Support Conv1DTranspose for Keras.
Fixing https://github.com/tensorflow/tensorflow/issues/30309 PiperOrigin-RevId: 305579305 Change-Id: I1834167b4e5e02ff69a323009a876783320e35ff
This commit is contained in:
parent
16de6d373e
commit
1e2c8c6873
@ -70,6 +70,7 @@ from tensorflow.python.keras.layers.advanced_activations import Softmax
|
||||
from tensorflow.python.keras.layers.convolutional import Conv1D
|
||||
from tensorflow.python.keras.layers.convolutional import Conv2D
|
||||
from tensorflow.python.keras.layers.convolutional import Conv3D
|
||||
from tensorflow.python.keras.layers.convolutional import Conv1DTranspose
|
||||
from tensorflow.python.keras.layers.convolutional import Conv2DTranspose
|
||||
from tensorflow.python.keras.layers.convolutional import Conv3DTranspose
|
||||
from tensorflow.python.keras.layers.convolutional import SeparableConv1D
|
||||
|
||||
@ -43,6 +43,7 @@ from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import nn
|
||||
from tensorflow.python.ops import nn_ops
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
|
||||
|
||||
class Conv(Layer):
|
||||
@ -740,6 +741,249 @@ class Conv3D(Conv):
|
||||
**kwargs)
|
||||
|
||||
|
||||
@keras_export('keras.layers.Conv1DTranspose',
|
||||
'keras.layers.Convolution1DTranspose')
|
||||
class Conv1DTranspose(Conv1D):
|
||||
"""Transposed convolution layer (sometimes called Deconvolution).
|
||||
|
||||
The need for transposed convolutions generally arises
|
||||
from the desire to use a transformation going in the opposite direction
|
||||
of a normal convolution, i.e., from something that has the shape of the
|
||||
output of some convolution to something that has the shape of its input
|
||||
while maintaining a connectivity pattern that is compatible with
|
||||
said convolution.
|
||||
|
||||
When using this layer as the first layer in a model,
|
||||
provide the keyword argument `input_shape`
|
||||
(tuple of integers, does not include the sample axis),
|
||||
e.g. `input_shape=(128, 3)` for data with 128 time steps and 3 channels.
|
||||
|
||||
Arguments:
|
||||
filters: Integer, the dimensionality of the output space
|
||||
(i.e. the number of output filters in the convolution).
|
||||
kernel_size: An integer length of the 1D convolution window.
|
||||
strides: An integer specifying the stride of the convolution along the
|
||||
time dimension. Specifying a stride value != 1 is incompatible with
|
||||
specifying a `dilation_rate` value != 1. Defaults to 1.
|
||||
padding: one of `"valid"` or `"same"` (case-insensitive).
|
||||
output_padding: An integer specifying the amount of padding along
|
||||
the time dimension of the output tensor.
|
||||
The amount of output padding must be lower than the stride.
|
||||
If set to `None` (default), the output shape is inferred.
|
||||
data_format: A string, one of `channels_last` (default) or `channels_first`.
|
||||
The ordering of the dimensions in the inputs.
|
||||
`channels_last` corresponds to inputs with shape
|
||||
`(batch_size, length, channels)` while `channels_first` corresponds to
|
||||
inputs with shape `(batch_size, channels, length)`.
|
||||
dilation_rate: an integer, specifying
|
||||
the dilation rate to use for dilated convolution.
|
||||
Currently, specifying a `dilation_rate` value != 1 is
|
||||
incompatible with specifying a stride value != 1.
|
||||
activation: Activation function to use.
|
||||
If you don't specify anything, no activation is applied (
|
||||
see `keras.activations`).
|
||||
use_bias: Boolean, whether the layer uses a bias vector.
|
||||
kernel_initializer: Initializer for the `kernel` weights matrix (
|
||||
see `keras.initializers`).
|
||||
bias_initializer: Initializer for the bias vector (
|
||||
see `keras.initializers`).
|
||||
kernel_regularizer: Regularizer function applied to
|
||||
the `kernel` weights matrix (see `keras.regularizers`).
|
||||
bias_regularizer: Regularizer function applied to the bias vector (
|
||||
see `keras.regularizers`).
|
||||
activity_regularizer: Regularizer function applied to
|
||||
the output of the layer (its "activation") (see `keras.regularizers`).
|
||||
kernel_constraint: Constraint function applied to the kernel matrix (
|
||||
see `keras.constraints`).
