Automated rollback of change 128378997

Change: 128393251
This commit is contained in:
Andrew Selle 2016-07-25 12:31:33 -08:00 committed by TensorFlower Gardener
parent 5bfa4aa142
commit 1bd1c27e0d
4 changed files with 99 additions and 53 deletions

View File

@ -33,14 +33,13 @@ static void AppendTo(const TensorShape& s, gtl::InlinedVector<int64, 8>* vals) {
} }
void TensorShape::CheckDimsEqual(int NDIMS) const { void TensorShape::CheckDimsEqual(int NDIMS) const {
CHECK_EQ(NDIMS, dims()) << "Asking for tensor of " << NDIMS << "dimensions" CHECK_EQ(NDIMS, dims()) << "Asking for tensor of " << NDIMS
<< " from a tensor of " << dims() << " dimensions"; << " for a tensor of " << dims() << " dimensions";
} }
void TensorShape::CheckDimsAtLeast(int NDIMS) const { void TensorShape::CheckDimsAtLeast(int NDIMS) const {
CHECK_GE(NDIMS, dims()) << "Asking for tensor of at least " << NDIMS CHECK_GE(NDIMS, dims()) << "Asking for tensor of at least " << NDIMS
<< " dimensions from a tensor of " << dims() << " for a tensor of " << dims() << " dimensions";
<< " dimensions";
} }
bool TensorShape::IsValid(const TensorShapeProto& proto) { bool TensorShape::IsValid(const TensorShapeProto& proto) {

View File

@ -273,10 +273,12 @@ class StridedSliceChecker(object):
self.x_np = np.array(x) self.x_np = np.array(x)
def __getitem__(self, spec): def __getitem__(self, spec):
op = self.x.__getitem__(spec) # TODO(aselle): When NewSliceHelper is installed, we can switch this back
# op = self.x[spec]
op = array_ops._NewSliceHelper(self.x, spec)
tensor = op.eval() tensor = op.eval()
self.test.assertAllEqual(self.x_np.__getitem__(spec), tensor) self.test.assertAllEqual(self.x_np[spec], tensor)
self.test.assertAllEqual(tensor.shape, op.get_shape()) self.test.assertAllEqual(tensor.shape, op.get_shape())
return tensor return tensor
@ -393,7 +395,9 @@ class StridedSliceShapeChecker(object):
self.x = x self.x = x
def __getitem__(self, spec): def __getitem__(self, spec):
op = self.x.__getitem__(spec) # TODO(aselle): When NewSliceHelper is installed, we can switch this back
# op = self.x[spec]
op = array_ops._NewSliceHelper(self.x, spec)
return op.get_shape() return op.get_shape()
@ -447,28 +451,22 @@ class GradSliceChecker(object):
self.varnp = varnp self.varnp = varnp
def __getitem__(self, spec): def __getitem__(self, spec):
slice_var = self.var[spec] val_grad_op = tf.gradients(self.val, self.var)
slice_val = self.val[spec] sliceval_grad_op = tf.gradients(
array_ops._NewSliceHelper(self.val, spec), self.var)
# compute analytic 2nd derivative slice1_op = array_ops._NewSliceHelper(val_grad_op, spec)
analytic_grad2 = 2 * slice_val slice2_op = array_ops._NewSliceHelper(sliceval_grad_op, spec)
val_grad, sliceval_grad, slice1, slice2 = self.sess.run(
dy = tf.Variable(tf.ones(shape=slice_var.get_shape(), dtype=tf.int32)) [val_grad_op, sliceval_grad_op, slice1_op, slice2_op])
assign = dy.assign(slice_var) np_val_grad = (2 * self.varnp)
slice_val_grad, = tf.gradients(slice_val, self.var, grad_ys=dy)
slice_val_grad2, = tf.gradients(slice_val_grad, dy, grad_ys=self.var)
self.sess.run(assign)
slice_val_grad_evaled, slice_val_grad2_evaled = (
self.sess.run([slice_val_grad, slice_val_grad2]))
analytic_grad2_evaled = analytic_grad2.eval()
self.test.assertAllEqual(slice_val_grad2_evaled, analytic_grad2_evaled)
# compute analytic gradient for slice
np_val_grad = (2 * self.varnp * self.varnp)
np_sliceval_grad = np.zeros(self.var.get_shape()) np_sliceval_grad = np.zeros(self.var.get_shape())
np_sliceval_grad[spec] = np_val_grad[spec] np_sliceval_grad[spec] = np.array(val_grad[0])[spec]
# verify gradient # make sure np val grad is correct
self.test.assertAllEqual(slice_val_grad_evaled, np_sliceval_grad) self.test.assertAllEqual(np_val_grad, val_grad[0])
# make sure slice gradient is correct
self.test.assertAllEqual(np_sliceval_grad, sliceval_grad[0])
# make sure val grad and sliceval grad are the same in sliced area
self.test.assertAllEqual(slice1, slice2)
class StridedSliceGradTest(test_util.TensorFlowTestCase): class StridedSliceGradTest(test_util.TensorFlowTestCase):
@ -495,7 +493,7 @@ class BenchmarkSlice(object):
self.tensor = tensor self.tensor = tensor
def __getitem__(self, x): def __getitem__(self, x):
return self.tensor[x] return array_ops._NewSliceHelper(self.tensor, x)
class StridedSliceBenchmark(tf.test.Benchmark): class StridedSliceBenchmark(tf.test.Benchmark):

