Automated rollback of change 128378997
Change: 128393251
This commit is contained in:
parent
5bfa4aa142
commit
1bd1c27e0d
@ -33,14 +33,13 @@ static void AppendTo(const TensorShape& s, gtl::InlinedVector<int64, 8>* vals) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void TensorShape::CheckDimsEqual(int NDIMS) const {
|
void TensorShape::CheckDimsEqual(int NDIMS) const {
|
||||||
CHECK_EQ(NDIMS, dims()) << "Asking for tensor of " << NDIMS << "dimensions"
|
CHECK_EQ(NDIMS, dims()) << "Asking for tensor of " << NDIMS
|
||||||
<< " from a tensor of " << dims() << " dimensions";
|
<< " for a tensor of " << dims() << " dimensions";
|
||||||
}
|
}
|
||||||
|
|
||||||
void TensorShape::CheckDimsAtLeast(int NDIMS) const {
|
void TensorShape::CheckDimsAtLeast(int NDIMS) const {
|
||||||
CHECK_GE(NDIMS, dims()) << "Asking for tensor of at least " << NDIMS
|
CHECK_GE(NDIMS, dims()) << "Asking for tensor of at least " << NDIMS
|
||||||
<< " dimensions from a tensor of " << dims()
|
<< " for a tensor of " << dims() << " dimensions";
|
||||||
<< " dimensions";
|
|
||||||
}
|
}
|
||||||
|
|
||||||
bool TensorShape::IsValid(const TensorShapeProto& proto) {
|
bool TensorShape::IsValid(const TensorShapeProto& proto) {
|
||||||
|
@ -273,10 +273,12 @@ class StridedSliceChecker(object):
|
|||||||
self.x_np = np.array(x)
|
self.x_np = np.array(x)
|
||||||
|
|
||||||
def __getitem__(self, spec):
|
def __getitem__(self, spec):
|
||||||
op = self.x.__getitem__(spec)
|
# TODO(aselle): When NewSliceHelper is installed, we can switch this back
|
||||||
|
# op = self.x[spec]
|
||||||
|
op = array_ops._NewSliceHelper(self.x, spec)
|
||||||
|
|
||||||
tensor = op.eval()
|
tensor = op.eval()
|
||||||
self.test.assertAllEqual(self.x_np.__getitem__(spec), tensor)
|
self.test.assertAllEqual(self.x_np[spec], tensor)
|
||||||
self.test.assertAllEqual(tensor.shape, op.get_shape())
|
self.test.assertAllEqual(tensor.shape, op.get_shape())
|
||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
@ -393,7 +395,9 @@ class StridedSliceShapeChecker(object):
|
|||||||
self.x = x
|
self.x = x
|
||||||
|
|
||||||
def __getitem__(self, spec):
|
def __getitem__(self, spec):
|
||||||
op = self.x.__getitem__(spec)
|
# TODO(aselle): When NewSliceHelper is installed, we can switch this back
|
||||||
|
# op = self.x[spec]
|
||||||
|
op = array_ops._NewSliceHelper(self.x, spec)
|
||||||
return op.get_shape()
|
return op.get_shape()
|
||||||
|
|
||||||
|
|
||||||
@ -447,28 +451,22 @@ class GradSliceChecker(object):
|
|||||||
self.varnp = varnp
|
self.varnp = varnp
|
||||||
|
|
||||||
def __getitem__(self, spec):
|
def __getitem__(self, spec):
|
||||||
slice_var = self.var[spec]
|
val_grad_op = tf.gradients(self.val, self.var)
|
||||||
slice_val = self.val[spec]
|
sliceval_grad_op = tf.gradients(
|
||||||
|
array_ops._NewSliceHelper(self.val, spec), self.var)
|
||||||
# compute analytic 2nd derivative
|
slice1_op = array_ops._NewSliceHelper(val_grad_op, spec)
|
||||||
analytic_grad2 = 2 * slice_val
|
slice2_op = array_ops._NewSliceHelper(sliceval_grad_op, spec)
|
||||||
|
val_grad, sliceval_grad, slice1, slice2 = self.sess.run(
|
||||||
dy = tf.Variable(tf.ones(shape=slice_var.get_shape(), dtype=tf.int32))
|
[val_grad_op, sliceval_grad_op, slice1_op, slice2_op])
|
||||||
assign = dy.assign(slice_var)
|
np_val_grad = (2 * self.varnp)
|
||||||
slice_val_grad, = tf.gradients(slice_val, self.var, grad_ys=dy)
|
|
||||||
slice_val_grad2, = tf.gradients(slice_val_grad, dy, grad_ys=self.var)
|
|
||||||
self.sess.run(assign)
|
|
||||||
slice_val_grad_evaled, slice_val_grad2_evaled = (
|
|
||||||
self.sess.run([slice_val_grad, slice_val_grad2]))
|
|
||||||
analytic_grad2_evaled = analytic_grad2.eval()
|
|
||||||
self.test.assertAllEqual(slice_val_grad2_evaled, analytic_grad2_evaled)
|
|
||||||
|
|
||||||
# compute analytic gradient for slice
|
|
||||||
np_val_grad = (2 * self.varnp * self.varnp)
|
|
||||||
np_sliceval_grad = np.zeros(self.var.get_shape())
|
np_sliceval_grad = np.zeros(self.var.get_shape())
|
||||||
np_sliceval_grad[spec] = np_val_grad[spec]
|
