Apply tf1->tf2 name replaces to doc-strings and comments in tensorflow.

No code changes, only doc-strings and comments (I checked).

PiperOrigin-RevId: 243885306
This commit is contained in:
Mark Daoust 2019-04-16 14:57:15 -07:00 committed by TensorFlower Gardener
parent 68ec4096cb
commit 1bde2c4ce9
40 changed files with 274 additions and 261 deletions

View File

@ -454,7 +454,7 @@ class PoolGradTest(xla_test.XLATestCase):
"""Verifies the output values of the pooling function.
Args:
pool_func: Pooling function to be called, e.g., tf.nn.max_pool
pool_func: Pooling function to be called, e.g., tf.nn.max_pool2d
pool_grad_func: Corresponding pooling gradient function.
input_sizes: Input tensor dimensions.
ksize: The kernel size dimensions

View File

@ -21,10 +21,10 @@ arguments passed to functions, and does not account for indirectly modified
state.
Example:
y = tf.layers.dense(x) # Creates TF variable 'foo'
y = tf.compat.v1.layers.dense(x) # Creates TF variable 'foo'
loss = loss(y)
opt.minimize(loss) # indirectly affects 'foo'
z = tf.get_variable('foo') # Indirectly affects `loss` and 'foo'
z = tf.compat.v1.get_variable('foo') # Indirectly affects `loss` and 'foo'
# Here, `loss` can be guarded. But `z` cannot.
# TODO(mdan): We should probably define a safe mode where we guard everything.
@ -135,7 +135,7 @@ class SideEffectGuardTransformer(converter.Base):
# Patterns of single function calls, like:
# opt.minimize(loss)
# or:
# tf.py_func(...)
# tf.compat.v1.py_func(...)
# First, attempt to gate future evaluation of args. If that's not
# possible, gate all remaining statements (and that may fail too, see
@ -151,9 +151,9 @@ class SideEffectGuardTransformer(converter.Base):
# TODO(mdan): Include all arguments which depended on guarded_args too.
# For example, the following will still cause a race:
# tf.assign(a, a + 1)
# tf.compat.v1.assign(a, a + 1)
# b = a + 1
# tf.assign(a, a + 1) # Control deps here should include `b`
# tf.compat.v1.assign(a, a + 1) # Control deps here should include `b`
# c = b + 1
# Or maybe we should just raise an "unsafe assign" error?

View File

@ -200,7 +200,7 @@ def rewrite_tf_runtime_error(error, source_map):
"""Rewrites TensorFlow runtime errors raised by ops created in AG code.
Args:
error: tf.OpError
error: tf.errors.OpError
source_map: Dict[origin_info.LineLocation, origin_info.OriginInfo]
Returns:

View File

@ -774,14 +774,14 @@ class BaseSession(SessionInterface):
```python
c = tf.constant(..)
sess = tf.Session()
sess = tf.compat.v1.Session()
with sess.as_default():
assert tf.get_default_session() is sess
assert tf.compat.v1.get_default_session() is sess
print(c.eval())
```
To get the current default session, use `tf.get_default_session`.
To get the current default session, use `tf.compat.v1.get_default_session`.
*N.B.* The `as_default` context manager *does not* close the
session when you exit the context, and you must close the session
@ -789,7 +789,7 @@ class BaseSession(SessionInterface):
```python
c = tf.constant(...)
sess = tf.Session()
sess = tf.compat.v1.Session()
with sess.as_default():
print(c.eval())
# ...
@ -799,7 +799,7 @@ class BaseSession(SessionInterface):
sess.close()
```
Alternatively, you can use `with tf.Session():` to create a
Alternatively, you can use `with tf.compat.v1.Session():` to create a
session that is automatically closed on exiting the context,
including when an uncaught exception is raised.
@ -810,9 +810,10 @@ class BaseSession(SessionInterface):
*N.B.* Entering a `with sess.as_default():` block does not affect
the current default graph. If you are using multiple graphs, and
`sess.graph` is different from the value of `tf.get_default_graph`,
you must explicitly enter a `with sess.graph.as_default():` block
to make `sess.graph` the default graph.
`sess.graph` is different from the value of
`tf.compat.v1.get_default_graph`, you must explicitly enter a
`with sess.graph.as_default():` block to make `sess.graph` the default
graph.
Returns:
A context manager using this session as the default session.
@ -838,7 +839,7 @@ class BaseSession(SessionInterface):
value of that tensor.
* A `tf.SparseTensor`.
The corresponding fetched value will be a
`tf.SparseTensorValue`
`tf.compat.v1.SparseTensorValue`
containing the value of that sparse tensor.
* A `get_tensor_handle` op. The corresponding fetched value will be a
numpy ndarray containing the handle of that tensor.
@ -878,12 +879,12 @@ class BaseSession(SessionInterface):
value may be a Python scalar, string, list, or numpy ndarray
that can be converted to the same `dtype` as that
tensor. Additionally, if the key is a
`tf.placeholder`, the shape of
`tf.compat.v1.placeholder`, the shape of
the value will be checked for compatibility with the placeholder.
* If the key is a
`tf.SparseTensor`,
the value should be a
`tf.SparseTensorValue`.
`tf.compat.v1.SparseTensorValue`.
* If the key is a nested tuple of `Tensor`s or `SparseTensor`s, the value
should be a nested tuple with the same structure that maps to their
corresponding values as above.
@ -1178,11 +1179,12 @@ class BaseSession(SessionInterface):
feed_list: (Optional.) A list of `feed_dict` keys. See
`tf.Session.run` for details of the allowable feed key types.
accept_options: (Optional.) If `True`, the returned `Callable` will be
able to accept `tf.RunOptions` and `tf.RunMetadata` as optional
keyword arguments `options` and `run_metadata`, respectively, with
the same syntax and semantics as `tf.Session.run`, which is useful
for certain use cases (profiling and debugging) but will result in
measurable slowdown of the `Callable`'s performance. Default: `False`.
able to accept `tf.compat.v1.RunOptions` and `tf.compat.v1.RunMetadata`
as optional keyword arguments `options` and `run_metadata`,
respectively, with the same syntax and semantics as `tf.Session.run`,
which is useful for certain use cases (profiling and debugging) but
will result in measurable slowdown of the `Callable`'s
performance. Default: `False`.
Returns:
A function that when called will execute the step defined by
@ -1489,15 +1491,15 @@ class Session(BaseSession):
c = a * b
# Launch the graph in a session.
sess = tf.Session()
sess = tf.compat.v1.Session()
# Evaluate the tensor `c`.
print(sess.run(c))
```
A session may own resources, such as
`tf.Variable`, `tf.QueueBase`,
and `tf.ReaderBase`. It is important to release
`tf.Variable`, `tf.queue.QueueBase`,
and `tf.compat.v1.ReaderBase`. It is important to release
these resources when they are no longer required. To do this, either
invoke the `tf.Session.close` method on the session, or use
the session as a context manager. The following two examples are
@ -1505,12 +1507,12 @@ class Session(BaseSession):
```python
# Using the `close()` method.
sess = tf.Session()
sess = tf.compat.v1.Session()
sess.run(...)
sess.close()
# Using the context manager.
with tf.Session() as sess:
with tf.compat.v1.Session() as sess:
sess.run(...)
```
@ -1524,8 +1526,9 @@ class Session(BaseSession):
```python
# Launch the graph in a session that allows soft device placement and
# logs the placement decisions.
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=True))
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(
allow_soft_placement=True,
log_device_placement=True))
```
"""
@ -1660,7 +1663,7 @@ class InteractiveSession(BaseSession):
For example:
```python
sess = tf.InteractiveSession()
sess = tf.compat.v1.InteractiveSession()
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
@ -1677,7 +1680,7 @@ class InteractiveSession(BaseSession):
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
with tf.Session():
with tf.compat.v1.Session():
# We can also use 'c.eval()' here.
print(c.eval())
```

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests and benchmarks for interacting with the `tf.Session`."""
"""Tests and benchmarks for interacting with the `tf.compat.v1.Session`."""
from __future__ import absolute_import
from __future__ import division
@ -34,7 +34,7 @@ from tensorflow.python.training import server_lib
class SessionBenchmark(test.Benchmark):
"""Tests and benchmarks for interacting with the `tf.Session`."""
"""Tests and benchmarks for interacting with the `tf.compat.v1.Session`."""
def _benchmarkFeed(self, name, target, size, iters):
"""Runs a microbenchmark to measure the cost of feeding a tensor.

View File

@ -161,7 +161,7 @@ def implicit_val_and_grad(f):
Example:
```python
dense_layer = tf.layers.Dense(1)
dense_layer = tf.compat.v1.layers.Dense(1)
def loss(x, y):
return tf.reduce_sum(tf.square(dense_layer(x) - y))
@ -175,7 +175,7 @@ def implicit_val_and_grad(f):
print('Value of loss: %s' % value)
# Apply the gradients to Variables.
optimizer = tf.train.GradientDescentOptimizer(0.1)
optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1)
optimizer.apply_gradients(grads_and_vars)
```
@ -235,7 +235,7 @@ def implicit_grad(f):
Example:
```python
dense_layer = tf.layers.Dense(1)
dense_layer = tf.compat.v1.layers.Dense(1)
def loss(x, y):
return tf.reduce_sum(tf.square(dense_layer(x) - y))
@ -248,7 +248,7 @@ def implicit_grad(f):
grads_and_vars = grad_fn(x, y)
# Apply the gradients to Variables.
optimizer = tf.train.GradientDescentOptimizer(0.1)
optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1)
optimizer.apply_gradients(grads_and_vars)
```
@ -668,9 +668,9 @@ class GradientTape(object):
Operations are recorded if they are executed within this context manager and
at least one of their inputs is being "watched".
Trainable variables (created by `tf.Variable` or `tf.get_variable`, where
`trainable=True` is default in both cases) are automatically watched. Tensors
can be manually watched by invoking the `watch` method on this context
Trainable variables (created by `tf.Variable` or `tf.compat.v1.get_variable`,
where `trainable=True` is default in both cases) are automatically watched.
Tensors can be manually watched by invoking the `watch` method on this context
manager.
For example, consider the function `y = x * x`. The gradient at `x = 3.0` can

View File

@ -1339,9 +1339,9 @@ def internal_operation_seed():
def executing_eagerly():
"""Returns True if the current thread has eager execution enabled.
Eager execution is typically enabled via `tf.enable_eager_execution`,
but may also be enabled within the context of a Python function via
tf.contrib.eager.py_func.
Eager execution is typically enabled via
`tf.compat.v1.enable_eager_execution`, but may also be enabled within the
context of a Python function via tf.contrib.eager.py_func.
"""
if context_safe() is None:
return default_execution_mode == EAGER_MODE
@ -1411,7 +1411,7 @@ def device(name):
with tf.device('gpu:0'):
with tf.device('cpu:0'):
shape = tf.constant([], dtype=tf.int32)
x = tf.truncated_normal(shape, tf.float32)
x = tf.random.truncated_normal(shape, tf.float32)
```
will ensure that the `shape` Tensor is on CPU but the `truncated_normal`
operation runs on GPU 0.

