Group LSTM cell (#9606)

* GLSTM cell from https://openreview.net/forum?id=ByxWXyNFg&noteId=ByxWXyNFg

* Responding to comments on PR#9606

* Update comments according to review.

* More fixes on users' behalf.
This commit is contained in:
Oleksii Kuchaiev 2017-05-04 09:44:57 -07:00 committed by Vijay Vasudevan
parent d0042ed637
commit 1ed6914599
2 changed files with 236 additions and 0 deletions

View File

@ -906,6 +906,64 @@ class RNNCellTest(test.TestCase):
# States are left untouched
self.assertAllClose(res[2], res[3])
def testGLSTMCell(self):
# Ensure that G-LSTM matches LSTM when number_of_groups = 1
batch_size = 2
num_units = 4
number_of_groups = 1
with self.test_session() as sess:
with variable_scope.variable_scope(
"root1", initializer=init_ops.constant_initializer(0.5)):
x = array_ops.ones([batch_size, num_units])
# When number_of_groups = 1, G-LSTM is equivalent to regular LSTM
gcell = rnn_cell.GLSTMCell(num_units=num_units,
number_of_groups=number_of_groups)
cell = core_rnn_cell_impl.LSTMCell(num_units=num_units)
self.assertTrue(isinstance(gcell.state_size, tuple))
zero_state = gcell.zero_state(batch_size=batch_size,
dtype=dtypes.float32)
gh, gs = gcell(x, zero_state)
h, g = cell(x, zero_state)
sess.run([variables.global_variables_initializer()])
glstm_result = sess.run([gh, gs])
lstm_result = sess.run([h, g])
self.assertAllClose(glstm_result[0], lstm_result[0], 1e-5)
self.assertAllClose(glstm_result[1], lstm_result[1], 1e-5)
# Test that G-LSTM subgroup act like corresponding sub-LSTMs
batch_size = 2
num_units = 4
number_of_groups = 2
with self.test_session() as sess:
with variable_scope.variable_scope(
"root2", initializer=init_ops.constant_initializer(0.5)):
# input for G-LSTM with 2 groups
glstm_input = array_ops.ones([batch_size, num_units])
gcell = rnn_cell.GLSTMCell(num_units=num_units,
number_of_groups=number_of_groups)
gcell_zero_state = gcell.zero_state(batch_size=batch_size,
dtype=dtypes.float32)
gh, gs = gcell(glstm_input, gcell_zero_state)
# input for LSTM cell simulating single G-LSTM group
lstm_input = array_ops.ones([batch_size, num_units / number_of_groups])
# note division by number_of_groups. This cell one simulates G-LSTM group
cell = core_rnn_cell_impl.LSTMCell(num_units=
int(num_units / number_of_groups))
cell_zero_state = cell.zero_state(batch_size=batch_size,
dtype=dtypes.float32)
h, g = cell(lstm_input, cell_zero_state)
sess.run([variables.global_variables_initializer()])
[gh_res, h_res] = sess.run([gh, h])
self.assertAllClose(gh_res[:, 0:int(num_units / number_of_groups)],
h_res, 1e-5)
self.assertAllClose(gh_res[:, int(num_units / number_of_groups):],
h_res, 1e-5)
class LayerNormBasicLSTMCellTest(test.TestCase):

