From 1db1272f7d75131559fa15cc5013ff46735f9c58 Mon Sep 17 00:00:00 2001
From: Eugene Brevdo <ebrevdo@gmail.com>
Date: Wed, 25 May 2016 14:25:35 -0800
Subject: [PATCH] Rename tf.contrib.distributions.Gaussian ->
 tf.contrib.distributions.Normal Change: 123260073

---
 tensorflow/contrib/distributions/BUILD        |  8 +--
 tensorflow/contrib/distributions/__init__.py  | 12 ++---
 ...py => normal_conjugate_posteriors_test.py} | 34 ++++++------
 .../{gaussian_test.py => normal_test.py}      | 46 ++++++++--------
 .../python/ops/{gaussian.py => normal.py}     | 44 ++++++++--------
 ...iors.py => normal_conjugate_posteriors.py} | 52 +++++++++----------
 6 files changed, 98 insertions(+), 98 deletions(-)
 rename tensorflow/contrib/distributions/python/kernel_tests/{gaussian_conjugate_posteriors_test.py => normal_conjugate_posteriors_test.py} (74%)
 rename tensorflow/contrib/distributions/python/kernel_tests/{gaussian_test.py => normal_test.py} (79%)
 rename tensorflow/contrib/distributions/python/ops/{gaussian.py => normal.py} (82%)
 rename tensorflow/contrib/distributions/python/ops/{gaussian_conjugate_posteriors.py => normal_conjugate_posteriors.py} (73%)

diff --git a/tensorflow/contrib/distributions/BUILD b/tensorflow/contrib/distributions/BUILD
index 451a34320e0..44263dc8aed 100644
--- a/tensorflow/contrib/distributions/BUILD
+++ b/tensorflow/contrib/distributions/BUILD
@@ -55,9 +55,9 @@ cuda_py_tests(
 )
 
 cuda_py_tests(
-    name = "gaussian_test",
+    name = "normal_test",
     size = "small",
-    srcs = ["python/kernel_tests/gaussian_test.py"],
+    srcs = ["python/kernel_tests/normal_test.py"],
     additional_deps = [
         ":distributions_py",
         "//tensorflow/python:framework_test_lib",
@@ -98,9 +98,9 @@ cuda_py_tests(
 )
 
 cuda_py_tests(
-    name = "gaussian_conjugate_posteriors_test",
+    name = "normal_conjugate_posteriors_test",
     size = "small",
-    srcs = ["python/kernel_tests/gaussian_conjugate_posteriors_test.py"],
+    srcs = ["python/kernel_tests/normal_conjugate_posteriors_test.py"],
     additional_deps = [
         ":distributions_py",
         "//tensorflow/python:platform_test",
diff --git a/tensorflow/contrib/distributions/__init__.py b/tensorflow/contrib/distributions/__init__.py
index 2c8a0343b28..7fa8c0fb0c6 100644
--- a/tensorflow/contrib/distributions/__init__.py
+++ b/tensorflow/contrib/distributions/__init__.py
@@ -30,7 +30,7 @@ initialized with parameters that define the distributions.
 @@Chi2
 @@Exponential
 @@Gamma
-@@Gaussian
+@@Normal
 @@StudentT
 @@Uniform
 
@@ -44,10 +44,10 @@ initialized with parameters that define the distributions.
 Functions that transform conjugate prior/likelihood pairs to distributions
 representing the posterior or posterior predictive.
 
-### Gaussian likelihood with conjugate prior.
+### Normal likelihood with conjugate prior.
 