View File

@ -796,8 +796,8 @@ def function(func=None,
def g(x):
for i in x:
print(i) # Works
tf.assign(v, i) # Works
tf.py_func(lambda i: l.append(i))(i) # Works
tf.compat.v1.assign(v, i) # Works
tf.compat.v1.py_func(lambda i: l.append(i))(i) # Works
l.append(i) # Caution! Doesn't work.
```
@ -823,7 +823,7 @@ def function(func=None,
@tf.function
def f(x):
c.assign_add(1)
return x + tf.to_float(c)
return x + tf.compat.v1.to_float(c)
assert int(c) == 0
assert f(1.0) == 2.0
@ -837,7 +837,7 @@ def function(func=None,
```python
class Dense(object):
def __init__(self):
self.W = tf.Variable(tf.glorot_uniform_initializer()((10, 10)))
self.W = tf.Variable(tf.compat.v1.glorot_uniform_initializer()((10, 10)))
self.b = tf.Variable(tf.zeros(10))
@tf.function
@ -846,7 +846,7 @@ def function(func=None,
d1 = Dense()
d2 = Dense()
x = tf.random_uniform((10, 10))
x = tf.random.uniform((10, 10))
# d1 and d2 are using distinct variables
assert not (d1.compute(x).numpy() == d2.compute(x).numpy()).all()
```
@ -938,7 +938,7 @@ def function(func=None,
since a particular random value generated by the `np.random.randn` call will
be inserted in the traced/staged TensorFlow graph as a constant. In this
particular example, replacing `np.random.randn(5, 5)` with
`tf.random_normal((5, 5))` will result in the same behavior for `add_noise()`
`tf.random.normal((5, 5))` will result in the same behavior for `add_noise()`
and `traced()`.
_Python Side-Effects_
@ -952,7 +952,7 @@ def function(func=None,
The same is true if code with Python side effects is used inside control flow,
such as a loop. If your code uses side effects that are not intended to
control graph construction, wrap them inside `tf.py_func`.
control graph construction, wrap them inside `tf.compat.v1.py_func`.
Args:
func: function to be compiled. If `func` is None, returns a decorator that

View File

@ -40,7 +40,7 @@ class ExecutionCallback(enum.Enum):
IGNORE: take no action.
PRINT: print a warning to `stdout`.
RAISE: raise an error (e.g. `InfOrNanError`).
WARN: print a warning using `tf.logging.warn`.
WARN: print a warning using `tf.compat.v1.logging.warn`.
"""
IGNORE = "ignore"
@ -353,10 +353,10 @@ def errstate(inf_or_nan=None):
Example:
```
c = tf.log(0.) # -inf
c = tf.math.log(0.) # -inf
with errstate(inf_or_nan=ExecutionCallback.RAISE):
tf.log(0.) # <-- Raises InfOrNanError.
tf.math.log(0.) # <-- Raises InfOrNanError.
```
Args:

View File

@ -1702,7 +1702,7 @@ def defun(func=None,
```python
import tensorflow as tf
tf.enable_eager_execution()
tf.compat.v1.enable_eager_execution()
# A simple example.
def f(x, y):
@ -1749,7 +1749,7 @@ def defun(func=None,
model(x, training=False) # executes a graph, without dropout
# `defun`-compiled functions are differentiable.
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
optimizer = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=0.01)
with tf.GradientTape() as tape:
outputs = model(x)
gradient = tape.gradient(outputs, model.trainable_variables)
@ -1771,8 +1771,8 @@ def defun(func=None,
By default, `F = tf.contrib.eager.defun(f)` instantiates a separate graph
for every unique sequence of the shapes and dtypes of Tensor arguments and
the values of Python objects it is invoked with. For example, calling
`F(tf.random_uniform([2])` will execute a different graph than
`F(tf.random_uniform([3])` because the two inputs have different shapes.
`F(tf.random.uniform([2])` will execute a different graph than
`F(tf.random.uniform([3])` because the two inputs have different shapes.
The first time that `F(*args, **kwargs)` is called with a particular sequence
of Tensor shapes and dtypes and Python values, it constructs a graph by
tracing the execution of `f(*args, **kwargs)`; this graph is bound to an
@ -1809,15 +1809,15 @@ def defun(func=None,
...
# Note how the third dimension of the first input can vary freely.
words = tf.random_uniform(([50, 300, 10])
second_input = tf.random_uniform([300, 100])
words = tf.random.uniform(([50, 300, 10])
second_input = tf.random.uniform([300, 100])
my_sequence_model(words, second_input)
words = tf.random_uniform(([50, 300, 20])
words = tf.random.uniform(([50, 300, 20])
my_sequence_model(words, second_input)
# Passing an input with an incompatible shape will raise an error.
words = tf.random_uniform(([50, 100, 20])
words = tf.random.uniform(([50, 100, 20])
my_sequence_model(words, second_input) # <---- This will raise an error.
```
@ -1839,7 +1839,7 @@ def defun(func=None,
import tensorflow as tf
import numpy as np
tf.enable_eager_execution()
tf.compat.v1.enable_eager_execution()
def add_noise():
return tf.eye(5) + np.random.randn(5, 5)
@ -1849,7 +1849,7 @@ def defun(func=None,
`compiled = tf.contrib.eager.defun(add_noise)` will return the same value
every time it is called, since a particular random offset generated by NumPy
will be inserted into the graph as a TensorFlow constant. The solution is to
replace the call to `np.random.randn` with `tf.random_normal((5, 5))`.
replace the call to `np.random.randn` with `tf.random.normal((5, 5))`.
_Python Side-Effects_
@ -1871,7 +1871,7 @@ def defun(func=None,
```python
import tensorflow as tf
tf.enable_eager_execution()
tf.compat.v1.enable_eager_execution()
@tf.contrib.eager.defun
def lossy_matmul(W, x, training=True):
@ -1880,8 +1880,8 @@ def defun(func=None,
outputs = tf.nn.dropout(outputs, keep_probability=0.2)
return outputs
W = tf.random_normal((3, 5))
x = tf.random_normal((5, 1))
W = tf.random.normal((3, 5))
x = tf.random.normal((5, 1))
# Executes a graph that applies dropout.
lossy_outputs = lossy_matmul(W, x, training=True)
@ -1923,7 +1923,7 @@ def defun(func=None,
```python
import tensorflow as tf
tf.enable_eager_execution()
tf.compat.v1.enable_eager_execution()
def fn():
x = tf.Variable(0.0)

View File

@ -39,7 +39,7 @@ def graph_zeros_like(tensor):
def graph_placeholder(dtype, shape, name=None):
"""Graph-only version of tf.placeholder(), for internal use only."""
"""Graph-only version of tf.compat.v1.placeholder(), for internal use only."""
dtype = dtype.base_dtype
dtype_value = attr_value_pb2.AttrValue(type=dtype.as_datatype_enum)
if isinstance(shape, (list, tuple)):

View File

@ -38,7 +38,7 @@ def connect_to_remote_host(remote_host=None, job_name="worker"):
follows:
```python
# Enable eager execution, and connect to the remote host.
tf.enable_eager_execution()
tf.compat.v1.enable_eager_execution()
tf.contrib.eager.connect_to_remote_host("exampleaddr.com:9876")
with ops.device("job:worker/replica:0/task:1/device:CPU:0"):