np_sliceval_grad[spec] = np.array(val_grad[0])[spec]
|
||||||
# verify gradient
|
# make sure np val grad is correct
|
||||||
self.test.assertAllEqual(slice_val_grad_evaled, np_sliceval_grad)
|
self.test.assertAllEqual(np_val_grad, val_grad[0])
|
||||||
|
# make sure slice gradient is correct
|
||||||
|
self.test.assertAllEqual(np_sliceval_grad, sliceval_grad[0])
|
||||||
|
# make sure val grad and sliceval grad are the same in sliced area
|
||||||
|
self.test.assertAllEqual(slice1, slice2)
|
||||||
|
|
||||||
|
|
||||||
class StridedSliceGradTest(test_util.TensorFlowTestCase):
|
class StridedSliceGradTest(test_util.TensorFlowTestCase):
|
||||||
@ -495,7 +493,7 @@ class BenchmarkSlice(object):
|
|||||||
self.tensor = tensor
|
self.tensor = tensor
|
||||||
|
|
||||||
def __getitem__(self, x):
|
def __getitem__(self, x):
|
||||||
return self.tensor[x]
|
return array_ops._NewSliceHelper(self.tensor, x)
|
||||||
|
|
||||||
|
|
||||||
class StridedSliceBenchmark(tf.test.Benchmark):
|
class StridedSliceBenchmark(tf.test.Benchmark):
|
||||||
|
@ -151,7 +151,7 @@ def _SliceGrad(op, grad):
|
|||||||
|
|
||||||
@ops.RegisterGradient("StridedSlice")
|
@ops.RegisterGradient("StridedSlice")
|
||||||
def _StridedSliceGrad(op, grad):
|
def _StridedSliceGrad(op, grad):
|
||||||
"""Gradient for StridedSlice op."""
|
"""Gradient for unpack op."""
|
||||||
x = array_ops.shape(op.inputs[0])
|
x = array_ops.shape(op.inputs[0])
|
||||||
begin = op.inputs[1]
|
begin = op.inputs[1]
|
||||||
end = op.inputs[2]
|
end = op.inputs[2]
|
||||||
@ -170,25 +170,6 @@ def _StridedSliceGrad(op, grad):
|
|||||||
shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None
|
shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None
|
||||||
|
|
||||||
|
|
||||||
@ops.RegisterGradient("StridedSliceGrad")
|
|
||||||
def _StridedSliceGradGrad(op, grad):
|
|
||||||
"""Gradient for StridedSliceGrad op."""
|
|
||||||
begin = op.inputs[1]
|
|
||||||
end = op.inputs[2]
|
|
||||||
strides = op.inputs[3]
|
|
||||||
|
|
||||||
return None, None, None, None, array_ops.strided_slice(
|
|
||||||
grad,
|
|
||||||
begin,
|
|
||||||
end,
|
|
||||||
strides,
|
|
||||||
begin_mask=op.get_attr("begin_mask"),
|
|
||||||
end_mask=op.get_attr("end_mask"),
|
|
||||||
ellipsis_mask=op.get_attr("ellipsis_mask"),
|
|
||||||
new_axis_mask=op.get_attr("new_axis_mask"),
|
|
||||||
shrink_axis_mask=op.get_attr("shrink_axis_mask"))
|
|
||||||
|
|
||||||
|
|
||||||
@ops.RegisterGradient("Split")
|
@ops.RegisterGradient("Split")
|
||||||
def _SplitGrad(op, *grads):
|
def _SplitGrad(op, *grads):
|
||||||
return None, array_ops.concat(op.inputs[0], list(grads))
|
return None, array_ops.concat(op.inputs[0], list(grads))
|
||||||
|
@ -196,7 +196,7 @@ def zeros_initializer(shape, dtype=dtypes.float32):
|
|||||||
return zeros(shape, dtype)
|
return zeros(shape, dtype)
|
||||||
|
|
||||||
|
|
||||||
def _SliceHelper(tensor, slice_spec):
|
def _NewSliceHelper(tensor, slice_spec):
|
||||||
"""Overload for Tensor.__getitem__.
|
"""Overload for Tensor.__getitem__.
|
||||||
|
|
||||||
This operation extracts the specified region from the tensor.
|
This operation extracts the specified region from the tensor.
|
||||||
@ -275,6 +275,73 @@ def _SliceHelper(tensor, slice_spec):
|
|||||||
|
|
||||||
|
|
||||||
# pylint: disable=undefined-variable,protected-access
|
# pylint: disable=undefined-variable,protected-access
|
||||||
|
def _SliceHelper(tensor, slice_spec):
|
||||||
|
"""Overload for Tensor.__getitem__.
|
||||||
|
|
||||||
|
Currently the size of the slice must be statically known in each dimension,
|
||||||
|
i.e. the "stop" of the slice must not be omitted.
|
||||||
|
|
||||||
|
TODO(mrry): Support slices where the sizes are not specified.
|
||||||
|
TODO(mrry): Support negative indices in slices with numpy/Python semantics.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tensor: An ops.Tensor object.
|
||||||
|
slice_spec: The arguments to Tensor.__getitem__.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The appropriate slice of "tensor", based on "slice_spec".
