Use tf._implements to fuse Tf.Text APIs
PiperOrigin-RevId: 321068074 Change-Id: Ia43c6fe5b29f41a59461a458fb97e986602a2a63
This commit is contained in:
parent
a7e6b483d3
commit
1e1bcbbf80
@ -273,6 +273,7 @@ cc_library(
|
||||
deps = [
|
||||
":tensorflow_lite",
|
||||
"//tensorflow/compiler/mlir/tensorflow",
|
||||
"//tensorflow/compiler/mlir/tensorflow:tensorflow_attributes",
|
||||
"//tensorflow/core:framework",
|
||||
"@llvm-project//llvm:Support",
|
||||
"@llvm-project//mlir:IR",
|
||||
@ -360,6 +361,7 @@ cc_library(
|
||||
"//tensorflow/compiler/mlir/tensorflow",
|
||||
"//tensorflow/compiler/mlir/tensorflow:convert_tensor",
|
||||
"//tensorflow/compiler/mlir/tensorflow:mangling_util",
|
||||
"//tensorflow/compiler/mlir/tensorflow:tensorflow_attributes",
|
||||
"//tensorflow/compiler/mlir/tensorflow:tensorflow_types",
|
||||
"//tensorflow/compiler/mlir/tensorflow:unroll_batch_matmul_pass",
|
||||
"//tensorflow/compiler/xla:status",
|
||||
|
@ -1,7 +1,7 @@
|
||||
// RUN: tf-opt -tfl-prepare-composite-funcs-tf -tfl-fuse-tftext=true %s -split-input-file | FileCheck %s
|
||||
module {
|
||||
|
||||
func @whitespace_tokenizer_rank1(%arg0: tensor<1x!tf.string> {tf._user_specified_name = "input"}) -> (tensor<?x!tf.string>, tensor<?xi64>) attributes {tf._input_shapes = [#tf.shape<1>], tf.api_implements = "tftext:WhitespaceTokenizer", tf.signature.is_stateful} {
|
||||
func @whitespace_tokenizer_rank1(%arg0: tensor<1x!tf.string> {tf._user_specified_name = "input"}) -> (tensor<?x!tf.string>, tensor<?xi64>) attributes {sym_visibility = "private", tf._input_shapes = [#tf.shape<1>], tf._implements = #tf.func<@"tftext:WhitespaceTokenizer", {}>, tf.signature.is_stateful} {
|
||||
%0 = "tf.Const"() {value = dense<[0, 1]> : tensor<2xi64>} : () -> tensor<2xi64>
|
||||
%1 = "tf.Const"() {value = dense<[]> : tensor<0xi64>} : () -> tensor<0xi64>
|
||||
%2 = "tf.Const"() {value = dense<true> : tensor<i1>} : () -> tensor<i1>
|
||||
@ -1027,11 +1027,11 @@ module {
|
||||
return %1 : tensor<i1>
|
||||
}
|
||||
|
||||
// CHECK: func @whitespace_tokenizer_rank1(%arg0: tensor<1x!tf.string> {tf._user_specified_name = "input"}) -> (tensor<?x!tf.string>, tensor<?xi64>) attributes {tf._input_shapes = [#tf.shape<1>], tf.api_implements = "tftext:WhitespaceTokenizer", tf.signature.is_stateful} {
|
||||
// CHECK: func @whitespace_tokenizer_rank1(%arg0: tensor<1x!tf.string> {tf._user_specified_name = "input"}) -> (tensor<?x!tf.string>, tensor<?xi64>) attributes {sym_visibility = "private", tf._implements = #tf.func<@"tftext:WhitespaceTokenizer", {}>, tf._input_shapes = [#tf.shape<1>], tf.signature.is_stateful} {
|
||||
// CHECK: %0:2 = "tfl.custom"(%arg0) {custom_code = "tftext:WhitespaceTokenizer", custom_option = opaque<"tfl", "0x"> : tensor<0xi8>} : (tensor<1x!tf.string>) -> (tensor<?x!tf.string>, tensor<?xi64>)
|
||||
// CHECK: return %0#0, %0#1 : tensor<?x!tf.string>, tensor<?xi64>
|
||||
|
||||
func @whitespace_tokenizer_rank2(%arg0: tensor<?x1x!tf.string> {tf._user_specified_name = "input"}) -> (tensor<?x!tf.string>, tensor<?xi64>, tensor<?xi64>) attributes {tf._input_shapes = [#tf.shape<?x1>], tf.api_implements = "tftext:WhitespaceTokenizer", tf.signature.is_stateful} {
|
||||
func @whitespace_tokenizer_rank2(%arg0: tensor<?x1x!tf.string> {tf._user_specified_name = "input"}) -> (tensor<?x!tf.string>, tensor<?xi64>, tensor<?xi64>) attributes {sym_visibility = "private", tf._input_shapes = [#tf.shape<?x1>], tf._implements = #tf.func<@"tftext:WhitespaceTokenizer", {}>, tf.signature.is_stateful} {