View File

@ -246,12 +246,12 @@ class WrappedGraph(object):
```
def add_v1(x):
with tf.compat.v1.variable_scope('vars', reuse=tf.AUTO_REUSE):
with tf.compat.v1.variable_scope('vars', reuse=tf.compat.v1.AUTO_REUSE):
v = tf.compat.v1.get_variable('v', shape=[], dtype=tf.int32)
return v + x
def increment_var_v1(x):
with tf.compat.v1.variable_scope('vars', reuse=tf.AUTO_REUSE):
with tf.compat.v1.variable_scope('vars', reuse=tf.compat.v1.AUTO_REUSE):
v = tf.compat.v1.get_variable('v', shape=[], dtype=tf.int32)
return v.assign_add(x)
@ -293,9 +293,10 @@ class WrappedGraph(object):
"""Wraps a TF 1.X function and returns an eager-compatible function.
All functions wrapped in the same `WrappedGraph` will have access to the
same graph (`tf.get_default_graph` to get the graph object within a
function, or `WrappedGraph.graph` to get the graph outside a function).
Variables created within the function will be added to the `variables` list.
same graph (`tf.compat.v1.get_default_graph` to get the graph object
within a function, or `WrappedGraph.graph` to get the graph outside a
function). Variables created within the function will be added to the
`variables` list.
Function inputs: All inputs to the function must be tensors (nested ok),
with their shapes and dtypes defined in the `signature` argument.

View File

@ -250,11 +250,11 @@ def input_layer(features,
keywords_embedded = embedding_column(
categorical_column_with_hash_bucket("keywords", 10K), dimensions=16)
columns = [price, keywords_embedded, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
for units in [128, 64, 32]:
dense_tensor = tf.layers.dense(dense_tensor, units, tf.nn.relu)
prediction = tf.layers.dense(dense_tensor, 1)
dense_tensor = tf.compat.v1.layers.dense(dense_tensor, units, tf.nn.relu)
prediction = tf.compat.v1.layers.dense(dense_tensor, 1)
```
Args:
@ -404,7 +404,7 @@ def linear_model(features,
keywords = categorical_column_with_hash_bucket("keywords", 10K)
keywords_price = crossed_column('keywords', price_buckets, ...)
columns = [price_buckets, keywords, keywords_price ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
prediction = linear_model(features, columns)
```
@ -719,7 +719,7 @@ def _transform_features(features, feature_columns):
source_column=numeric_column("price"), boundaries=[...])
columns = [crosses_a_x_b, price_buckets]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
transformed = transform_features(features=features, feature_columns=columns)
assertCountEqual(columns, transformed.keys())
@ -750,7 +750,8 @@ def _transform_features(features, feature_columns):
def make_parse_example_spec(feature_columns):
"""Creates parsing spec dictionary from input feature_columns.
The returned dictionary can be used as arg 'features' in `tf.parse_example`.
The returned dictionary can be used as arg 'features' in
`tf.io.parse_example`.
Typical usage example:
@ -764,7 +765,7 @@ def make_parse_example_spec(feature_columns):
feature_columns = set(
[feature_b, feature_c_bucketized, feature_a_x_feature_c])
features = tf.parse_example(
features = tf.io.parse_example(
serialized=serialized_examples,
features=make_parse_example_spec(feature_columns))
```
@ -833,7 +834,7 @@ def _embedding_column(categorical_column,
label_column = ...
def input_fn():
features = tf.parse_example(
features = tf.io.parse_example(
..., features=make_parse_example_spec(columns + [label_column]))
labels = features.pop(label_column.name)
return features, labels
@ -866,8 +867,8 @@ def _embedding_column(categorical_column,
`tf.embedding_lookup_sparse`.
initializer: A variable initializer function to be used in embedding
variable initialization. If not specified, defaults to
`tf.truncated_normal_initializer` with mean `0.0` and standard deviation
`1/sqrt(dimension)`.
`tf.compat.v1.truncated_normal_initializer` with mean `0.0` and
standard deviation `1/sqrt(dimension)`.
ckpt_to_load_from: String representing checkpoint name/pattern from which to
restore column weights. Required if `tensor_name_in_ckpt` is not `None`.
tensor_name_in_ckpt: Name of the `Tensor` in `ckpt_to_load_from` from
@ -934,13 +935,13 @@ def _numeric_column(key,
```python
price = numeric_column('price')
columns = [price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
# or
bucketized_price = bucketized_column(price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -955,7 +956,7 @@ def _numeric_column(key,
default_value: A single value compatible with `dtype` or an iterable of
values compatible with `dtype` which the column takes on during
`tf.Example` parsing if data is missing. A default value of `None` will
cause `tf.parse_example` to fail if an example does not contain this
cause `tf.io.parse_example` to fail if an example does not contain this
column. If a single value is provided, the same value will be applied as
the default value for every item. If an iterable of values is provided,
the shape of the `default_value` should be equal to the given `shape`.
@ -1028,12 +1029,12 @@ def _bucketized_column(source_column, boundaries):
price = numeric_column('price')
bucketized_price = bucketized_column(price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
# or
columns = [bucketized_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1047,7 +1048,7 @@ def _bucketized_column(source_column, boundaries):
# 'keywords' is a string feature.
price_x_keywords = crossed_column([bucketized_price, 'keywords'], 50K)
columns = [price_x_keywords, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -1101,13 +1102,13 @@ def _categorical_column_with_hash_bucket(key,
```python
keywords = categorical_column_with_hash_bucket("keywords", 10K)
columns = [keywords, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
# or
keywords_embedded = embedding_column(keywords, 16)
columns = [keywords_embedded, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1168,7 +1169,7 @@ def _categorical_column_with_vocabulary_file(key,
key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
num_oov_buckets=5)
columns = [states, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -1183,7 +1184,7 @@ def _categorical_column_with_vocabulary_file(key,
key='states', vocabulary_file='/us/states.txt', vocabulary_size=51,
default_value=0)
columns = [states, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1191,7 +1192,7 @@ def _categorical_column_with_vocabulary_file(key,
```python
columns = [embedding_column(states, 3),...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1285,7 +1286,7 @@ def _categorical_column_with_vocabulary_list(key,
key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
num_oov_buckets=2)
columns = [colors, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1299,7 +1300,7 @@ def _categorical_column_with_vocabulary_list(key,
colors = categorical_column_with_vocabulary_list(
key='colors', vocabulary_list=('X', 'R', 'G', 'B', 'Y'), default_value=0)
columns = [colors, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1307,7 +1308,7 @@ def _categorical_column_with_vocabulary_list(key,
```python
columns = [embedding_column(colors, 3),...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1397,7 +1398,7 @@ def _categorical_column_with_identity(key, num_buckets, default_value=None):
video_id = categorical_column_with_identity(
key='video_id', num_buckets=1000000, default_value=0)
columns = [video_id, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1405,7 +1406,7 @@ def _categorical_column_with_identity(key, num_buckets, default_value=None):
```python
columns = [embedding_column(video_id, 9),...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1454,7 +1455,7 @@ def _indicator_column(categorical_column):
name = indicator_column(categorical_column_with_vocabulary_list(
'name', ['bob', 'george', 'wanda'])
columns = [name, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
dense_tensor == [[1, 0, 0]] # If "name" bytes_list is ["bob"]
@ -1517,7 +1518,7 @@ def _weighted_categorical_column(categorical_column,
weighted_column = weighted_categorical_column(
categorical_column=categorical_column, weight_feature_key='frequencies')
columns = [weighted_column, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1593,7 +1594,7 @@ def _crossed_column(keys, hash_bucket_size, hash_key=None):
```python
keywords_x_doc_terms = crossed_column(['keywords', 'doc_terms'], 50K)
columns = [keywords_x_doc_terms, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -1604,7 +1605,7 @@ def _crossed_column(keys, hash_bucket_size, hash_key=None):
'keywords', '/path/to/vocabulary/file', vocabulary_size=1K)
keywords_x_doc_terms = crossed_column([keywords, 'doc_terms'], 50K)
columns = [keywords_x_doc_terms, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -1619,7 +1620,7 @@ def _crossed_column(keys, hash_bucket_size, hash_key=None):
bucketized_price = bucketized_column(price, boundaries=[...])
vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K)
columns = [vertical_id_x_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -1785,17 +1786,17 @@ class _FeatureColumn(object):
def _parse_example_spec(self):
"""Returns a `tf.Example` parsing spec as dict.
It is used for get_parsing_spec for `tf.parse_example`. Returned spec is a
dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other
supported objects. Please check documentation of `tf.parse_example` for all
supported spec objects.
It is used for get_parsing_spec for `tf.io.parse_example`. Returned spec is
a dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other
supported objects. Please check documentation of `tf.io.parse_example` for
all supported spec objects.
Let's say a Feature column depends on raw feature ('raw') and another
`_FeatureColumn` (input_fc). One possible implementation of
_parse_example_spec is as follows:
```python
spec = {'raw': tf.FixedLenFeature(...)}
spec = {'raw': tf.io.FixedLenFeature(...)}
spec.update(input_fc._parse_example_spec)
return spec
```
@ -1945,7 +1946,7 @@ class _CategoricalColumn(_FeatureColumn):
weight_collections: List of graph collections to which variables (if any
will be created) are added.
trainable: If `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see `tf.get_variable`).
`GraphKeys.TRAINABLE_VARIABLES` (see `tf.compat.v1.get_variable`).
"""
pass
@ -3126,7 +3127,7 @@ def _verify_static_batch_size_equality(tensors, columns):
Raises:
ValueError: if one of the tensors has a variant batch size
"""
# bath_size is a tf.Dimension object.
# bath_size is a tf.compat.v1.Dimension object.
expected_batch_size = None
for i in range(0, len(tensors)):
if tensors[i].shape.dims[0].value is not None:

View File

@ -400,11 +400,11 @@ class DenseFeatures(_BaseFeaturesLayer):
columns = [price, keywords_embedded, ...]
feature_layer = DenseFeatures(columns)
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = feature_layer(features)
for units in [128, 64, 32]:
dense_tensor = tf.layers.dense(dense_tensor, units, tf.nn.relu)
prediction = tf.layers.dense(dense_tensor, 1).
dense_tensor = tf.compat.v1.layers.dense(dense_tensor, units, tf.nn.relu)
prediction = tf.compat.v1.layers.dense(dense_tensor, 1).
```
"""
@ -607,7 +607,7 @@ class LinearModel(training.Model):
columns = [price_buckets, keywords, keywords_price ...]
linear_model = LinearLayer(columns)
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
prediction = linear_model(features)
```
"""
@ -725,7 +725,7 @@ def _transform_features_v2(features, feature_columns, state_manager):
source_column=numeric_column("price"), boundaries=[...])
columns = [crosses_a_x_b, price_buckets]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
transformed = transform_features(features=features, feature_columns=columns)
assertCountEqual(columns, transformed.keys())
@ -757,7 +757,8 @@ def _transform_features_v2(features, feature_columns, state_manager):
def make_parse_example_spec_v2(feature_columns):
"""Creates parsing spec dictionary from input feature_columns.
The returned dictionary can be used as arg 'features' in `tf.parse_example`.
The returned dictionary can be used as arg 'features' in
`tf.io.parse_example`.
Typical usage example:
@ -771,7 +772,7 @@ def make_parse_example_spec_v2(feature_columns):
feature_columns = set(
[feature_b, feature_c_bucketized, feature_a_x_feature_c])
features = tf.parse_example(
features = tf.io.parse_example(
serialized=serialized_examples,
features=make_parse_example_spec(feature_columns))
```
@ -840,7 +841,7 @@ def embedding_column(categorical_column,
label_column = ...
def input_fn():
features = tf.parse_example(
features = tf.io.parse_example(
..., features=make_parse_example_spec(columns + [label_column]))
labels = features.pop(label_column.name)
return features, labels
@ -873,8 +874,8 @@ def embedding_column(categorical_column,
`tf.embedding_lookup_sparse`.
initializer: A variable initializer function to be used in embedding
variable initialization. If not specified, defaults to
`tf.truncated_normal_initializer` with mean `0.0` and standard deviation
`1/sqrt(dimension)`.
`tf.compat.v1.truncated_normal_initializer` with mean `0.0` and
standard deviation `1/sqrt(dimension)`.
ckpt_to_load_from: String representing checkpoint name/pattern from which to
restore column weights. Required if `tensor_name_in_ckpt` is not `None`.
tensor_name_in_ckpt: Name of the `Tensor` in `ckpt_to_load_from` from which
@ -957,7 +958,7 @@ def shared_embedding_columns(categorical_columns,
label_column = ...
def input_fn():
features = tf.parse_example(
features = tf.io.parse_example(
..., features=make_parse_example_spec(columns + [label_column]))
labels = features.pop(label_column.name)
return features, labels
@ -996,8 +997,8 @@ def shared_embedding_columns(categorical_columns,
`tf.embedding_lookup_sparse`.
initializer: A variable initializer function to be used in embedding
variable initialization. If not specified, defaults to
`tf.truncated_normal_initializer` with mean `0.0` and standard deviation
`1/sqrt(dimension)`.
`tf.compat.v1.truncated_normal_initializer` with mean `0.0` and
standard deviation `1/sqrt(dimension)`.
shared_embedding_collection_name: Optional name of the collection where
shared embedding weights are added. If not given, a reasonable name will
be chosen based on the names of `categorical_columns`. This is also used
@ -1130,7 +1131,7 @@ def shared_embedding_columns_v2(categorical_columns,
label_column = ...
def input_fn():
features = tf.parse_example(
features = tf.io.parse_example(
..., features=make_parse_example_spec(columns + [label_column]))
labels = features.pop(label_column.name)
return features, labels
@ -1169,8 +1170,8 @@ def shared_embedding_columns_v2(categorical_columns,
`tf.embedding_lookup_sparse`.
initializer: A variable initializer function to be used in embedding
variable initialization. If not specified, defaults to
`tf.truncated_normal_initializer` with mean `0.0` and standard deviation
`1/sqrt(dimension)`.
`tf.compat.v1.truncated_normal_initializer` with mean `0.0` and standard
deviation `1/sqrt(dimension)`.
shared_embedding_collection_name: Optional collective name of these columns.
If not given, a reasonable name will be chosen based on the names of
`categorical_columns`.
@ -1270,13 +1271,13 @@ def numeric_column(key,
```python
price = numeric_column('price')
columns = [price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
# or
bucketized_price = bucketized_column(price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -1291,7 +1292,7 @@ def numeric_column(key,
default_value: A single value compatible with `dtype` or an iterable of
values compatible with `dtype` which the column takes on during
`tf.Example` parsing if data is missing. A default value of `None` will
cause `tf.parse_example` to fail if an example does not contain this
cause `tf.io.parse_example` to fail if an example does not contain this
column. If a single value is provided, the same value will be applied as
the default value for every item. If an iterable of values is provided,
the shape of the `default_value` should be equal to the given `shape`.
@ -1365,12 +1366,12 @@ def bucketized_column(source_column, boundaries):
price = numeric_column('price')
bucketized_price = bucketized_column(price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
# or
columns = [bucketized_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1384,7 +1385,7 @@ def bucketized_column(source_column, boundaries):
# 'keywords' is a string feature.
price_x_keywords = crossed_column([bucketized_price, 'keywords'], 50K)
columns = [price_x_keywords, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -1440,13 +1441,13 @@ def categorical_column_with_hash_bucket(key,
```python
keywords = categorical_column_with_hash_bucket("keywords", 10K)
columns = [keywords, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
# or
keywords_embedded = embedding_column(keywords, 16)
columns = [keywords_embedded, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1508,7 +1509,7 @@ def categorical_column_with_vocabulary_file(key,
key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
num_oov_buckets=5)