-@@gaussian_conjugates_known_sigma_posterior
-@@gaussian_congugates_known_sigma_predictive
+@@normal_conjugates_known_sigma_posterior
+@@normal_congugates_known_sigma_predictive
 """
 from __future__ import absolute_import
 from __future__ import division
@@ -60,8 +60,8 @@ from tensorflow.contrib.distributions.python.ops.dirichlet_multinomial import *
 from tensorflow.contrib.distributions.python.ops.distribution import *
 from tensorflow.contrib.distributions.python.ops.exponential import *
 from tensorflow.contrib.distributions.python.ops.gamma import *
-from tensorflow.contrib.distributions.python.ops.gaussian import *
-from tensorflow.contrib.distributions.python.ops.gaussian_conjugate_posteriors import *
 from tensorflow.contrib.distributions.python.ops.mvn import *
+from tensorflow.contrib.distributions.python.ops.normal import *
+from tensorflow.contrib.distributions.python.ops.normal_conjugate_posteriors import *
 from tensorflow.contrib.distributions.python.ops.student_t import *
 from tensorflow.contrib.distributions.python.ops.uniform import *
diff --git a/tensorflow/contrib/distributions/python/kernel_tests/gaussian_conjugate_posteriors_test.py b/tensorflow/contrib/distributions/python/kernel_tests/normal_conjugate_posteriors_test.py
similarity index 74%
rename from tensorflow/contrib/distributions/python/kernel_tests/gaussian_conjugate_posteriors_test.py
rename to tensorflow/contrib/distributions/python/kernel_tests/normal_conjugate_posteriors_test.py
index c3a2464b5bd..1d03396bf68 100644
--- a/tensorflow/contrib/distributions/python/kernel_tests/gaussian_conjugate_posteriors_test.py
+++ b/tensorflow/contrib/distributions/python/kernel_tests/normal_conjugate_posteriors_test.py
@@ -25,9 +25,9 @@ import tensorflow as tf
 distributions = tf.contrib.distributions
 
 
-class GaussianTest(tf.test.TestCase):
+class NormalTest(tf.test.TestCase):
 
-  def testGaussianConjugateKnownSigmaPosterior(self):
+  def testNormalConjugateKnownSigmaPosterior(self):
     with tf.Session():
       mu0 = tf.constant([3.0])
       sigma0 = tf.constant([math.sqrt(10.0)])
@@ -35,16 +35,16 @@ class GaussianTest(tf.test.TestCase):
       x = tf.constant([-2.5, 2.5, 4.0, 0.0, -1.0, 2.0])
       s = tf.reduce_sum(x)
       n = tf.size(x)
-      prior = distributions.Gaussian(mu=mu0, sigma=sigma0)
-      posterior = distributions.gaussian_conjugates_known_sigma_posterior(
+      prior = distributions.Normal(mu=mu0, sigma=sigma0)
+      posterior = distributions.normal_conjugates_known_sigma_posterior(
           prior=prior, sigma=sigma, s=s, n=n)
 
       # Smoke test
-      self.assertTrue(isinstance(posterior, distributions.Gaussian))
+      self.assertTrue(isinstance(posterior, distributions.Normal))
       posterior_log_pdf = posterior.log_pdf(x).eval()
       self.assertEqual(posterior_log_pdf.shape, (6,))
 
-  def testGaussianConjugateKnownSigmaPosteriorND(self):
+  def testNormalConjugateKnownSigmaPosteriorND(self):
     with tf.Session():
       batch_size = 6
       mu0 = tf.constant([[3.0, -3.0]] * batch_size)
@@ -54,16 +54,16 @@ class GaussianTest(tf.test.TestCase):
           tf.constant([[-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]], dtype=tf.float32))
       s = tf.reduce_sum(x)
       n = tf.size(x)
-      prior = distributions.Gaussian(mu=mu0, sigma=sigma0)
-      posterior = distributions.gaussian_conjugates_known_sigma_posterior(
+      prior = distributions.Normal(mu=mu0, sigma=sigma0)
+      posterior = distributions.normal_conjugates_known_sigma_posterior(
           prior=prior, sigma=sigma, s=s, n=n)
 
       # Smoke test
-      self.assertTrue(isinstance(posterior, distributions.Gaussian))
+      self.assertTrue(isinstance(posterior, distributions.Normal))
       posterior_log_pdf = posterior.log_pdf(x).eval()
       self.assertEqual(posterior_log_pdf.shape, (6, 2))
 
-  def testGaussianConjugateKnownSigmaNDPosteriorND(self):
+  def testNormalConjugateKnownSigmaNDPosteriorND(self):
     with tf.Session():
       batch_size = 6
       mu0 = tf.constant([[3.0, -3.0]] * batch_size)
@@ -75,19 +75,19 @@ class GaussianTest(tf.test.TestCase):
       s = tf.reduce_sum(x, reduction_indices=[1])
       x = tf.transpose(x)  # Reshape to shape (6, 2)
       n = tf.constant([6] * 2)
-      prior = distributions.Gaussian(mu=mu0, sigma=sigma0)
-      posterior = distributions.gaussian_conjugates_known_sigma_posterior(
+      prior = distributions.Normal(mu=mu0, sigma=sigma0)
+      posterior = distributions.normal_conjugates_known_sigma_posterior(
           prior=prior, sigma=sigma, s=s, n=n)
 