|
||||
bias_constraint: Constraint function applied to the bias vector (
|
||||
see `keras.constraints`).
|
||||
|
||||
Input shape:
|
||||
3D tensor with shape:
|
||||
`(batch_size, steps, channels)`
|
||||
|
||||
Output shape:
|
||||
3D tensor with shape:
|
||||
`(batch_size, new_steps, filters)`
|
||||
If `output_padding` is specified:
|
||||
```
|
||||
new_timesteps = ((timesteps - 1) * strides + kernel_size -
|
||||
2 * padding + output_padding)
|
||||
```
|
||||
|
||||
Returns:
|
||||
A tensor of rank 3 representing
|
||||
`activation(conv1dtranspose(inputs, kernel) + bias)`.
|
||||
|
||||
Raises:
|
||||
ValueError: if `padding` is "causal".
|
||||
ValueError: when both `strides` > 1 and `dilation_rate` > 1.
|
||||
|
||||
References:
|
||||
- [A guide to convolution arithmetic for deep learning](
|
||||
https://arxiv.org/abs/1603.07285v1)
|
||||
- [Deconvolutional Networks](
|
||||
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
filters,
|
||||
kernel_size,
|
||||
strides=1,
|
||||
padding='valid',
|
||||
output_padding=None,
|
||||
data_format=None,
|
||||
dilation_rate=1,
|
||||
activation=None,
|
||||
use_bias=True,
|
||||
kernel_initializer='glorot_uniform',
|
||||
bias_initializer='zeros',
|
||||
kernel_regularizer=None,
|
||||
bias_regularizer=None,
|
||||
activity_regularizer=None,
|
||||
kernel_constraint=None,
|
||||
bias_constraint=None,
|
||||
**kwargs):
|
||||
super(Conv1DTranspose, self).__init__(
|
||||
filters=filters,
|
||||
kernel_size=kernel_size,
|
||||
strides=strides,
|
||||
padding=padding,
|
||||
data_format=data_format,
|
||||
dilation_rate=dilation_rate,
|
||||
activation=activations.get(activation),
|
||||
use_bias=use_bias,
|
||||
kernel_initializer=initializers.get(kernel_initializer),
|
||||
bias_initializer=initializers.get(bias_initializer),
|
||||
kernel_regularizer=regularizers.get(kernel_regularizer),
|
||||
bias_regularizer=regularizers.get(bias_regularizer),
|
||||
activity_regularizer=regularizers.get(activity_regularizer),
|
||||
kernel_constraint=constraints.get(kernel_constraint),
|
||||
bias_constraint=constraints.get(bias_constraint),
|
||||
**kwargs)
|
||||
|
||||
self.output_padding = output_padding
|
||||
if self.output_padding is not None:
|
||||
self.output_padding = conv_utils.normalize_tuple(
|
||||
self.output_padding, 1, 'output_padding')
|
||||
for stride, out_pad in zip(self.strides, self.output_padding):
|
||||
if out_pad >= stride:
|
||||
raise ValueError('Stride ' + str(self.strides) + ' must be '
|
||||
'greater than output padding ' +
|
||||
str(self.output_padding))
|
||||
|
||||
def build(self, input_shape):
|
||||
input_shape = tensor_shape.TensorShape(input_shape)
|
||||
if len(input_shape) != 3:
|
||||
raise ValueError('Inputs should have rank 3. Received input shape: ' +
|
||||
str(input_shape))
|
||||
channel_axis = self._get_channel_axis()
|
||||
if input_shape.dims[channel_axis].value is None:
|
||||
raise ValueError('The channel dimension of the inputs '
|
||||
'should be defined. Found `None`.')