columns = [states, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -1523,7 +1524,7 @@ def categorical_column_with_vocabulary_file(key,
key='states', vocabulary_file='/us/states.txt', vocabulary_size=51,
default_value=0)
columns = [states, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1531,7 +1532,7 @@ def categorical_column_with_vocabulary_file(key,
```python
columns = [embedding_column(states, 3),...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1599,7 +1600,7 @@ def categorical_column_with_vocabulary_file_v2(key,
key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
num_oov_buckets=5)
columns = [states, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -1614,7 +1615,7 @@ def categorical_column_with_vocabulary_file_v2(key,
key='states', vocabulary_file='/us/states.txt', vocabulary_size=51,
default_value=0)
columns = [states, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1622,7 +1623,7 @@ def categorical_column_with_vocabulary_file_v2(key,
```python
columns = [embedding_column(states, 3),...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1717,7 +1718,7 @@ def categorical_column_with_vocabulary_list(key,
key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
num_oov_buckets=2)
columns = [colors, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1731,7 +1732,7 @@ def categorical_column_with_vocabulary_list(key,
colors = categorical_column_with_vocabulary_list(
key='colors', vocabulary_list=('X', 'R', 'G', 'B', 'Y'), default_value=0)
columns = [colors, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1739,7 +1740,7 @@ def categorical_column_with_vocabulary_list(key,
```python
columns = [embedding_column(colors, 3),...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1833,7 +1834,7 @@ def categorical_column_with_identity(key, num_buckets, default_value=None):
video_id = categorical_column_with_identity(
key='video_id', num_buckets=1000000, default_value=0)
columns = [video_id, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -1841,7 +1842,7 @@ def categorical_column_with_identity(key, num_buckets, default_value=None):
```python
columns = [embedding_column(video_id, 9),...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
```
@ -1891,7 +1892,7 @@ def indicator_column(categorical_column):
name = indicator_column(categorical_column_with_vocabulary_list(
'name', ['bob', 'george', 'wanda'])
columns = [name, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
dense_tensor == [[1, 0, 0]] # If "name" bytes_list is ["bob"]
@ -1955,7 +1956,7 @@ def weighted_categorical_column(categorical_column,
weighted_column = weighted_categorical_column(
categorical_column=categorical_column, weight_feature_key='frequencies')
columns = [weighted_column, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
```
@ -2032,7 +2033,7 @@ def crossed_column(keys, hash_bucket_size, hash_key=None):
```python
keywords_x_doc_terms = crossed_column(['keywords', 'doc_terms'], 50K)
columns = [keywords_x_doc_terms, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -2043,7 +2044,7 @@ def crossed_column(keys, hash_bucket_size, hash_key=None):
'keywords', '/path/to/vocabulary/file', vocabulary_size=1K)
keywords_x_doc_terms = crossed_column([keywords, 'doc_terms'], 50K)
columns = [keywords_x_doc_terms, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -2058,7 +2059,7 @@ def crossed_column(keys, hash_bucket_size, hash_key=None):
bucketized_price = bucketized_column(price, boundaries=[...])
vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K)
columns = [vertical_id_x_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
@ -2167,17 +2168,17 @@ class FeatureColumn(object):
def parse_example_spec(self):
"""Returns a `tf.Example` parsing spec as dict.
It is used for get_parsing_spec for `tf.parse_example`. Returned spec is a
dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other
supported objects. Please check documentation of `tf.parse_example` for all
supported spec objects.
It is used for get_parsing_spec for `tf.io.parse_example`. Returned spec is
a dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other
supported objects. Please check documentation of `tf.io.parse_example` for
all supported spec objects.
Let's say a Feature column depends on raw feature ('raw') and another
`FeatureColumn` (input_fc). One possible implementation of
parse_example_spec is as follows:
```python
spec = {'raw': tf.FixedLenFeature(...)}
spec = {'raw': tf.io.FixedLenFeature(...)}
spec.update(input_fc.parse_example_spec)
return spec
```
@ -4391,7 +4392,7 @@ def _verify_static_batch_size_equality(tensors, columns):
Raises:
ValueError: in case of mismatched batch sizes.
"""
# bath_size is a tf.Dimension object.
# bath_size is a tf.compat.v1.Dimension object.
expected_batch_size = None
for i in range(0, len(tensors)):
batch_size = tensor_shape.Dimension(tensor_shape.dimension_value(

View File

@ -66,7 +66,8 @@ class SequenceFeatures(fc._BaseFeaturesLayer):
columns = [rating, watches_embedding]
sequence_input_layer = SequenceFeatures(columns)
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(...,
features=make_parse_example_spec(columns))
sequence_input, sequence_length = sequence_input_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)
@ -214,7 +215,7 @@ def sequence_categorical_column_with_identity(
watches_embedding = embedding_column(watches, dimension=10)
columns = [watches_embedding]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)
@ -263,7 +264,7 @@ def sequence_categorical_column_with_hash_bucket(
tokens_embedding = embedding_column(tokens, dimension=10)
columns = [tokens_embedding]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)
@ -311,7 +312,7 @@ def sequence_categorical_column_with_vocabulary_file(
states_embedding = embedding_column(states, dimension=10)
columns = [states_embedding]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)
@ -375,7 +376,7 @@ def sequence_categorical_column_with_vocabulary_list(
colors_embedding = embedding_column(colors, dimension=3)
columns = [colors_embedding]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)
@ -434,7 +435,7 @@ def sequence_numeric_column(
temperature = sequence_numeric_column('temperature')
columns = [temperature]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)

View File

@ -110,7 +110,8 @@ class Controller(object):
"""At this time, this method evaluates ONLY ONE placement.
Args:
sess: a tf.Session() object used to retrieve cached assignment info.
sess: a tf.compat.v1.Session() object used to retrieve cached assignment
info.
*args: "".
**kwargs: "".