       # Smoke test
-      self.assertTrue(isinstance(posterior, distributions.Gaussian))
+      self.assertTrue(isinstance(posterior, distributions.Normal))
 
       # Calculate log_pdf under the 2 models
       posterior_log_pdf = posterior.log_pdf(x)
       self.assertEqual(posterior_log_pdf.get_shape(), (6, 2))
       self.assertEqual(posterior_log_pdf.eval().shape, (6, 2))
 
-  def testGaussianConjugateKnownSigmaPredictive(self):
+  def testNormalConjugateKnownSigmaPredictive(self):
     with tf.Session():
       batch_size = 6
       mu0 = tf.constant([3.0] * batch_size)
@@ -96,12 +96,12 @@ class GaussianTest(tf.test.TestCase):
       x = tf.constant([-2.5, 2.5, 4.0, 0.0, -1.0, 2.0])
       s = tf.reduce_sum(x)
       n = tf.size(x)
-      prior = distributions.Gaussian(mu=mu0, sigma=sigma0)
-      predictive = distributions.gaussian_congugates_known_sigma_predictive(
+      prior = distributions.Normal(mu=mu0, sigma=sigma0)
+      predictive = distributions.normal_congugates_known_sigma_predictive(
           prior=prior, sigma=sigma, s=s, n=n)
 
       # Smoke test
-      self.assertTrue(isinstance(predictive, distributions.Gaussian))
+      self.assertTrue(isinstance(predictive, distributions.Normal))
       predictive_log_pdf = predictive.log_pdf(x).eval()
       self.assertEqual(predictive_log_pdf.shape, (6,))
 
diff --git a/tensorflow/contrib/distributions/python/kernel_tests/gaussian_test.py b/tensorflow/contrib/distributions/python/kernel_tests/normal_test.py
similarity index 79%
rename from tensorflow/contrib/distributions/python/kernel_tests/gaussian_test.py
rename to tensorflow/contrib/distributions/python/kernel_tests/normal_test.py
index f0a82df901c..0e9f8a40cca 100644
--- a/tensorflow/contrib/distributions/python/kernel_tests/gaussian_test.py
+++ b/tensorflow/contrib/distributions/python/kernel_tests/normal_test.py
@@ -24,9 +24,9 @@ import numpy as np
 import tensorflow as tf
 
 
-class GaussianTest(tf.test.TestCase):
+class NormalTest(tf.test.TestCase):
 
-  def testGaussianLogPDF(self):
+  def testNormalLogPDF(self):
     with tf.Session():
       batch_size = 6
       mu = tf.constant([3.0] * batch_size)
@@ -34,18 +34,18 @@ class GaussianTest(tf.test.TestCase):
       mu_v = 3.0
       sigma_v = np.sqrt(10.0)
       x = np.array([-2.5, 2.5, 4.0, 0.0, -1.0, 2.0], dtype=np.float32)
-      gaussian = tf.contrib.distributions.Gaussian(mu=mu, sigma=sigma)
+      normal = tf.contrib.distributions.Normal(mu=mu, sigma=sigma)
       expected_log_pdf = np.log(
           1 / np.sqrt(2 * np.pi) / sigma_v
           * np.exp(-1.0 / (2 * sigma_v**2) * (x - mu_v)**2))
 
-      log_pdf = gaussian.log_pdf(x)
+      log_pdf = normal.log_pdf(x)
       self.assertAllClose(expected_log_pdf, log_pdf.eval())
 
-      pdf = gaussian.pdf(x)
+      pdf = normal.pdf(x)
       self.assertAllClose(np.exp(expected_log_pdf), pdf.eval())
 