|
||||
input_dim = int(input_shape[channel_axis])
|
||||
self.input_spec = InputSpec(ndim=3, axes={channel_axis: input_dim})
|
||||
kernel_shape = self.kernel_size + (self.filters, input_dim)
|
||||
|
||||
self.kernel = self.add_weight(
|
||||
name='kernel',
|
||||
shape=kernel_shape,
|
||||
initializer=self.kernel_initializer,
|
||||
regularizer=self.kernel_regularizer,
|
||||
constraint=self.kernel_constraint,
|
||||
trainable=True,
|
||||
dtype=self.dtype)
|
||||
if self.use_bias:
|
||||
self.bias = self.add_weight(
|
||||
name='bias',
|
||||
shape=(self.filters,),
|
||||
initializer=self.bias_initializer,
|
||||
regularizer=self.bias_regularizer,
|
||||
constraint=self.bias_constraint,
|
||||
trainable=True,
|
||||
dtype=self.dtype)
|
||||
else:
|
||||
self.bias = None
|
||||
self.built = True
|
||||
|
||||
def call(self, inputs):
|
||||
inputs_shape = array_ops.shape(inputs)
|
||||
batch_size = inputs_shape[0]
|
||||
if self.data_format == 'channels_first':
|
||||
t_axis = 2
|
||||
else:
|
||||
t_axis = 1
|
||||
|
||||
length = inputs_shape[t_axis]
|
||||
if self.output_padding is None:
|
||||
output_padding = None
|
||||
else:
|
||||
output_padding = self.output_padding[0]
|
||||
|
||||
# Infer the dynamic output shape:
|
||||
out_length = conv_utils.deconv_output_length(
|
||||
length, self.kernel_size[0], padding=self.padding,
|
||||
output_padding=output_padding, stride=self.strides[0],
|
||||
dilation=self.dilation_rate[0])
|
||||
if self.data_format == 'channels_first':
|
||||
output_shape = (batch_size, self.filters, out_length)
|
||||
else:
|
||||
output_shape = (batch_size, out_length, self.filters)
|
||||
data_format = conv_utils.convert_data_format(self.data_format, ndim=3)
|
||||
|
||||
output_shape_tensor = array_ops.stack(output_shape)
|
||||
outputs = nn_ops.conv1d_transpose(
|
||||
inputs,
|
||||
self.kernel,
|
||||
output_shape_tensor,
|
||||
strides=self.strides,
|
||||
padding=self.padding.upper(),
|
||||
data_format=data_format,
|
||||
dilations=self.dilation_rate)
|
||||
|
||||
if not context.executing_eagerly():
|
||||
# Infer the static output shape:
|
||||
out_shape = self.compute_output_shape(inputs.shape)
|
||||
outputs.set_shape(out_shape)
|
||||
|
||||
if self.use_bias:
|
||||
outputs = nn.bias_add(
|
||||
outputs,
|
||||
self.bias,
|
||||
data_format=data_format)
|
||||
|
||||
if self.activation is not None:
|
||||
return self.activation(outputs)
|
||||
return outputs
|
||||
|
||||
def compute_output_shape(self, input_shape):
|
||||
input_shape = tensor_shape.TensorShape(input_shape).as_list()
|
||||
output_shape = list(input_shape)
|
||||
if self.data_format == 'channels_first':
|
||||
c_axis, t_axis = 1, 2
|
||||
else:
|
||||
c_axis, t_axis = 2, 1
|
||||
|
||||
if self.output_padding is None:
|
||||
output_padding = None
|
||||
else:
|
||||
output_padding = self.output_padding[0]
|
||||
output_shape[c_axis] = self.filters
|
||||
output_shape[t_axis] = conv_utils.deconv_output_length(
|
||||
output_shape[t_axis],
|
||||
self.kernel_size[0],
|
||||
padding=self.padding,
|
||||
output_padding=output_padding,
|
||||
stride=self.strides[0],
|
||||
dilation=self.dilation_rate[0])
|
||||
return tensor_shape.TensorShape(output_shape)
|
||||
|
||||
def get_config(self):
|
||||
config = super(Conv1DTranspose, self).get_config()
|
||||
config['output_padding'] = self.output_padding
|
||||
return config
|
||||
|
||||
|
||||
@keras_export('keras.layers.Conv2DTranspose',
|
||||
'keras.layers.Convolution2DTranspose')
|
||||
class Conv2DTranspose(Conv2D):
|
||||
|
||||
@ -276,6 +276,39 @@ class Conv3DTest(keras_parameterized.TestCase):
|
||||
input_data=input_data)
|
||||
|
||||
|
||||
@keras_parameterized.run_all_keras_modes
|
||||
class Conv1DTransposeTest(keras_parameterized.TestCase):
|
||||
|
||||
def _run_test(self, kwargs, expected_output_shape):
|
||||
num_samples = 2
|
||||
stack_size = 3
|
||||
num_col = 6
|
||||
|
||||
with test_util.use_gpu():
|
||||
testing_utils.layer_test(
|
||||
keras.layers.Conv1DTranspose,
|
||||
kwargs=kwargs,
|
||||
input_shape=(num_samples, num_col, stack_size),
|
||||
expected_output_shape=expected_output_shape)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('padding_valid', {'padding': 'valid'}, (None, 8, 2)),