View File

@ -1037,7 +1037,7 @@ class HierarchicalController(Controller):
Args:
loss: scalar tf tensor
tf_variables: list of training variables, typically
tf.trainable_variables()
tf.compat.v1.trainable_variables()
global_step: global_step
grad_bound: max gradient norm
lr_init: initial learning rate

View File

@ -64,8 +64,8 @@ def keras_style_scope():
def __init__(self, name):
super(RNNModel, self.).__init__(name=name)
self.rnn = tf.nn.rnn_cell.MultiRNNCell(
[tf.nn.rnn_cell.LSTMCell(64) for _ in range(2)])
self.rnn = tf.compat.v1.nn.rnn_cell.MultiRNNCell(
[tf.compat.v1.nn.rnn_cell.LSTMCell(64) for _ in range(2)])
def call(self, input, state):
return self.rnn(input, state)
@ -339,10 +339,10 @@ class Layer(base_layer.Layer):
provided, when the requested variable is created it will be split
into multiple partitions according to `partitioner`. In this case,
an instance of `PartitionedVariable` is returned. Available
partitioners include `tf.fixed_size_partitioner` and
`tf.variable_axis_size_partitioner`. For more details, see the
documentation of `tf.get_variable` and the "Variable Partitioners
and Sharding" section of the API guide.
partitioners include `tf.compat.v1.fixed_size_partitioner` and
`tf.compat.v1.variable_axis_size_partitioner`. For more details, see
the documentation of `tf.compat.v1.get_variable` and the "Variable
Partitioners and Sharding" section of the API guide.
**kwargs: Additional keyword arguments.
Returns:

View File

@ -47,7 +47,7 @@ class Dense(keras_layers.Dense, base.Layer):
use_bias: Boolean, whether the layer uses a bias.
kernel_initializer: Initializer function for the weight matrix.
If `None` (default), weights are initialized using the default
initializer used by `tf.get_variable`.
initializer used by `tf.compat.v1.get_variable`.
bias_initializer: Initializer function for the bias.
kernel_regularizer: Regularizer function for the weight matrix.
bias_regularizer: Regularizer function for the bias.
@ -145,7 +145,7 @@ def dense(
use_bias: Boolean, whether the layer uses a bias.
kernel_initializer: Initializer function for the weight matrix.
If `None` (default), weights are initialized using the default
initializer used by `tf.get_variable`.
initializer used by `tf.compat.v1.get_variable`.
bias_initializer: Initializer function for the bias.
kernel_regularizer: Regularizer function for the weight matrix.
bias_regularizer: Regularizer function for the bias.
@ -207,7 +207,7 @@ class Dropout(keras_layers.Dropout, base.Layer):
to be the same for all timesteps, you can use
`noise_shape=[batch_size, 1, features]`.
seed: A Python integer. Used to create random seeds. See
`tf.set_random_seed`.
`tf.compat.v1.set_random_seed`.
for behavior.
name: The name of the layer (string).
"""
@ -255,7 +255,7 @@ def dropout(inputs,
to be the same for all timesteps, you can use
`noise_shape=[batch_size, 1, features]`.
seed: A Python integer. Used to create random seeds. See
`tf.set_random_seed`
`tf.compat.v1.set_random_seed`
for behavior.
training: Either a Python boolean, or a TensorFlow boolean scalar tensor
(e.g. a placeholder). Whether to return the output in training mode
@ -286,11 +286,11 @@ class Flatten(keras_layers.Flatten, base.Layer):
Examples:
```
x = tf.placeholder(shape=(None, 4, 4), dtype='float32')
x = tf.compat.v1.placeholder(shape=(None, 4, 4), dtype='float32')
y = Flatten()(x)
# now `y` has shape `(None, 16)`
x = tf.placeholder(shape=(None, 3, None), dtype='float32')
x = tf.compat.v1.placeholder(shape=(None, 3, None), dtype='float32')
y = Flatten()(x)
# now `y` has shape `(None, None)`
```
@ -320,11 +320,11 @@ def flatten(inputs, name=None, data_format='channels_last'):
Examples:
```
x = tf.placeholder(shape=(None, 4, 4), dtype='float32')
x = tf.compat.v1.placeholder(shape=(None, 4, 4), dtype='float32')
y = flatten(x)
# now `y` has shape `(None, 16)`
x = tf.placeholder(shape=(None, 3, None), dtype='float32')
x = tf.compat.v1.placeholder(shape=(None, 3, None), dtype='float32')
y = flatten(x)
# now `y` has shape `(None, None)`
```

View File

@ -106,8 +106,8 @@ class BatchNormalization(keras_layers.BatchNormalization, base.Layer):
normalized values (before gamma and beta), only during training. For
example, if axis==-1,
`adjustment = lambda shape: (
tf.random_uniform(shape[-1:], 0.93, 1.07),
tf.random_uniform(shape[-1:], -0.1, 0.1))`
tf.random.uniform(shape[-1:], 0.93, 1.07),
tf.random.uniform(shape[-1:], -0.1, 0.1))`
will scale the normalized value by up to 7% up or down, then shift the
result by up to 0.1 (with independent scaling and bias for each feature
but shared across all examples), and finally apply gamma and/or beta. If
@ -214,11 +214,11 @@ def batch_normalization(inputs,
example:
```python
x_norm = tf.layers.batch_normalization(x, training=training)
x_norm = tf.compat.v1.layers.batch_normalization(x, training=training)
# ...
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS)
train_op = optimizer.minimize(loss)
train_op = tf.group([train_op, update_ops])
```
@ -286,8 +286,8 @@ def batch_normalization(inputs,
normalized values (before gamma and beta), only during training. For
example, if axis==-1,
`adjustment = lambda shape: (
tf.random_uniform(shape[-1:], 0.93, 1.07),
tf.random_uniform(shape[-1:], -0.1, 0.1))`
tf.random.uniform(shape[-1:], 0.93, 1.07),
tf.random.uniform(shape[-1:], -0.1, 0.1))`
will scale the normalized value by up to 7% up or down, then shift the
result by up to 0.1 (with independent scaling and bias for each feature
but shared across all examples), and finally apply gamma and/or beta. If

View File

@ -41,7 +41,7 @@ class Module(tracking.AutoTrackable):
... def __init__(self, in_features, output_features, name=None):
... super(Dense, self).__init__(name=name)
... self.w = tf.Variable(
... tf.random_normal([input_features, output_features]), name='w')
... tf.random.normal([input_features, output_features]), name='w')
... self.b = tf.Variable(tf.zeros([output_features]), name='b')
...
... def __call__(self, x):

View File

@ -216,7 +216,7 @@ class Benchmark(six.with_metaclass(_BenchmarkRegistrar, object)):
@tf_export("test.benchmark_config")
def benchmark_config():
"""Returns a tf.ConfigProto for disabling the dependency optimizer.
"""Returns a tf.compat.v1.ConfigProto for disabling the dependency optimizer.
Returns:
A TensorFlow ConfigProto object.

View File

@ -17,8 +17,8 @@
See the [Testing](https://tensorflow.org/api_guides/python/test) guide.
Note: `tf.test.mock` is an alias to the python `mock` or `unittest.mock`
depending on the python version.
Note: `tf.compat.v1.test.mock` is an alias to the python `mock` or
`unittest.mock` depending on the python version.
"""
from __future__ import absolute_import

View File

@ -135,9 +135,9 @@ class Profiler(object):
for i in xrange(total_steps):
if i % 10000 == 0:
run_meta = tf.RunMetadata()
run_meta = tf.compat.v1.RunMetadata()
_ = sess.run(...,
options=tf.RunOptions(
options=tf.compat.v1.RunOptions(
trace_level=tf.RunOptions.FULL_TRACE),
run_metadata=run_meta)
profiler.add_step(i, run_meta)

View File

@ -37,7 +37,7 @@ class ProfileOptionBuilder(object):
tf.profiler.ProfileOptionBuilder.trainable_variables_parameter())
# Or, build your own options:
opts = (tf.profiler.ProfileOptionBuilder()
opts = (tf.compat.v1.profiler.ProfileOptionBuilder()
.with_max_depth(10)
.with_min_micros(1000)
.select(['accelerator_micros'])
@ -45,13 +45,13 @@ class ProfileOptionBuilder(object):
.build()
# Or customize the pre-built options:
opts = (tf.profiler.ProfileOptionBuilder(
opts = (tf.compat.v1.profiler.ProfileOptionBuilder(
tf.profiler.ProfileOptionBuilder.time_and_memory())
.with_displaying_options(show_name_regexes=['.*rnn.*'])
.build())
# Finally, profiling with the options:
_ = tf.profiler.profile(tf.get_default_graph(),
_ = tf.compat.v1.profiler.profile(tf.compat.v1.get_default_graph(),
run_meta=run_meta,
cmd='scope',
options=opts)