-  def testGaussianLogPDFMultidimensional(self):
+  def testNormalLogPDFMultidimensional(self):
     with tf.Session():
       batch_size = 6
       mu = tf.constant([[3.0, -3.0]] * batch_size)
@@ -53,22 +53,22 @@ class GaussianTest(tf.test.TestCase):
       mu_v = np.array([3.0, -3.0])
       sigma_v = np.array([np.sqrt(10.0), np.sqrt(15.0)])
       x = np.array([[-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]], dtype=np.float32).T
-      gaussian = tf.contrib.distributions.Gaussian(mu=mu, sigma=sigma)
+      normal = tf.contrib.distributions.Normal(mu=mu, sigma=sigma)
       expected_log_pdf = np.log(
           1 / np.sqrt(2 * np.pi) / sigma_v
           * np.exp(-1.0 / (2 * sigma_v**2) * (x - mu_v)**2))
 
-      log_pdf = gaussian.log_pdf(x)
+      log_pdf = normal.log_pdf(x)
       log_pdf_values = log_pdf.eval()
       self.assertEqual(log_pdf.get_shape(), (6, 2))
       self.assertAllClose(expected_log_pdf, log_pdf_values)
 
-      pdf = gaussian.pdf(x)
+      pdf = normal.pdf(x)
       pdf_values = pdf.eval()
       self.assertEqual(pdf.get_shape(), (6, 2))
       self.assertAllClose(np.exp(expected_log_pdf), pdf_values)
 
-  def testGaussianCDF(self):
+  def testNormalCDF(self):
     with tf.Session():
       batch_size = 6
       mu = tf.constant([3.0] * batch_size)
@@ -77,40 +77,40 @@ class GaussianTest(tf.test.TestCase):
       sigma_v = np.sqrt(10.0)
       x = np.array([-2.5, 2.5, 4.0, 0.0, -1.0, 2.0], dtype=np.float32)
 
-      gaussian = tf.contrib.distributions.Gaussian(mu=mu, sigma=sigma)
+      normal = tf.contrib.distributions.Normal(mu=mu, sigma=sigma)
       erf_fn = np.vectorize(math.erf)
 
       # From Wikipedia
       expected_cdf = 0.5 * (1.0 + erf_fn((x - mu_v)/(sigma_v*np.sqrt(2))))
 
-      cdf = gaussian.cdf(x)
+      cdf = normal.cdf(x)
       self.assertAllClose(expected_cdf, cdf.eval())
 
-  def testGaussianEntropy(self):
+  def testNormalEntropy(self):
     with tf.Session():
       mu_v = np.array([1.0, 1.0, 1.0])
       sigma_v = np.array([[1.0, 2.0, 3.0]]).T
-      gaussian = tf.contrib.distributions.Gaussian(mu=mu_v, sigma=sigma_v)
+      normal = tf.contrib.distributions.Normal(mu=mu_v, sigma=sigma_v)
 
       sigma_broadcast = mu_v * sigma_v
       expected_entropy = 0.5 * np.log(2*np.pi*np.exp(1)*sigma_broadcast**2)
-      self.assertAllClose(expected_entropy, gaussian.entropy().eval())
+      self.assertAllClose(expected_entropy, normal.entropy().eval())
 
-  def testGaussianSample(self):
+  def testNormalSample(self):
     with tf.Session():
       mu = tf.constant(3.0)
       sigma = tf.constant(math.sqrt(10.0))
       mu_v = 3.0
       sigma_v = np.sqrt(10.0)
       n = tf.constant(100000)
-      gaussian = tf.contrib.distributions.Gaussian(mu=mu, sigma=sigma)
-      samples = gaussian.sample(n, seed=137)
+      normal = tf.contrib.distributions.Normal(mu=mu, sigma=sigma)
+      samples = normal.sample(n, seed=137)
       sample_values = samples.eval()
       self.assertEqual(sample_values.shape, (100000,))
       self.assertAllClose(sample_values.mean(), mu_v, atol=1e-2)
       self.assertAllClose(sample_values.std(), sigma_v, atol=1e-1)
 
