GraphMgr {
|
||||
// has a root executor which may call into the runtime library.
|
||||
std::vector<ExecutionUnit> units;
|
||||
|
||||
// Used to deresgister a cost model when cost model is requried in graph
|
||||
// Used to deresgister a cost model when cost model is required in graph
|
||||
// manager.
|
||||
GraphMgr* graph_mgr;
|
||||
};
|
||||
@ -157,7 +157,7 @@ class GraphMgr {
|
||||
CancellationManager* cancellation_manager,
|
||||
StatusCallback done);
|
||||
|
||||
// Don't attempt to process cost models unless explicitely requested for at
|
||||
// Don't attempt to process cost models unless explicitly requested for at
|
||||
// least one of the items.
|
||||
bool skip_cost_models_ = true;
|
||||
|
||||
|
@ -25,7 +25,7 @@ limitations under the License.
|
||||
// A Master discovers remote devices on-demand and keeps track of
|
||||
// statistics of those remote devices.
|
||||
//
|
||||
// Each session analyses the graph, places nodes across available
|
||||
// Each session analyzes the graph, places nodes across available
|
||||
// devices, and ultimately drives the graph computation by initiating
|
||||
// RunGraph on the workers.
|
||||
|
||||
|
@ -89,7 +89,7 @@ class UntypedCall : public core::RefCounted {
|
||||
virtual void RequestReceived(Service* service, bool ok) = 0;
|
||||
|
||||
// This method will be called either (i) when the server is notified
|
||||
// that the request has been cancelled, or (ii) when the request completes
|
||||
// that the request has been canceled, or (ii) when the request completes
|
||||
// normally. The implementation should distinguish these cases by querying
|
||||
// the `grpc::ServerContext` associated with the request.
|
||||
virtual void RequestCancelled(Service* service, bool ok) = 0;
|
||||
@ -175,7 +175,7 @@ class Call : public UntypedCall<Service> {
|
||||
}
|
||||
|
||||
// Registers `callback` as the function that should be called if and when this
|
||||
// call is cancelled by the client.
|
||||
// call is canceled by the client.
|
||||
void SetCancelCallback(std::function<void()> callback) {
|
||||
mutex_lock l(mu_);
|
||||
cancel_callback_ = std::move(callback);
|
||||
|
@ -25,7 +25,7 @@ limitations under the License.
|
||||
// A GrpcMasterService discovers remote devices in the background and
|
||||
// keeps track of statistics of those remote devices.
|
||||
//
|
||||
// Each session analyses the graph, places nodes across available
|
||||
// Each session analyzes the graph, places nodes across available
|
||||
// devices, and ultimately drives the graph computation by initiating
|
||||
// RunGraph on workers.
|
||||
#include "tensorflow/core/distributed_runtime/rpc/grpc_master_service.h"
|
||||
|
@ -517,7 +517,7 @@ TEST(GrpcSessionTest, Error) {
|
||||
//
|
||||
// Subgraph for "b" sleeps at the node "b_delay". When the sleep
|
||||
// finishes, the subgraph "b" will continue execution till it
|
||||
// notices that it is cancelled. Meanwhile, subgraph's executor
|
||||
// notices that it is canceled. Meanwhile, subgraph's executor
|
||||
// and its related state (registered ops) should still be alive.
|
||||
auto b = test::graph::Constant(&g, Tensor());
|
||||
b->set_assigned_device_name(dev_b);
|
||||
|
@ -35,7 +35,7 @@ void WorkerCacheLogger::SetLogging(bool v) {
|
||||
++want_logging_count_;
|
||||
} else {
|
||||
--want_logging_count_;
|
||||
// If RPCs get cancelled, it may be possible for the count
|
||||
// If RPCs get canceled, it may be possible for the count
|
||||
// to go negative. This should not be a fatal error, since
|
||||
// logging is non-critical.
|
||||
if (want_logging_count_ < 0) want_logging_count_ = 0;
|
||||
|
@ -36,7 +36,7 @@ namespace tensorflow {
|
||||
// CancellationManager::get_cancellation_token.
|
||||
typedef int64 CancellationToken;
|
||||
|
||||
// A callback that is invoked when a step is cancelled.
|
||||
// A callback that is invoked when a step is canceled.
|
||||
//
|
||||
// NOTE(mrry): See caveats about CancelCallback implementations in the
|
||||
// comment for CancellationManager::RegisterCallback.
|
||||
|
@ -163,7 +163,7 @@ REGISTER_OP("HasDefaultType")
|
||||
|
||||
// This verifies that a function using an op before a type attr (with
|
||||
// a default) is added, still works. This is important for backwards
|
||||
// compatibilty.