|
||||
('padding_same', {'padding': 'same'}, (None, 6, 2)),
|
||||
('strides', {'strides': 2}, (None, 13, 2)),
|
||||
# Only runs on GPU with CUDA, dilation_rate>1 is not supported on CPU.
|
||||
('dilation_rate', {'dilation_rate': 2}, (None, 10, 2)),
|
||||
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
|
||||
# TODO(b/62340061): Support channels_first on CPU.
|
||||
('data_format', {'data_format': 'channels_first'}),
|
||||
)
|
||||
def test_conv1d_transpose(self, kwargs, expected_output_shape=None):
|
||||
kwargs['filters'] = 2
|
||||
kwargs['kernel_size'] = 3
|
||||
if (('data_format' not in kwargs and 'dilation_rate' not in kwargs) or
|
||||
test.is_gpu_available(cuda_only=True)):
|
||||
self._run_test(kwargs, expected_output_shape)
|
||||
|
||||
|
||||
@keras_parameterized.run_all_keras_modes
|
||||
class Conv3DTransposeTest(keras_parameterized.TestCase):
|
||||
|
||||
|
||||
@ -0,0 +1,220 @@
|
||||
path: "tensorflow.keras.layers.Conv1DTranspose"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv1DTranspose\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv1D\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "activity_regularizer"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dtype"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dynamic"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "inbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "metrics"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name_scope"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "outbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "stateful"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "submodules"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "updates"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_loss"
|
||||
argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_metric"
|
||||
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_update"
|
||||
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_variable"
|
||||
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_weight"
|
||||
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "build"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_mask"
|
||||
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_shape"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_signature"
|
||||
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "count_params"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_losses_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_updates_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_weights"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_weights"
|
||||
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "with_name_scope"
|
||||
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,220 @@
|
||||
path: "tensorflow.keras.layers.Convolution1DTranspose"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv1DTranspose\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv1D\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "activity_regularizer"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dtype"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dynamic"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "inbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "metrics"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name_scope"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "outbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "stateful"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "submodules"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "updates"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_loss"
|
||||
argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_metric"
|
||||
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_update"
|
||||
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_variable"
|
||||
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_weight"
|
||||
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "build"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_mask"
|
||||
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_shape"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_signature"
|
||||
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "count_params"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_losses_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_updates_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_weights"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_weights"
|
||||
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "with_name_scope"
|
||||
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
@ -72,6 +72,10 @@ tf_module {
|
||||
name: "Conv1D"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Conv1DTranspose"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Conv2D"
|
||||
mtype: "<type \'type\'>"
|
||||
@ -96,6 +100,10 @@ tf_module {
|
||||
name: "Convolution1D"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Convolution1DTranspose"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Convolution2D"
|
||||
mtype: "<type \'type\'>"
|
||||
|
||||
@ -0,0 +1,220 @@
|
||||
path: "tensorflow.keras.layers.Conv1DTranspose"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv1DTranspose\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv1D\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "activity_regularizer"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dtype"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dynamic"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "inbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "metrics"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name_scope"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "outbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "stateful"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "submodules"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "updates"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_loss"
|
||||
argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_metric"
|
||||
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_update"
|
||||
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_variable"
|
||||
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_weight"
|
||||
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "build"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_mask"
|
||||
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_shape"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_signature"
|
||||
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "count_params"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_losses_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_updates_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_weights"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_weights"
|
||||
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "with_name_scope"
|
||||
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,220 @@
|
||||
path: "tensorflow.keras.layers.Convolution1DTranspose"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv1DTranspose\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv1D\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.convolutional.Conv\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "activity_regularizer"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dtype"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dynamic"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "inbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "metrics"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name_scope"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "outbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "stateful"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "submodules"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "updates"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_loss"
|
||||
argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_metric"
|
||||
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_update"
|
||||
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_variable"
|
||||
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_weight"
|
||||
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "build"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_mask"
|
||||
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_shape"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_signature"
|
||||
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "count_params"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_losses_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_updates_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_weights"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_weights"
|
||||
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "with_name_scope"
|
||||
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
||||
@ -72,6 +72,10 @@ tf_module {
|
||||
name: "Conv1D"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Conv1DTranspose"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Conv2D"
|
||||
mtype: "<type \'type\'>"
|
||||
@ -96,6 +100,10 @@ tf_module {
|
||||
name: "Convolution1D"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Convolution1DTranspose"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Convolution2D"
|
||||
mtype: "<type \'type\'>"
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user