-  def testGaussianSampleMultiDimensional(self):
+  def testNormalSampleMultiDimensional(self):
     with tf.Session():
       batch_size = 2
       mu = tf.constant([[3.0, -3.0]] * batch_size)
@@ -118,8 +118,8 @@ class GaussianTest(tf.test.TestCase):
       mu_v = [3.0, -3.0]
       sigma_v = [np.sqrt(10.0), np.sqrt(15.0)]
       n = tf.constant(100000)
-      gaussian = tf.contrib.distributions.Gaussian(mu=mu, sigma=sigma)
-      samples = gaussian.sample(n, seed=137)
+      normal = tf.contrib.distributions.Normal(mu=mu, sigma=sigma)
+      samples = normal.sample(n, seed=137)
       sample_values = samples.eval()
       self.assertEqual(samples.get_shape(), (100000, batch_size, 2))
       self.assertAllClose(sample_values[:, 0, 0].mean(), mu_v[0], atol=1e-2)
@@ -129,13 +129,13 @@ class GaussianTest(tf.test.TestCase):
 
   def testNegativeSigmaFails(self):
     with tf.Session():
-      gaussian = tf.contrib.distributions.Gaussian(
+      normal = tf.contrib.distributions.Normal(
           mu=[1.],
           sigma=[-5.],
           name='G')
       with self.assertRaisesOpError(
           r'should contain only positive values'):
-        gaussian.mean.eval()
+        normal.mean.eval()
 
 if __name__ == '__main__':
   tf.test.main()
diff --git a/tensorflow/contrib/distributions/python/ops/gaussian.py b/tensorflow/contrib/distributions/python/ops/normal.py
similarity index 82%
rename from tensorflow/contrib/distributions/python/ops/gaussian.py
rename to tensorflow/contrib/distributions/python/ops/normal.py
index 8e2049444af..dc08a0e1dec 100644
--- a/tensorflow/contrib/distributions/python/ops/gaussian.py
+++ b/tensorflow/contrib/distributions/python/ops/normal.py
@@ -38,8 +38,8 @@ def _assert_all_positive(x):
       ["Tensor %s should contain only positive values: " % x.name, x])
 
 
-class Gaussian(object):
-  """The scalar Gaussian distribution with mean and stddev parameters mu, sigma.
+class Normal(object):
+  """The scalar Normal distribution with mean and stddev parameters mu, sigma.
 
   #### Mathematical details
 
@@ -52,15 +52,15 @@ class Gaussian(object):
   Examples of initialization of one or a batch of distributions.
 
   ```python
-  # Define a single scalar Gaussian distribution.
-  dist = tf.contrib.distributions.Gaussian(mu=0, sigma=3)
+  # Define a single scalar Normal distribution.
+  dist = tf.contrib.distributions.Normal(mu=0, sigma=3)
 
   # Evaluate the cdf at 1, returning a scalar.
   dist.cdf(1)
 
-  # Define a batch of two scalar valued Gaussians.
+  # Define a batch of two scalar valued Normals.
   # The first has mean 1 and standard deviation 11, the second 2 and 22.
-  dist = tf.contrib.distributions.Gaussian(mu=[1, 2.], sigma=[11, 22.])
+  dist = tf.contrib.distributions.Normal(mu=[1, 2.], sigma=[11, 22.])
 
   # Evaluate the pdf of the first distribution on 0, and the second on 1.5,
   # returning a length two tensor.
@@ -73,9 +73,9 @@ class Gaussian(object):
   Arguments are broadcast when possible.
 
   ```python
-  # Define a batch of two scalar valued Gaussians.
+  # Define a batch of two scalar valued Normals.
   # Both have mean 1, but different standard deviations.
-  dist = tf.contrib.distributions.Gaussian(mu=1, sigma=[11, 22.])
+  dist = tf.contrib.distributions.Normal(mu=1, sigma=[11, 22.])
 
   # Evaluate the pdf of both distributions on the same point, 3.0,
   # returning a length 2 tensor.
@@ -85,7 +85,7 @@ class Gaussian(object):
   """
 
   def __init__(self, mu, sigma, name=None):
-    """Construct Gaussian distributions with mean and stddev `mu` and `sigma`.
+    """Construct Normal distributions with mean and stddev `mu` and `sigma`.
 