|
||||
// compatibility.
|
||||
TEST(TFunc, MissingTypeAttr) {
|
||||
auto fdef = FDH::Create(
|
||||
// Name
|
||||
@ -1021,7 +1021,7 @@ TEST(FunctionLibraryDefinitionTest, AddLibrary) {
|
||||
EXPECT_EQ(s.error_message(),
|
||||
"Gradient for function 'XTimesTwo' already exists.");
|
||||
|
||||
// No conflicing functions or gradients OK
|
||||
// No conflicting functions or gradients OK
|
||||
proto.Clear();
|
||||
*proto.add_function() = test::function::XTimesFour();
|
||||
grad.set_function_name(test::function::XTimes16().signature().name());
|
||||
|
@ -51,7 +51,7 @@ extern Status ConvertGraphDefToGraph(const GraphConstructorOptions& opts,
|
||||
// On error, returns non-OK and leaves *g unmodified.
|
||||
//
|
||||
// "shape_refiner" can be null. It should be non-null if the caller
|
||||
// intends to add additonal nodes to the graph after the import. This
|
||||
// intends to add additional nodes to the graph after the import. This
|
||||
// allows the caller to validate shapes of those nodes (since
|
||||
// ShapeRefiner::AddNode must be called in topological order).
|
||||
//
|
||||
|
@ -40,7 +40,7 @@ class AnalyticalCostEstimator : public CostEstimator {
|
||||
explicit AnalyticalCostEstimator(Cluster* cluster, bool use_static_shapes);
|
||||
~AnalyticalCostEstimator() override {}
|
||||
|
||||
// Initalizes the estimator for the specified grappler item.
|
||||
// Initializes the estimator for the specified grappler item.
|
||||
// This implementation always returns OK.
|
||||
Status Initialize(const GrapplerItem& item) override;
|
||||
|
||||
|
@ -130,7 +130,7 @@ class CostEstimator {
|
||||
public:
|
||||
virtual ~CostEstimator() {}
|
||||
|
||||
// Initalizes the estimator for the specified grappler item.
|
||||
// Initializes the estimator for the specified grappler item.
|
||||
// The estimator shouldn't be used if this function returns any status other
|
||||
// that OK.
|
||||
virtual Status Initialize(const GrapplerItem& item) = 0;
|
||||
|
@ -50,7 +50,7 @@ class MeasuringCostEstimator : public CostEstimator {
|
||||
int measurement_threads);
|
||||
~MeasuringCostEstimator() override {}
|
||||
|
||||
// Initalizes the estimator for the specified grappler item.
|
||||
// Initializes the estimator for the specified grappler item.
|
||||
// This implementation always returns OK.
|
||||
Status Initialize(const GrapplerItem& item) override;
|
||||
|
||||
|
@ -36,7 +36,7 @@ class OpLevelCostEstimator {
|
||||
|
||||
protected:
|
||||
// Returns an estimate of device performance (in billions of operations
|
||||
// executed per second) and memory bandwith (in GigaBytes/second) for the
|
||||
// executed per second) and memory bandwidth (in GigaBytes/second) for the
|
||||
// specified device.
|
||||
virtual std::pair<double, double> GetDeviceInfo(
|
||||
const DeviceProperties& device) const;
|
||||
|
@ -46,7 +46,7 @@ Status ModelPruner::Optimize(Cluster* cluster, const GrapplerItem& item,
|
||||
if (nodes_to_preserve.find(node.name()) != nodes_to_preserve.end()) {
|
||||
continue;
|
||||
}
|
||||
// Don't remove nodes that are explicitely placed.
|
||||
// Don't remove nodes that are explicitly placed.
|
||||
if (!node.device().empty()) {
|
||||
continue;
|
||||
}
|
||||
|
@ -22,7 +22,7 @@ namespace tensorflow {
|
||||
namespace grappler {
|
||||
|
||||
// Prune a model to make it more efficient:
|
||||
// * Remove unecessary operations.
|
||||
// * Remove unnecessary operations.
|
||||
// * Optimize gradient computations.
|
||||
class ModelPruner : public GraphOptimizer {
|
||||
public:
|
||||
|
@ -34,7 +34,7 @@ class NodeMap {
|
||||
NodeDef* GetNode(const string& name);
|
||||
std::set<NodeDef*> GetOutputs(const string& node_name);
|
||||
// This method doesn't record the outputs of the added node; the outputs need
|
||||
// to be explictly added by the AddOutput method.
|
||||
// to be explicitly added by the AddOutput method.