View File

@ -1926,3 +1926,181 @@ class PhasedLSTMCell(core_rnn_cell.RNNCell):
new_state = core_rnn_cell.LSTMStateTuple(new_c, new_h)
return new_h, new_state
class GLSTMCell(core_rnn_cell.RNNCell):
"""Group LSTM cell (G-LSTM).
The implementation is based on:
https://arxiv.org/abs/1703.10722
O. Kuchaiev and B. Ginsburg
"Factorization Tricks for LSTM Networks", ICLR 2017 workshop.
"""
def __init__(self, num_units, initializer=None, num_proj=None,
number_of_groups=1, forget_bias=1.0, activation=math_ops.tanh,
reuse=None):
"""Initialize the parameters of G-LSTM cell.
Args:
num_units: int, The number of units in the G-LSTM cell
initializer: (optional) The initializer to use for the weight and
projection matrices.
num_proj: (optional) int, The output dimensionality for the projection
matrices. If None, no projection is performed.
number_of_groups: (optional) int, number of groups to use.
If `number_of_groups` is 1, then it should be equivalent to LSTM cell
forget_bias: Biases of the forget gate are initialized by default to 1
in order to reduce the scale of forgetting at the beginning of
the training.
activation: Activation function of the inner states.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already
has the given variables, an error is raised.
Raises:
ValueError: If `num_units` or `num_proj` is not divisible by
`number_of_groups`.
"""
super(GLSTMCell, self).__init__(_reuse=reuse)
self._num_units = num_units
self._initializer = initializer
self._num_proj = num_proj
self._forget_bias = forget_bias
self._activation = activation
self._number_of_groups = number_of_groups
if self._num_units % self._number_of_groups != 0:
raise ValueError("num_units must be divisible by number_of_groups")
if self._num_proj:
if self._num_proj % self._number_of_groups != 0:
raise ValueError("num_proj must be divisible by number_of_groups")
self._group_shape = [int(self._num_proj / self._number_of_groups),
int(self._num_units / self._number_of_groups)]
else:
self._group_shape = [int(self._num_units / self._number_of_groups),
int(self._num_units / self._number_of_groups)]
if num_proj:
self._state_size = core_rnn_cell.LSTMStateTuple(num_units, num_proj)
self._output_size = num_proj
else:
self._state_size = core_rnn_cell.LSTMStateTuple(num_units, num_units)
self._output_size = num_units
@property
def state_size(self):
return self._state_size
@property
def output_size(self):
return self._output_size
def _get_input_for_group(self, inputs, group_id, group_size):
"""Slices inputs into groups to prepare for processing by cell's groups
Args:
inputs: cell input or it's previous state,
a Tensor, 2D, [batch x num_units]
group_id: group id, a Scalar, for which to prepare input
group_size: size of the group
Returns:
subset of inputs corresponding to group "group_id",
a Tensor, 2D, [batch x num_units/number_of_groups]
"""
batch_size = inputs.shape[0].value or array_ops.shape(value)[0]
return array_ops.slice(input_=inputs,
begin=[0, group_id * group_size],
size=[batch_size, group_size],
name=("GLSTM_group%d_input_generation" % group_id))
def call(self, inputs, state):
"""Run one step of G-LSTM.
Args:
inputs: input Tensor, 2D, [batch x num_units].
state: this must be a tuple of state Tensors, both `2-D`,
with column sizes `c_state` and `m_state`.
Returns:
A tuple containing:
- A `2-D, [batch x output_dim]`, Tensor representing the output of the
G-LSTM after reading `inputs` when previous state was `state`.
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.
- LSTMStateTuple representing the new state of G-LSTM cell
after reading `inputs` when the previous state was `state`.
Raises:
ValueError: If input size cannot be inferred from inputs via
static shape inference.
"""
(c_prev, m_prev) = state
input_size = inputs.get_shape().with_rank(2)[1]
if input_size.value is None:
raise ValueError("Couldn't infer input size from inputs.get_shape()[-1]")
dtype = inputs.dtype
scope = vs.get_variable_scope()
with vs.variable_scope(scope, initializer=self._initializer):
i_parts = []
j_parts = []
f_parts = []
o_parts = []
for group_id in range(self._number_of_groups):
with vs.variable_scope("group%d" % group_id):
x_g_id = array_ops.concat(
[self._get_input_for_group(inputs, group_id,
self._group_shape[0]),
self._get_input_for_group(m_prev, group_id,
self._group_shape[0])], axis=1)
R_k = _linear(x_g_id, 4 * self._group_shape[1], bias=False)
i_k, j_k, f_k, o_k = array_ops.split(R_k, 4, 1)
i_parts.append(i_k)
j_parts.append(j_k)
f_parts.append(f_k)
o_parts.append(o_k)
bi = vs.get_variable(name="bias_i",
shape=[self._num_units],
dtype=dtype,
initializer=
init_ops.constant_initializer(0.0, dtype=dtype))
bj = vs.get_variable(name="bias_j",
shape=[self._num_units],
dtype=dtype,
initializer=
init_ops.constant_initializer(0.0, dtype=dtype))
bf = vs.get_variable(name="bias_f",
shape=[self._num_units],
dtype=dtype,
initializer=
init_ops.constant_initializer(0.0, dtype=dtype))
bo = vs.get_variable(name="bias_o",
shape=[self._num_units],
dtype=dtype,
initializer=
init_ops.constant_initializer(0.0, dtype=dtype))
i = nn_ops.bias_add(array_ops.concat(i_parts, axis=1), bi)
j = nn_ops.bias_add(array_ops.concat(j_parts, axis=1), bj)
f = nn_ops.bias_add(array_ops.concat(f_parts, axis=1), bf)
o = nn_ops.bias_add(array_ops.concat(o_parts, axis=1), bo)
c = (math_ops.sigmoid(f + self._forget_bias) * c_prev +
math_ops.sigmoid(i) * math_ops.tanh(j))
m = math_ops.sigmoid(o) * self._activation(c)
if self._num_proj is not None:
with vs.variable_scope("projection"):
m = _linear(m, self._num_proj, bias=False)
new_state = core_rnn_cell.LSTMStateTuple(c, m)
return m, new_state