     The parameters `mu` and `sigma` must be shaped in a way that supports
     broadcasting (e.g. `mu + sigma` is a valid operation).
@@ -99,7 +99,7 @@ class Gaussian(object):
     Raises:
       TypeError: if mu and sigma are different dtypes.
     """
-    with ops.op_scope([mu, sigma], name, "Gaussian"):
+    with ops.op_scope([mu, sigma], name, "Normal"):
       mu = ops.convert_to_tensor(mu)
       sigma = ops.convert_to_tensor(sigma)
       with ops.control_dependencies([_assert_all_positive(sigma)]):
@@ -125,7 +125,7 @@ class Gaussian(object):
     return self._mu * array_ops.ones_like(self._sigma)
 
   def log_pdf(self, x, name=None):
-    """Log pdf of observations in `x` under these Gaussian distribution(s).
+    """Log pdf of observations in `x` under these Normal distribution(s).
 
     Args:
       x: tensor of dtype `dtype`, must be broadcastable with `mu` and `sigma`.
@@ -134,7 +134,7 @@ class Gaussian(object):
     Returns:
       log_pdf: tensor of dtype `dtype`, the log-PDFs of `x`.
     """
-    with ops.op_scope([self._mu, self._sigma, x], name, "GaussianLogPdf"):
+    with ops.op_scope([self._mu, self._sigma, x], name, "NormalLogPdf"):
       x = ops.convert_to_tensor(x)
       if x.dtype != self.dtype:
         raise TypeError("Input x dtype does not match dtype: %s vs. %s"
@@ -144,7 +144,7 @@ class Gaussian(object):
               -0.5*math_ops.square((x - self._mu) / self._sigma))
 
   def cdf(self, x, name=None):
-    """CDF of observations in `x` under these Gaussian distribution(s).
+    """CDF of observations in `x` under these Normal distribution(s).
 
     Args:
       x: tensor of dtype `dtype`, must be broadcastable with `mu` and `sigma`.
@@ -153,7 +153,7 @@ class Gaussian(object):
     Returns:
       cdf: tensor of dtype `dtype`, the CDFs of `x`.
     """
-    with ops.op_scope([self._mu, self._sigma, x], name, "GaussianCdf"):
+    with ops.op_scope([self._mu, self._sigma, x], name, "NormalCdf"):
       x = ops.convert_to_tensor(x)
       if x.dtype != self.dtype:
         raise TypeError("Input x dtype does not match dtype: %s vs. %s"
@@ -162,7 +162,7 @@ class Gaussian(object):
           1.0/(math.sqrt(2.0) * self._sigma)*(x - self._mu)))
 
   def log_cdf(self, x, name=None):
-    """Log CDF of observations `x` under these Gaussian distribution(s).
+    """Log CDF of observations `x` under these Normal distribution(s).
 
     Args:
       x: tensor of dtype `dtype`, must be broadcastable with `mu` and `sigma`.
@@ -171,11 +171,11 @@ class Gaussian(object):
     Returns:
       log_cdf: tensor of dtype `dtype`, the log-CDFs of `x`.
     """
-    with ops.op_scope([self._mu, self._sigma, x], name, "GaussianLogCdf"):
+    with ops.op_scope([self._mu, self._sigma, x], name, "NormalLogCdf"):
       return math_ops.log(self.cdf(x))
 
   def pdf(self, x, name=None):
-    """The PDF of observations in `x` under these Gaussian distribution(s).
+    """The PDF of observations in `x` under these Normal distribution(s).
 
     Args:
       x: tensor of dtype `dtype`, must be broadcastable with `mu` and `sigma`.
@@ -184,11 +184,11 @@ class Gaussian(object):
     Returns:
       pdf: tensor of dtype `dtype`, the pdf values of `x`.
     """
-    with ops.op_scope([self._mu, self._sigma, x], name, "GaussianPdf"):
+    with ops.op_scope([self._mu, self._sigma, x], name, "NormalPdf"):
       return math_ops.exp(self.log_pdf(x))
 
   def entropy(self, name=None):
-    """The entropy of Gaussian distribution(s).
+    """The entropy of Normal distribution(s).
 