|
||||
void AddNode(const string& name, NodeDef* node);
|
||||
void AddOutput(const string& node, const string& output);
|
||||
void UpdateOutput(const string& node, const string& old_output,
|
||||
|
@ -50,7 +50,7 @@ template <typename From, typename To>
|
||||
struct scalar_cast_op<std::complex<From>, To> {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE To
|
||||
operator()(const std::complex<From>& a) const {
|
||||
// Replicate numpy behaviour of returning just the real part
|
||||
// Replicate numpy behavior of returning just the real part
|
||||
return static_cast<To>(a.real());
|
||||
}
|
||||
};
|
||||
@ -59,7 +59,7 @@ template <typename From, typename To>
|
||||
struct scalar_cast_op<From, std::complex<To>> {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<To> operator()(
|
||||
const From& a) const {
|
||||
// Replicate numpy behaviour of setting the imaginary part to 0
|
||||
// Replicate numpy behavior of setting the imaginary part to 0
|
||||
return std::complex<To>(static_cast<To>(a), To(0));
|
||||
}
|
||||
};
|
||||
|
@ -713,7 +713,7 @@ class FusedResizeConv2DUsingGemmOp : public OpKernel {
|
||||
const int32 before =
|
||||
paddings_matrix(d, 0); // Pad before existing elements.
|
||||
const int32 after =
|
||||
paddings_matrix(d, 1); // Pad after exisitng elements.
|
||||
paddings_matrix(d, 1); // Pad after existing elements.
|
||||
OP_REQUIRES(context, before >= 0 && after >= 0,
|
||||
errors::InvalidArgument("paddings must be non-negative: ",
|
||||
before, " ", after));
|
||||
|
@ -116,7 +116,7 @@ class CudaSolver {
|
||||
// Launches a memcpy of solver status data specified by dev_lapack_info from
|
||||
// device to the host, and asynchronously invokes the given callback when the
|
||||
// copy is complete. The first Status argument to the callback will be
|
||||
// Status::OK if all lapack infos retrived are zero, otherwise an error status
|
||||
// Status::OK if all lapack infos retrieved are zero, otherwise an error status
|
||||
// is given. The second argument contains a host-side copy of the entire set
|
||||
// of infos retrieved, and can be used for generating detailed error messages.
|
||||
Status CopyLapackInfoToHostAsync(
|
||||
|
@ -26,7 +26,7 @@ limitations under the License.
|
||||
|
||||
namespace tensorflow {
|
||||
|
||||
// DeepConv2D is a Conv2D implementation specialzied for deep convolutions (i.e
|
||||
// DeepConv2D is a Conv2D implementation specialized for deep convolutions (i.e
|
||||
// large 'in_depth' and 'out_depth' product. See cost models below for details).
|
||||
//
|
||||
// DeepConv2D is implemented by computing the following equation:
|
||||
|
@ -22,7 +22,7 @@ namespace tensorflow {
|
||||
|
||||
class OpKernelContext;
|
||||
|
||||
// DeepConv2D is a Conv2D implementation specialzied for deep (i.e. large
|
||||
// DeepConv2D is a Conv2D implementation specialized for deep (i.e. large
|
||||
// in_depth * out_depth product) convolutions (see deep_conv2d.cc for details).
|
||||
|
||||
// DeepConv2DTransform is an interface for implementing transforms for
|
||||
|
@ -44,7 +44,7 @@ class HingeLossUpdater : public DualLossUpdater {
|
||||
const double current_dual, const double wx,
|
||||
const double weighted_example_norm) const final {
|
||||
// Intutitvely there are 3 cases:
|
||||
// a. new optimal value of the dual variable falls withing the admissible
|
||||
// a. new optimal value of the dual variable falls within the admissible
|
||||
// range [0, 1]. In this case we set new dual to this value.
|
||||
// b. new optimal value is < 0. Then, because of convexity, the optimal
|
||||
// valid value for new dual = 0
|
||||
|
@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// This is a helper struct to package up the input and ouput
|
||||
// This is a helper struct to package up the input and output
|
||||
// parameters of an image resizer (the height, widths, etc.). To
|
||||
// reduce code duplication and ensure consistency across the different
|
||||
// resizers, it performs the input validation.
|
||||
|
@ -238,7 +238,7 @@ private:
|
||||
{
|
||||
IncompleteTuple empty(dtypes_.size());
|
||||
|
||||
// Initialise empty tuple with given dta
|
||||
// Initialize empty tuple with given dta
|
||||
for(std::size_t i = 0; i < findices.dimension(0); ++i)
|
||||
{
|
||||
std::size_t index = findices(i);
|
||||
|
@ -64,7 +64,7 @@ bool IsSupportedAndEnabled();
|
||||
// sum((a_data[i, l] + offset_a) * (b_data[l, j] + offset_b)) : l in [0, k)
|
||||
//
|
||||
// If transpose_a is false the lhs operand has row major layout, otherwise
|
||||
// column major. Similarily transpose_b describes the layout of the rhs operand.