|
||||
%0 = "tf.Const"() {value = dense<[]> : tensor<0xi64>} : () -> tensor<0xi64>
|
||||
%1 = "tf.Const"() {value = dense<true> : tensor<i1>} : () -> tensor<i1>
|
||||
%2 = "tf.Const"() {value = dense<-1> : tensor<i32>} : () -> tensor<i32>
|
||||
@ -2160,11 +2160,12 @@ module {
|
||||
}
|
||||
|
||||
|
||||
// CHECK: func @whitespace_tokenizer_rank2(%arg0: tensor<?x1x!tf.string> {tf._user_specified_name = "input"}) -> (tensor<?x!tf.string>, tensor<?xi64>, tensor<?xi64>) attributes {tf._input_shapes = [#tf.shape<?x1>], tf.api_implements = "tftext:WhitespaceTokenizer", tf.signature.is_stateful} {
|
||||
|
||||
// CHECK: func @whitespace_tokenizer_rank2(%arg0: tensor<?x1x!tf.string> {tf._user_specified_name = "input"}) -> (tensor<?x!tf.string>, tensor<?xi64>, tensor<?xi64>) attributes {sym_visibility = "private", tf._implements = #tf.func<@"tftext:WhitespaceTokenizer", {}>, tf._input_shapes = [#tf.shape<?x1>], tf.signature.is_stateful} {
|
||||
// CHECK: %0:3 = "tfl.custom"(%arg0) {custom_code = "tftext:WhitespaceTokenizer", custom_option = opaque<"tfl", "0x"> : tensor<0xi8>} : (tensor<?x1x!tf.string>) -> (tensor<?x!tf.string>, tensor<?xi64>, tensor<?xi64>)
|
||||
// CHECK: return %0#0, %0#1, %0#2 : tensor<?x!tf.string>, tensor<?xi64>, tensor<?xi64>
|
||||
|
||||
func @whitespace_tokenizer_rank0(%arg0: tensor<!tf.string> {tf._user_specified_name = "input"}) -> tensor<?x!tf.string> attributes {tf._input_shapes = [#tf.shape<>], tf.api_implements = "tftext:WhitespaceTokenizer", tf.signature.is_stateful} {
|
||||
func @whitespace_tokenizer_rank0(%arg0: tensor<!tf.string> {tf._user_specified_name = "input"}) -> tensor<?x!tf.string> attributes {sym_visibility = "private", tf._input_shapes = [#tf.shape<>], tf._implements = #tf.func<@"tftext:WhitespaceTokenizer", {}>, tf.signature.is_stateful} {
|
||||
%0 = "tf.Const"() {value = dense<[0, 1]> : tensor<2xi64>} : () -> tensor<2xi64>
|
||||
%1 = "tf.Const"() {value = dense<[]> : tensor<0xi64>} : () -> tensor<0xi64>
|
||||
%2 = "tf.Const"() {value = dense<true> : tensor<i1>} : () -> tensor<i1>
|
||||
@ -3190,7 +3191,7 @@ module {
|
||||
return %1 : tensor<i1>
|
||||
}
|
||||
|
||||
// CHECK: func @whitespace_tokenizer_rank0(%arg0: tensor<!tf.string> {tf._user_specified_name = "input"}) -> tensor<?x!tf.string> attributes {tf._input_shapes = [#tf.shape<>], tf.api_implements = "tftext:WhitespaceTokenizer", tf.signature.is_stateful} {
|
||||
// CHECK: func @whitespace_tokenizer_rank0(%arg0: tensor<!tf.string> {tf._user_specified_name = "input"}) -> tensor<?x!tf.string> attributes {sym_visibility = "private", tf._implements = #tf.func<@"tftext:WhitespaceTokenizer", {}>, tf._input_shapes = [#tf.shape<>], tf.signature.is_stateful} {
|
||||
// CHECK: %0 = "tfl.custom"(%arg0) {custom_code = "tftext:WhitespaceTokenizer", custom_option = opaque<"tfl", "0x"> : tensor<0xi8>} : (tensor<!tf.string>) -> tensor<?x!tf.string>
|
||||
// CHECK: return %0 : tensor<?x!tf.string>
|
||||
}
|
||||
|
@ -42,6 +42,7 @@ limitations under the License.
|
||||
#include "tensorflow/compiler/mlir/lite/transforms/passes.h"
|
||||
#include "tensorflow/compiler/mlir/lite/utils/lstm_utils.h"
|
||||
#include "tensorflow/compiler/mlir/lite/utils/tftext_utils.h"
|
||||
#include "tensorflow/compiler/mlir/tensorflow/ir/tf_attributes.h"
|
||||
#include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h"
|
||||
|
||||
// The cmd line flag to turn on/off Tf.Text API fusion.