     Args:
       name: The name to give this op.
@@ -196,7 +196,7 @@ class Gaussian(object):
     Returns:
       entropy: tensor of dtype `dtype`, the entropy.
     """
-    with ops.op_scope([self._mu, self._sigma], name, "GaussianEntropy"):
+    with ops.op_scope([self._mu, self._sigma], name, "NormalEntropy"):
       two_pi_e1 = constant_op.constant(
           2 * math.pi * math.exp(1), dtype=self.dtype)
       # Use broadcasting rules to calculate the full broadcast sigma.
@@ -204,7 +204,7 @@ class Gaussian(object):
       return 0.5 * math_ops.log(two_pi_e1 * math_ops.square(sigma))
 
   def sample(self, n, seed=None, name=None):
-    """Sample `n` observations from the Gaussian Distributions.
+    """Sample `n` observations from the Normal Distributions.
 
     Args:
       n: `Scalar`, type int32, the number of observations to sample.
@@ -215,7 +215,7 @@ class Gaussian(object):
       samples: `[n, ...]`, a `Tensor` of `n` samples for each
         of the distributions determined by broadcasting the hyperparameters.
     """
-    with ops.op_scope([self._mu, self._sigma, n], name, "GaussianSample"):
+    with ops.op_scope([self._mu, self._sigma, n], name, "NormalSample"):
       broadcast_shape = (self._mu + self._sigma).get_shape()
       n = ops.convert_to_tensor(n)
       shape = array_ops.concat(
diff --git a/tensorflow/contrib/distributions/python/ops/gaussian_conjugate_posteriors.py b/tensorflow/contrib/distributions/python/ops/normal_conjugate_posteriors.py
similarity index 73%
rename from tensorflow/contrib/distributions/python/ops/gaussian_conjugate_posteriors.py
rename to tensorflow/contrib/distributions/python/ops/normal_conjugate_posteriors.py
index c0089964152..45ddd3ada36 100644
--- a/tensorflow/contrib/distributions/python/ops/gaussian_conjugate_posteriors.py
+++ b/tensorflow/contrib/distributions/python/ops/normal_conjugate_posteriors.py
@@ -12,32 +12,32 @@
 # See the License for the specific language governing permissions and
 # limitations under the License.
 # ==============================================================================
-"""The Gaussian distribution: conjugate posterior closed form calculations."""
+"""The Normal distribution: conjugate posterior closed form calculations."""
 
 from __future__ import absolute_import
 from __future__ import division
 from __future__ import print_function
 
-from tensorflow.contrib.distributions.python.ops.gaussian import Gaussian  # pylint: disable=line-too-long
+from tensorflow.contrib.distributions.python.ops.normal import Normal  # pylint: disable=line-too-long
 
 from tensorflow.python.ops import math_ops
 
 
-def gaussian_conjugates_known_sigma_posterior(prior, sigma, s, n):
-  """Posterior Gaussian distribution with conjugate prior on the mean.
+def normal_conjugates_known_sigma_posterior(prior, sigma, s, n):
+  """Posterior Normal distribution with conjugate prior on the mean.
 
   This model assumes that `n` observations (with sum `s`) come from a
-  Gaussian with unknown mean `mu` (described by the Gaussian `prior`)
+  Normal with unknown mean `mu` (described by the Normal `prior`)
   and known variance `sigma^2`.  The "known sigma posterior" is
   the distribution of the unknown `mu`.
 
-  Accepts a prior Gaussian distribution object, having parameters
+  Accepts a prior Normal distribution object, having parameters
   `mu0` and `sigma0`, as well as known `sigma` values of the predictive
-  distribution(s) (also assumed Gaussian),
+  distribution(s) (also assumed Normal),
   and statistical estimates `s` (the sum(s) of the observations) and
   `n` (the number(s) of observations).
 
-  Returns a posterior (also Gaussian) distribution object, with parameters
+  Returns a posterior (also Normal) distribution object, with parameters
   `(mu', sigma'^2)`, where:
 