|
||||
// column major. Similarly transpose_b describes the layout of the rhs operand.
|
||||
// lda, ldb, and ldc are the strides of the lhs operand, rhs operand and the
|
||||
// result arrays.
|
||||
void QuantizedGemm(OpKernelContext* context, bool transpose_a, bool transpose_b,
|
||||
|
@ -295,7 +295,7 @@ class MklConv2DCustomBackpropInputOp : public OpKernel {
|
||||
dnnDelete_F32(mkl_convert_filter);
|
||||
} else {
|
||||
// If we do not need any layout conversion for filter, then
|
||||
// we direclty assign input filter to resources[].
|
||||
// we directly assign input filter to resources[].
|
||||
conv_res[dnnResourceFilter] =
|
||||
static_cast<void*>(const_cast<T*>(filter.flat<T>().data()));
|
||||
}
|
||||
|
@ -306,7 +306,7 @@ class PaddedBatchDatasetOp : public OpKernel {
|
||||
const TensorShape& element_shape =
|
||||
batch_elements[i][component_index].shape();
|
||||
// TODO(mrry): Perform this check in the shape function if
|
||||
// enough static information is avaiable to do so.
|
||||
// enough static information is available to do so.
|
||||
if (element_shape.dims() != padded_shape.dims()) {
|
||||
return errors::InvalidArgument(
|
||||
"All elements in a batch must have the same rank as the "
|
||||
|
@ -80,7 +80,7 @@ float QuantizedToFloat(T input, float range_min, float range_max) {
|
||||
static_cast<int64>(Eigen::NumTraits<T>::lowest());
|
||||
const double offset_input = static_cast<double>(input) - lowest_quantized;
|
||||
// For compatibility with DEQUANTIZE_WITH_EIGEN, we should convert
|
||||
// range_scale to a float, otherwise range_min_rounded might be slighly
|
||||
// range_scale to a float, otherwise range_min_rounded might be slightly
|
||||
// different.
|
||||
const double range_min_rounded =
|
||||
round(range_min / static_cast<float>(range_scale)) *
|
||||
|
@ -35,7 +35,7 @@ class SmoothHingeLossUpdater : public DualLossUpdater {
|
||||
const double current_dual, const double wx,
|
||||
const double weighted_example_norm) const final {
|
||||
// Intutitvely there are 3 cases:
|
||||
// a. new optimal value of the dual variable falls withing the admissible
|
||||
// a. new optimal value of the dual variable falls within the admissible
|
||||
// range [0, 1]. In this case we set new dual to this value.
|
||||
// b. new optimal value is < 0. Then, because of convexity, the optimal
|
||||
// valid value for new dual = 0
|
||||
|
@ -24,7 +24,7 @@ limitations under the License.
|
||||
namespace tensorflow {
|
||||
namespace functor {
|
||||
|
||||
// TOOD(zongheng): this should be a general functor that powers SparseAdd and
|
||||
// TODO(zongheng): this should be a general functor that powers SparseAdd and
|
||||
// ScatterNd ops. It should be moved to its own head file, once the other ops
|
||||
// are implemented.
|
||||
template <typename Device, typename T, typename Index, int NDIMS,
|
||||
|
@ -541,7 +541,7 @@ class optional : private internal_optional::optional_data<T>,
|
||||
// opt.emplace(arg1,arg2,arg3); (Constructs Foo(arg1,arg2,arg3))
|
||||
//
|
||||
// If the optional is non-empty, and the `args` refer to subobjects of the
|
||||
// current object, then behaviour is undefined. This is because the current
|
||||
// current object, then behavior is undefined. This is because the current
|
||||
// object will be destructed before the new object is constructed with `args`.
|
||||
//
|
||||
template <typename... Args,
|
||||
@ -586,7 +586,7 @@ class optional : private internal_optional::optional_data<T>,
|
||||
|
||||
// [optional.observe], observers
|
||||
// You may use `*opt`, and `opt->m`, to access the underlying T value and T's
|
||||
// member `m`, respectively. If the optional is empty, behaviour is
|
||||
// member `m`, respectively. If the optional is empty, behavior is
|
||||
// undefined.
|
||||
constexpr const T* operator->() const { return this->pointer(); }
|
||||
T* operator->() {
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user