View File

@ -151,7 +151,7 @@ def _SliceGrad(op, grad):
@ops.RegisterGradient("StridedSlice") @ops.RegisterGradient("StridedSlice")
def _StridedSliceGrad(op, grad): def _StridedSliceGrad(op, grad):
"""Gradient for StridedSlice op.""" """Gradient for unpack op."""
x = array_ops.shape(op.inputs[0]) x = array_ops.shape(op.inputs[0])
begin = op.inputs[1] begin = op.inputs[1]
end = op.inputs[2] end = op.inputs[2]
@ -170,25 +170,6 @@ def _StridedSliceGrad(op, grad):
shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None
@ops.RegisterGradient("StridedSliceGrad")
def _StridedSliceGradGrad(op, grad):
"""Gradient for StridedSliceGrad op."""
begin = op.inputs[1]
end = op.inputs[2]
strides = op.inputs[3]
return None, None, None, None, array_ops.strided_slice(
grad,
begin,
end,
strides,
begin_mask=op.get_attr("begin_mask"),
end_mask=op.get_attr("end_mask"),
ellipsis_mask=op.get_attr("ellipsis_mask"),
new_axis_mask=op.get_attr("new_axis_mask"),
shrink_axis_mask=op.get_attr("shrink_axis_mask"))
@ops.RegisterGradient("Split") @ops.RegisterGradient("Split")
def _SplitGrad(op, *grads): def _SplitGrad(op, *grads):
return None, array_ops.concat(op.inputs[0], list(grads)) return None, array_ops.concat(op.inputs[0], list(grads))

View File

@ -196,7 +196,7 @@ def zeros_initializer(shape, dtype=dtypes.float32):
return zeros(shape, dtype) return zeros(shape, dtype)
def _SliceHelper(tensor, slice_spec): def _NewSliceHelper(tensor, slice_spec):
"""Overload for Tensor.__getitem__. """Overload for Tensor.__getitem__.
This operation extracts the specified region from the tensor. This operation extracts the specified region from the tensor.
@ -275,6 +275,73 @@ def _SliceHelper(tensor, slice_spec):
# pylint: disable=undefined-variable,protected-access # pylint: disable=undefined-variable,protected-access
def _SliceHelper(tensor, slice_spec):
"""Overload for Tensor.__getitem__.
Currently the size of the slice must be statically known in each dimension,
i.e. the "stop" of the slice must not be omitted.
TODO(mrry): Support slices where the sizes are not specified.
TODO(mrry): Support negative indices in slices with numpy/Python semantics.
Args:
tensor: An ops.Tensor object.
slice_spec: The arguments to Tensor.__getitem__.
Returns:
The appropriate slice of "tensor", based on "slice_spec".
Raises:
ValueError: If a slice range is negative size.
TypeError: If the slice indices aren't int, slice, or Ellipsis.
"""
if not isinstance(slice_spec, (list, tuple)):
slice_spec = [slice_spec]
indices = []
sizes = []
squeeze_dims = []
for dim, s in enumerate(slice_spec):
if isinstance(s, _baseslice):
if s.step not in (None, 1):
raise NotImplementedError(
"Steps other than 1 are not currently supported")
start = s.start if s.start is not None else 0
if start < 0:
raise NotImplementedError(
"Negative start indices are not currently supported")
indices.append(start)
if s.stop is not None and s.stop < 0:
raise NotImplementedError(
"Negative stop indices are not currently supported")
# NOTE(mrry): If the stop is not specified, Python substitutes
# sys.maxsize, which is typically (2 ** 63) - 1. Since Slice currently
# supports signed DT_INT32 arguments, we use -1 to specify that all
# elements should be captured.
if s.stop is None or s.stop == sys.maxsize:
sizes.append(-1)
else:
if start > s.stop:
raise ValueError("Stop must be at least start")
sizes.append(s.stop - start)
elif s is Ellipsis:
raise NotImplementedError("Ellipsis is not currently supported")
else:
try:
s = int(s)
except TypeError:
raise TypeError("Bad slice index %s of type %s" % (s, type(s)))
if s < 0:
raise NotImplementedError("Negative indices are currently unsupported")
indices.append(s)
sizes.append(1)
squeeze_dims.append(dim)
sliced = slice(tensor, indices, sizes)
if squeeze_dims:
return squeeze(sliced, squeeze_dims=squeeze_dims)
else:
return sliced
def slice(input_, begin, size, name=None): def slice(input_, begin, size, name=None):
"""Extracts a slice from a tensor. """Extracts a slice from a tensor.
@ -423,6 +490,8 @@ def strided_slice(input_,
new_axis_mask=new_axis_mask, new_axis_mask=new_axis_mask,
shrink_axis_mask=shrink_axis_mask) shrink_axis_mask=shrink_axis_mask)
# TODO(aselle): When gradient is added and performance verified switch
# ops.Tensor._override_operator("__getitem__", _NewSliceHelper)
ops.Tensor._override_operator("__getitem__", _SliceHelper) ops.Tensor._override_operator("__getitem__", _SliceHelper)
@ -1526,9 +1595,8 @@ def _StridedSliceShape(op):
sparse_dims = begin_shape.merge_with(end_shape).merge_with(strides_shape)[ sparse_dims = begin_shape.merge_with(end_shape).merge_with(strides_shape)[
0].value 0].value
if (sparse_dims is None or begin_value is None or end_value is None or if sparse_dims is None:
strides_value is None): return [input_shape.unknown_shape()]
return [tensor_shape.unknown_shape()]
begin_mask = op.get_attr("begin_mask") begin_mask = op.get_attr("begin_mask")
end_mask = op.get_attr("end_mask") end_mask = op.get_attr("end_mask")