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If a slice range is negative size.
|
||||||
|
TypeError: If the slice indices aren't int, slice, or Ellipsis.
|
||||||
|
"""
|
||||||
|
if not isinstance(slice_spec, (list, tuple)):
|
||||||
|
slice_spec = [slice_spec]
|
||||||
|
indices = []
|
||||||
|
sizes = []
|
||||||
|
squeeze_dims = []
|
||||||
|
for dim, s in enumerate(slice_spec):
|
||||||
|
if isinstance(s, _baseslice):
|
||||||
|
if s.step not in (None, 1):
|
||||||
|
raise NotImplementedError(
|
||||||
|
"Steps other than 1 are not currently supported")
|
||||||
|
start = s.start if s.start is not None else 0
|
||||||
|
if start < 0:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"Negative start indices are not currently supported")
|
||||||
|
indices.append(start)
|
||||||
|
if s.stop is not None and s.stop < 0:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"Negative stop indices are not currently supported")
|
||||||
|
# NOTE(mrry): If the stop is not specified, Python substitutes
|
||||||
|
# sys.maxsize, which is typically (2 ** 63) - 1. Since Slice currently
|
||||||
|
# supports signed DT_INT32 arguments, we use -1 to specify that all
|
||||||
|
# elements should be captured.
|
||||||
|
if s.stop is None or s.stop == sys.maxsize:
|
||||||
|
sizes.append(-1)
|
||||||
|
else:
|
||||||
|
if start > s.stop:
|
||||||
|
raise ValueError("Stop must be at least start")
|
||||||
|
sizes.append(s.stop - start)
|
||||||
|
elif s is Ellipsis:
|
||||||
|
raise NotImplementedError("Ellipsis is not currently supported")
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
s = int(s)
|
||||||
|
except TypeError:
|
||||||
|
raise TypeError("Bad slice index %s of type %s" % (s, type(s)))
|
||||||
|
if s < 0:
|
||||||
|
raise NotImplementedError("Negative indices are currently unsupported")
|
||||||
|
indices.append(s)
|
||||||
|
sizes.append(1)
|
||||||
|
squeeze_dims.append(dim)
|
||||||
|
sliced = slice(tensor, indices, sizes)
|
||||||
|
if squeeze_dims:
|
||||||
|
return squeeze(sliced, squeeze_dims=squeeze_dims)
|
||||||
|
else:
|
||||||
|
return sliced
|
||||||
|
|
||||||
|
|
||||||
def slice(input_, begin, size, name=None):
|
def slice(input_, begin, size, name=None):
|
||||||
"""Extracts a slice from a tensor.
|
"""Extracts a slice from a tensor.
|
||||||
|
|
||||||
@ -423,6 +490,8 @@ def strided_slice(input_,
|
|||||||
new_axis_mask=new_axis_mask,
|
new_axis_mask=new_axis_mask,
|
||||||
shrink_axis_mask=shrink_axis_mask)
|
shrink_axis_mask=shrink_axis_mask)
|
||||||
|
|
||||||
|
# TODO(aselle): When gradient is added and performance verified switch
|
||||||
|
# ops.Tensor._override_operator("__getitem__", _NewSliceHelper)
|
||||||
ops.Tensor._override_operator("__getitem__", _SliceHelper)
|
ops.Tensor._override_operator("__getitem__", _SliceHelper)
|
||||||
|
|
||||||
|
|
||||||
@ -1526,9 +1595,8 @@ def _StridedSliceShape(op):
|
|||||||
|
|
||||||
sparse_dims = begin_shape.merge_with(end_shape).merge_with(strides_shape)[
|
sparse_dims = begin_shape.merge_with(end_shape).merge_with(strides_shape)[
|
||||||
0].value
|
0].value
|
||||||
if (sparse_dims is None or begin_value is None or end_value is None or
|
if sparse_dims is None:
|
||||||
strides_value is None):
|
return [input_shape.unknown_shape()]
|
||||||
return [tensor_shape.unknown_shape()]
|
|
||||||
|
|
||||||
begin_mask = op.get_attr("begin_mask")
|
begin_mask = op.get_attr("begin_mask")
|
||||||
end_mask = op.get_attr("end_mask")
|
end_mask = op.get_attr("end_mask")
|
||||||
|
Loading…
Reference in New Issue
Block a user