   ```
@@ -50,7 +50,7 @@ def gaussian_conjugates_known_sigma_posterior(prior, sigma, s, n):
   will broadcast in the case of multidimensional sets of parameters.
 
   Args:
-    prior: `Gaussian` object of type `dtype`:
+    prior: `Normal` object of type `dtype`:
       the prior distribution having parameters `(mu0, sigma0)`.
     sigma: tensor of type `dtype`, taking values `sigma > 0`.
       The known stddev parameter(s).
@@ -58,15 +58,15 @@ def gaussian_conjugates_known_sigma_posterior(prior, sigma, s, n):
     n: Tensor of type `int`.  The number(s) of observations.
 
   Returns:
-    A new Gaussian posterior distribution object for the unknown observation
+    A new Normal posterior distribution object for the unknown observation
     mean `mu`.
 
   Raises:
     TypeError: if dtype of `s` does not match `dtype`, or `prior` is not a
-      Gaussian object.
+      Normal object.
   """
-  if not isinstance(prior, Gaussian):
-    raise TypeError("Expected prior to be an instance of type Gaussian")
+  if not isinstance(prior, Normal):
+    raise TypeError("Expected prior to be an instance of type Normal")
 
   if s.dtype != prior.dtype:
     raise TypeError(
@@ -77,27 +77,27 @@ def gaussian_conjugates_known_sigma_posterior(prior, sigma, s, n):
   sigma0_2 = math_ops.square(prior.sigma)
   sigma_2 = math_ops.square(sigma)
   sigmap_2 = 1.0/(1/sigma0_2 + n/sigma_2)
-  return Gaussian(
+  return Normal(
       mu=(prior.mu/sigma0_2 + s/sigma_2) * sigmap_2,
       sigma=math_ops.sqrt(sigmap_2))
 
 
-def gaussian_congugates_known_sigma_predictive(prior, sigma, s, n):
-  """Posterior predictive Gaussian distribution w. conjugate prior on the mean.
+def normal_congugates_known_sigma_predictive(prior, sigma, s, n):
+  """Posterior predictive Normal distribution w. conjugate prior on the mean.
 
   This model assumes that `n` observations (with sum `s`) come from a
-  Gaussian with unknown mean `mu` (described by the Gaussian `prior`)
+  Normal with unknown mean `mu` (described by the Normal `prior`)
   and known variance `sigma^2`.  The "known sigma predictive"
   is the distribution of new observations, conditioned on the existing
   observations and our prior.
 
-  Accepts a prior Gaussian distribution object, having parameters
+  Accepts a prior Normal distribution object, having parameters
   `mu0` and `sigma0`, as well as known `sigma` values of the predictive
-  distribution(s) (also assumed Gaussian),
+  distribution(s) (also assumed Normal),
   and statistical estimates `s` (the sum(s) of the observations) and
   `n` (the number(s) of observations).
 
-  Calculates the Gaussian distribution(s) `p(x | sigma^2)`:
+  Calculates the Normal distribution(s) `p(x | sigma^2)`:
 
   ```
     p(x | sigma^2) = int N(x | mu, sigma^2) N(mu | prior.mu, prior.sigma^2) dmu
@@ -117,7 +117,7 @@ def gaussian_congugates_known_sigma_predictive(prior, sigma, s, n):
   will broadcast in the case of multidimensional sets of parameters.
 
   Args:
-    prior: `Gaussian` object of type `dtype`:
+    prior: `Normal` object of type `dtype`:
       the prior distribution having parameters `(mu0, sigma0)`.
     sigma: tensor of type `dtype`, taking values `sigma > 0`.
       The known stddev parameter(s).
@@ -125,14 +125,14 @@ def gaussian_congugates_known_sigma_predictive(prior, sigma, s, n):
     n: Tensor of type `int`.  The number(s) of observations.
 
   Returns:
-    A new Gaussian predictive distribution object.
+    A new Normal predictive distribution object.
 
   Raises:
     TypeError: if dtype of `s` does not match `dtype`, or `prior` is not a
-      Gaussian object.
+      Normal object.
   """
-  if not isinstance(prior, Gaussian):
-    raise TypeError("Expected prior to be an instance of type Gaussian")
+  if not isinstance(prior, Normal):
+    raise TypeError("Expected prior to be an instance of type Normal")
 
   if s.dtype != prior.dtype:
     raise TypeError(
@@ -143,6 +143,6 @@ def gaussian_congugates_known_sigma_predictive(prior, sigma, s, n):
   sigma0_2 = math_ops.square(prior.sigma)
   sigma_2 = math_ops.square(sigma)
   sigmap_2 = 1.0/(1/sigma0_2 + n/sigma_2)
-  return Gaussian(
+  return Normal(
       mu=(prior.mu/sigma0_2 + s/sigma_2) * sigmap_2,
       sigma=math_ops.sqrt(sigmap_2 + sigma_2))