View File

@ -21,10 +21,10 @@ The following needs to be set for profiler to work:
* run_metadata object should be passed in to session.run call
Sample usage:
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
options = tf.compat.v1.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.compat.v1.RunMetadata()
with tf.Session as sess:
with tf.compat.v1.Session as sess:
...
sess.run(computation, run_metadata=run_metadata, options=options)
pprof_profiler.profile(sess.graph, run_metadata, output_dir)

View File

@ -82,8 +82,8 @@ def _get_logged_ops(graph, run_meta=None, add_trace=True,
graph: tf.Graph.
run_meta: RunMetadata proto used to complete shape information.
add_trace: Whether to add op trace information.
add_trainable_var: Whether to assign tf.trainable_variables() op type
'_trainable_variables'.
add_trainable_var: Whether to assign tf.compat.v1.trainable_variables() op
type '_trainable_variables'.
Returns:
logged_ops: dict mapping from op_name to OpLogEntry.
string_to_id: dict mapping from string to id.
@ -151,8 +151,8 @@ def merge_default_with_oplog(graph, op_log=None, run_meta=None,
op_log: OpLogProto proto.
run_meta: RunMetadata proto used to complete shape information.
add_trace: Whether to add op trace information.
add_trainable_var: Whether to assign tf.trainable_variables() op type
'_trainable_variables'.
add_trainable_var: Whether to assign tf.compat.v1.trainable_variables() op
type '_trainable_variables'.
Returns:
tmp_op_log: Merged OpLogProto proto.
"""
@ -192,8 +192,8 @@ def merge_default_with_oplog(graph, op_log=None, run_meta=None,
def write_op_log(graph, log_dir, op_log=None, run_meta=None, add_trace=True):
"""Log provided 'op_log', and add additional model information below.
The API also assigns ops in tf.trainable_variables() an op type called
'_trainable_variables'.
The API also assigns ops in tf.compat.v1.trainable_variables() an op type
called '_trainable_variables'.
The API also logs 'flops' statistics for ops with op.RegisterStatistics()
defined. flops calculation depends on Tensor shapes defined in 'graph',
which might not be complete. 'run_meta', if provided, completes the shape

View File

@ -21,7 +21,7 @@ images, etc.
This module contains methods that allow plugin assets to be specified at graph
construction time. Plugin authors define a PluginAsset which is treated as a
singleton on a per-graph basis. The PluginAsset has an assets method which
returns a dictionary of asset contents. The tf.summary.FileWriter
returns a dictionary of asset contents. The tf.compat.v1.summary.FileWriter
(or any other Summary writer) will serialize these assets in such a way that
TensorBoard can retrieve them.
"""
@ -123,9 +123,9 @@ class PluginAsset(object):
- It is constructed when get_plugin_asset is called on the class for
the first time.
- It is configured by code that follows the calls to get_plugin_asset
- When the containing graph is serialized by the tf.summary.FileWriter, the
writer calls assets and the PluginAsset instance provides its contents to be
written to disk.
- When the containing graph is serialized by the
tf.compat.v1.summary.FileWriter, the writer calls assets and the
PluginAsset instance provides its contents to be written to disk.
"""
plugin_name = None
@ -137,7 +137,7 @@ class PluginAsset(object):
The assets method should return a dictionary structured as
{asset_name: asset_contents}. asset_contents is a string.
This method will be called by the tf.summary.FileWriter when it is time to
write the assets out to disk.
This method will be called by the tf.compat.v1.summary.FileWriter when it
is time to write the assets out to disk.
"""
raise NotImplementedError()

View File

@ -35,7 +35,7 @@ def summary_iterator(path):
Example: Print the contents of an events file.
```python
for e in tf.train.summary_iterator(path to events file):
for e in tf.compat.v1.train.summary_iterator(path to events file):
print(e)
```
@ -45,8 +45,8 @@ def summary_iterator(path):
# This example supposes that the events file contains summaries with a
# summary value tag 'loss'. These could have been added by calling
# `add_summary()`, passing the output of a scalar summary op created with
# with: `tf.summary.scalar('loss', loss_tensor)`.
for e in tf.train.summary_iterator(path to events file):
# with: `tf.compat.v1.summary.scalar('loss', loss_tensor)`.
for e in tf.compat.v1.train.summary_iterator(path to events file):
for v in e.summary.value:
if v.tag == 'loss':
print(v.simple_value)

View File

@ -61,8 +61,9 @@ class EventFileWriterV2(object):
no effect. See `tf.contrib.summary.create_file_writer` for details.
Args:
session: A `tf.Session`. Session that will hold shared writer resource.
The writer ops will be added to session.graph during this init call.
session: A `tf.compat.v1.Session`. Session that will hold shared writer
resource. The writer ops will be added to session.graph during this
init call.
logdir: A string. Directory where event file will be written.
max_queue: Integer. Size of the queue for pending events and summaries.
flush_secs: Number. How often, in seconds, to flush the

View File

@ -65,9 +65,9 @@ class SummaryToEventTransformer(object):
```python
...create a graph...
# Launch the graph in a session.
sess = tf.Session()
sess = tf.compat.v1.Session()
# Create a summary writer, add the 'graph' to the event file.
writer = tf.summary.FileWriter(<some-directory>, sess.graph)
writer = tf.compat.v1.summary.FileWriter(<some-directory>, sess.graph)
```
@ -107,7 +107,7 @@ class SummaryToEventTransformer(object):
You can pass the result of evaluating any summary op, using
`tf.Session.run` or
`tf.Tensor.eval`, to this
function. Alternatively, you can pass a `tf.Summary` protocol
function. Alternatively, you can pass a `tf.compat.v1.Summary` protocol
buffer that you populate with your own data. The latter is
commonly done to report evaluation results in event files.
@ -289,10 +289,10 @@ class FileWriter(SummaryToEventTransformer):
to add data to the file directly from the training loop, without slowing down
training.
When constructed with a `tf.Session` parameter, a `FileWriter` instead forms
a compatibility layer over new graph-based summaries (`tf.contrib.summary`)
to facilitate the use of new summary writing with pre-existing code that
expects a `FileWriter` instance.
When constructed with a `tf.compat.v1.Session` parameter, a `FileWriter`
instead forms a compatibility layer over new graph-based summaries
(`tf.contrib.summary`) to facilitate the use of new summary writing with
pre-existing code that expects a `FileWriter` instance.
"""
def __init__(self,
@ -320,9 +320,9 @@ class FileWriter(SummaryToEventTransformer):
```python
...create a graph...
# Launch the graph in a session.
sess = tf.Session()
sess = tf.compat.v1.Session()
# Create a summary writer, add the 'graph' to the event file.
writer = tf.summary.FileWriter(<some-directory>, sess.graph)
writer = tf.compat.v1.summary.FileWriter(<some-directory>, sess.graph)
```
The `session` argument to the constructor makes the returned `FileWriter` a
@ -345,7 +345,7 @@ class FileWriter(SummaryToEventTransformer):
graph_def: DEPRECATED: Use the `graph` argument instead.
filename_suffix: A string. Every event file's name is suffixed with
`suffix`.
session: A `tf.Session` object. See details above.
session: A `tf.compat.v1.Session` object. See details above.
Raises:
RuntimeError: If called with eager execution enabled.