|
||||
@ -56,9 +57,11 @@ namespace TFL {
|
||||
namespace {
|
||||
|
||||
constexpr char kTFAPIImplements[] = "tf.api_implements";
|
||||
constexpr char kTfTextAPIPRefix[] = "tftext:";
|
||||
constexpr char kTFTextAPIPrefix[] = "tftext:";
|
||||
constexpr char kTfNMSPadded[] = "non_max_suppression_padded_v2";
|
||||
|
||||
using mlir::TF::FuncAttr;
|
||||
|
||||
// Abstracts the conversion of the embedded lookup composite function.
|
||||
class ConvertEmbeddedLookupFunc {
|
||||
public:
|
||||
@ -161,7 +164,9 @@ class PrepareCompositeFunctionsPass
|
||||
explicit PrepareCompositeFunctionsPass() {}
|
||||
|
||||
private:
|
||||
// TODO(b/160915525): Consolidate FuncAttr and StringAttr into one.
|
||||
void ConvertTFImplements(FuncOp func, StringAttr attr);
|
||||
void ConvertTFImplementsWithAttributes(FuncOp func, FuncAttr attr);
|
||||
void ConvertTFAPIImplements(FuncOp func, StringAttr attr, ModuleOp module);
|
||||
void runOnOperation() override;
|
||||
};
|
||||
@ -204,6 +209,18 @@ void PrepareCompositeFunctionsPass::ConvertTFImplements(FuncOp func,
|
||||
}
|
||||
}
|
||||
|
||||
void PrepareCompositeFunctionsPass::ConvertTFImplementsWithAttributes(
|
||||
FuncOp func, FuncAttr attr) {
|
||||
auto api_name = attr.GetName().getLeafReference();
|
||||
bool enable_fuse_tftext =
|
||||
fuse_tftext_flag || IsTFTextRegistered(tensorflow::OpRegistry::Global());
|
||||
if (api_name.startswith(kTFTextAPIPrefix) && enable_fuse_tftext) {
|
||||
if (failed(ConvertTFTextAPI(func, api_name, attr))) {
|
||||
return signalPassFailure();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
LogicalResult CheckOutputConsumer(
|
||||
Operation* call_op, int expected_num_outputs,
|
||||
llvm::DenseSet<int> expected_consumer_indices) {
|
||||
@ -256,26 +273,27 @@ void PrepareCompositeFunctionsPass::ConvertTFAPIImplements(FuncOp func,
|
||||
OpBuilder builder(func.getBody());
|
||||
if (failed(ConvertKerasLSTMLayer(func, &builder)))
|
||||
return signalPassFailure();
|
||||
} else if (fuse_tftext_flag ||
|
||||
IsTfTextRegistered(tensorflow::OpRegistry::Global())) {
|
||||
if (attr.getValue().startswith(kTfTextAPIPRefix)) {
|
||||
if (failed(ConvertTFTextAPI(func, attr.getValue()))) {
|
||||
return signalPassFailure();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PrepareCompositeFunctionsPass::runOnOperation() {
|
||||
auto module = getOperation();
|
||||
for (auto func : module.getOps<FuncOp>()) {
|
||||
// We have two kinds of implements:
|
||||
// 1) tf._implements.
|
||||
// 2) tf.api_implements.
|
||||
// We have three kinds of implements:
|
||||
// 1) tf._implements, with string attributes.
|
||||
// 2) tf._implements, with proto attributes.
|
||||
// 3) tf.api_implements.
|
||||
// We need to handle them separately.
|
||||
auto tf_implements_attr = func.getAttrOfType<StringAttr>(kTFImplements);
|
||||
auto tf_implements_attr_str = func.getAttrOfType<StringAttr>(kTFImplements);
|
||||
if (tf_implements_attr_str) {
|
||||
ConvertTFImplements(func, tf_implements_attr_str);
|
||||
continue;
|
||||
}
|
||||
|
||||
auto tf_implements_attr = func.getAttrOfType<FuncAttr>(kTFImplements);
|
||||
if (tf_implements_attr) {
|
||||
ConvertTFImplements(func, tf_implements_attr);
|
||||
ConvertTFImplementsWithAttributes(func, tf_implements_attr);
|
||||
continue;
|
||||
}
|
||||
|
||||
auto tf_api_implements_attr =
|
||||
|
@ -44,7 +44,9 @@ namespace TFL {
|
||||
namespace {
|
||||
|
||||
constexpr char kWhitespaceTokenizer[] = "tftext:WhitespaceTokenizer";
|
||||
constexpr char kTFAPIImplements[] = "tf.api_implements";
|
||||
constexpr char kTFImplements[] = "tf._implements";
|
||||
|
||||
using mlir::TF::FuncAttr;
|
||||
|
||||
inline OpaqueElementsAttr emptyCustomOption(OpBuilder* builder) {
|
||||
std::string content = "";
|
||||
@ -121,11 +123,11 @@ LogicalResult VerifyWhitespaceTokenizer(mlir::FuncOp func) {
|
||||
return success();
|
||||
}
|
||||
|
||||
LogicalResult ConvertWhitespaceTokenizer(mlir::FuncOp func,
|
||||
llvm::StringRef api) {
|
||||
LogicalResult ConvertWhitespaceTokenizer(mlir::FuncOp func, llvm::StringRef api,
|
||||
FuncAttr attr) {
|
||||
func.eraseBody();
|
||||
func.addEntryBlock();
|
||||
func.setAttr(kTFAPIImplements, StringAttr::get(api, func.getContext()));
|
||||
func.setAttr(kTFImplements, attr);
|
||||
Value text = func.getArgument(0);
|
||||
OpBuilder builder(func.getBody());
|
||||
|
||||
@ -137,20 +139,21 @@ LogicalResult ConvertWhitespaceTokenizer(mlir::FuncOp func,
|
||||
}
|
||||
} // namespace
|
||||
|
||||
LogicalResult ConvertTFTextAPI(mlir::FuncOp func, llvm::StringRef api) {
|
||||
LogicalResult ConvertTFTextAPI(mlir::FuncOp func, llvm::StringRef api,
|
||||
FuncAttr attr) {
|
||||
if (api.str() == kWhitespaceTokenizer) {
|
||||
if (succeeded(VerifyWhitespaceTokenizer(func))) {
|
||||
return ConvertWhitespaceTokenizer(func, api);
|
||||
return ConvertWhitespaceTokenizer(func, api, attr);
|
||||
}
|
||||
}
|
||||
return failure();
|
||||
}
|
||||
|
||||
bool IsTfTextRegistered(const tensorflow::OpRegistry* op_registery) {
|
||||
const std::vector<std::string> kTfTextOps = {
|
||||
bool IsTFTextRegistered(const tensorflow::OpRegistry* op_registery) {
|
||||
const std::vector<std::string> kTFTextOps = {
|
||||
"WhitespaceTokenizeWithOffsets",
|
||||
};
|
||||
for (const auto& iter : kTfTextOps) {
|
||||
for (const auto& iter : kTFTextOps) {
|
||||
if (op_registery->LookUp(iter)) {
|
||||
return true;
|
||||
}
|
||||
|
@ -27,14 +27,18 @@ limitations under the License.
|
||||
#include "mlir/IR/Value.h" // from @llvm-project
|
||||
#include "mlir/Support/LogicalResult.h" // from @llvm-project
|
||||
#include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h"
|
||||
#include "tensorflow/compiler/mlir/tensorflow/ir/tf_attributes.h"
|
||||
#include "tensorflow/core/framework/op.h"
|
||||
|
||||
namespace mlir {
|
||||
namespace TFL {
|
||||
|
||||
LogicalResult ConvertTFTextAPI(mlir::FuncOp func, llvm::StringRef api);
|
||||
// Fuse TF.Text APIs annotated by tf.function to a TFLite custom op.
|
||||
LogicalResult ConvertTFTextAPI(mlir::FuncOp func, llvm::StringRef api,
|
||||
mlir::TF::FuncAttr attr);
|
||||
|
||||
bool IsTfTextRegistered(const tensorflow::OpRegistry* op_registery);
|
||||
// Check if TF.Text Tensorflow ops are registered.
|
||||
bool IsTFTextRegistered(const tensorflow::OpRegistry* op_registery);
|
||||
|
||||
} // end namespace TFL
|
||||
} // end namespace mlir
|
||||
|
@ -41,13 +41,13 @@ void Register(const std::string& op_name, OpRegistry* registry) {
|
||||
TEST(TfTextUtilsTest, TestTfTextRegistered) {
|
||||
std::unique_ptr<OpRegistry> registry(new OpRegistry);
|
||||
Register("WhitespaceTokenizeWithOffsets", registry.get());
|
||||
EXPECT_TRUE(IsTfTextRegistered(registry.get()));
|
||||
EXPECT_TRUE(IsTFTextRegistered(registry.get()));
|
||||
}
|
||||
|
||||
TEST(TfTextUtilsTest, TestTfTextNotRegistered) {
|
||||
std::unique_ptr<OpRegistry> registry(new OpRegistry);
|
||||
Register("Test", registry.get());
|
||||
EXPECT_FALSE(IsTfTextRegistered(registry.get()));
|
||||
EXPECT_FALSE(IsTFTextRegistered(registry.get()));
|
||||
}
|
||||
} // namespace TFL
|
||||
} // namespace mlir
|
||||
|
Loading…
x
Reference in New Issue
Block a user