View File

@ -33,7 +33,8 @@ def _get_custom_getter():
```python
network = ConvNetBuilder(...)
with tf.variable_scope('cg', custom_getter=network.get_custom_getter()):
with tf.compat.v1.variable_scope('cg',
custom_getter=network.get_custom_getter()):
network.conv(...)
# Call more methods of network here
```

View File

@ -61,8 +61,8 @@ def embedding_column(categorical_column,
`tf.feature_column.embedding_column`.
initializer: A variable initializer function to be used in embedding
variable initialization. If not specified, defaults to
`tf.truncated_normal_initializer` with mean `0.0` and standard deviation
`1/sqrt(dimension)`.
`tf.compat.v1.truncated_normal_initializer` with mean `0.0` and
standard deviation `1/sqrt(dimension)`.
Returns:
A _TPUEmbeddingColumn.

View File

@ -62,7 +62,7 @@ class WorkerHeartbeatManager(object):
(Prefer using `WorkerHeartbeatManager.from_devices` when possible.)
Args:
session: `tf.Session`, session to use for heartbeat operations.
session: `tf.compat.v1.Session`, session to use for heartbeat operations.
devices: `list[string]` Set of devices to connect to.
heartbeat_ops: `list[tf.Operation]` Heartbeat operations.
request_placeholder: `tf.Placeholder[String]` Placeholder used to specify

View File

@ -542,12 +542,13 @@ def replicate(computation,
name: (Deprecated) Does nothing.
maximum_shapes: A nested structure of tf.TensorShape representing the shape
to which the respective component of each input element in each replica
should be padded. Any unknown dimensions (e.g. tf.Dimension(None) in a
tf.TensorShape or -1 in a tensor-like object) will be padded to the
maximum size of that dimension over all replicas. Note that if the input
dimension is already static, we won't do padding on it and we require the
maximum_shapes to have the same value or None on that dimension. The
structure of `maximum_shapes` needs to be the same as `inputs[0]`.
should be padded. Any unknown dimensions (e.g.
tf.compat.v1.Dimension(None) in a tf.TensorShape or -1 in a tensor-like
object) will be padded to the maximum size of that dimension over all
replicas. Note that if the input dimension is already static, we won't do
padding on it and we require the maximum_shapes to have the same value or
None on that dimension. The structure of `maximum_shapes` needs to be the
same as `inputs[0]`.
Returns:
A list of outputs, indexed by `[replica_num]` each output can be a nested
structure same as what computation() returns with a few exceptions.
@ -699,12 +700,13 @@ def split_compile_and_replicate(computation,
placed on GPU if one is available, and on CPU if not).
maximum_shapes: A nested structure of tf.TensorShape representing the shape
to which the respective component of each input element in each replica
should be padded. Any unknown dimensions (e.g. tf.Dimension(None) in a
tf.TensorShape or -1 in a tensor-like object) will be padded to the
maximum size of that dimension over all replicas. Note that if the input
dimension is already static, we won't do padding on it and we require the
maximum_shapes to have the same value or None on that dimension. The
structure of `maximum_shapes` needs to be the same as `inputs[0]`.
should be padded. Any unknown dimensions (e.g.
tf.compat.v1.Dimension(None) in a tf.TensorShape or -1 in a tensor-like
object) will be padded to the maximum size of that dimension over all
replicas. Note that if the input dimension is already static, we won't do
padding on it and we require the maximum_shapes to have the same value or
None on that dimension. The structure of `maximum_shapes` needs to be the
same as `inputs[0]`.
Returns:
A list of lists with the first list corresponding to the compile op and the
@ -1491,13 +1493,14 @@ def validate_inference_rewrite_for_variables(graph):
The rewrite_for_inference() method is supposed to append GuaranteeConstOps
after ReadVariableOps, but this mechanism works only if you are using
tf.get_variable() to create and access variables in your tpu computation.
This validation method can be called immediately after calling
tf.compat.v1.get_variable() to create and access variables in your tpu
computation. This validation method can be called immediately after calling
tpu.rewrite_for_inference() to check whether GuaranteeConstOps where added
to the graph.
Typical usages:
tpu.validate_inference_rewrite_for_variables(tf.get_default_graph())
tpu.validate_inference_rewrite_for_variables(
tf.compat.v1.get_default_graph())
tpu.validate_inference_rewrite_for_variables(sess.graph)
@ -1524,11 +1527,11 @@ def rewrite_for_inference(computation,
Other than 'rewriting' the computation to run on a TPU, if using variables
in your computation, it moves the ReadVariableOps outside the TPU
computation, and adds GuaranteeConst ops just after the ReadVariableOps.
This mechanism works only if you are using tf.get_variable() to create and
access variables in your tpu computation. You can validate whether this
worked, by calling validate_inference_rewrite_for_variables() method
immediately after this method to check whether GuaranteeConstOps where
added to the graph.
This mechanism works only if you are using tf.compat.v1.get_variable() to
create and access variables in your tpu computation. You can validate
whether this worked, by calling validate_inference_rewrite_for_variables()
method immediately after this method to check whether GuaranteeConstOps
where added to the graph.
Args:
computation: A Python function that builds a computation to apply to the

View File

@ -59,8 +59,8 @@ class TableConfig(
dimension: The embedding dimension.
initializer: A variable initializer function to be used in embedding
variable initialization. If not specified, defaults to
`tf.truncated_normal_initializer` with mean `0.0` and standard deviation
`1/sqrt(dimension)`.
`tf.compat.v1.truncated_normal_initializer` with mean `0.0` and standard
deviation `1/sqrt(dimension)`.
combiner: A string specifying how to reduce if there are multiple entries
in a single row. Currently 'mean', 'sqrtn', 'sum' and None are
supported, with 'mean' the default. 'sqrtn' often achieves good

View File

@ -2106,7 +2106,7 @@ class TPUEstimator(estimator_lib.Estimator):
def metric_fn(labels, logits):
predictions = tf.argmax(logits, 1)
return {
'accuracy': tf.metrics.precision(
'accuracy': tf.compat.v1.metrics.precision(
labels=labels, predictions=predictions),
}
@ -2176,7 +2176,7 @@ class TPUEstimator(estimator_lib.Estimator):
def predict_input_fn(params):
batch_size = params['batch_size']
images = tf.random_uniform(
images = tf.random.uniform(
[total_examples, height, width, 3], minval=-1, maxval=1)
dataset = tf.data.Dataset.from_tensor_slices(images)
@ -2211,8 +2211,8 @@ class TPUEstimator(estimator_lib.Estimator):
Exporting
=========
`export_savedmodel` exports 2 metagraphs, one with `tag_constants.SERVING`,
and another with `tag_constants.SERVING` and `tag_constants.TPU`.
`export_savedmodel` exports 2 metagraphs, one with `saved_model.SERVING`,
and another with `saved_model.SERVING` and `saved_model.TPU`.
At serving time, these tags are used to select metagraph to load.
Before running the graph on TPU, TPU system needs to be initialized. If

View File

@ -28,7 +28,7 @@ def extract_example_parser_configuration(parse_example_op, sess):
Args:
parse_example_op: A ParseExample `Operation`
sess: A tf.Session needed to obtain some configuration values.
sess: A tf.compat.v1.Session needed to obtain some configuration values.
Returns:
A ExampleParserConfig proto.

View File

@ -141,7 +141,7 @@ def _add_should_use_warning(x, fatal_error=False):
Args:
x: Python object.
fatal_error: Python bool. If `True`, tf.logging.fatal is raised
fatal_error: Python bool. If `True`, tf.compat.v1.logging.fatal is raised
if the returned value is never used.
Returns:
@ -169,7 +169,7 @@ def _add_should_use_warning(x, fatal_error=False):
def should_use_result(fn):
"""Function wrapper that ensures the function's output is used.
If the output is not used, a `tf.logging.error` is logged.
If the output is not used, a `tf.compat.v1.logging.error` is logged.
An output is marked as used if any of its attributes are read, modified, or
updated. Examples when the output is a `Tensor` include:
@ -203,7 +203,7 @@ def should_use_result(fn):
def must_use_result_or_fatal(fn):
"""Function wrapper that ensures the function's output is used.
If the output is not used, a `tf.logging.fatal` error is raised.
If the output is not used, a `tf.compat.v1.logging.fatal` error is raised.
An output is marked as used if any of its attributes are read, modified, or
updated. Examples when the output is a `Tensor` include: