Improve the genrules for cubin kernel headers.

Add an additional build macro to build a library of headers.
Also change the output of bin2c to use type char instead of type int.

PiperOrigin-RevId: 314321754
Change-Id: I81ee3c7c962e807d28bb0f580eea8032f2a390ee
This commit is contained in:
Adrian Kuegel 2020-06-02 06:52:11 -07:00 committed by TensorFlower Gardener
parent 5c3cdff00b
commit 1b6ad07ad3
2 changed files with 64 additions and 43 deletions

View File

@ -1,5 +1,10 @@
# Generates headers containing cubin for CUDA kernels.
load("//tensorflow/core/kernels/cubin_headers:build_defs.bzl", "gen_kernel_image_hdr")
load("//tensorflow/core/kernels/cubin_headers:build_defs.bzl", "gen_kernel_library")
package(
default_visibility = ["//tensorflow/core/kernels:__subpackages__"],
licenses = ["notice"], # Apache 2.0
)
bias_add_kernel = """
func @bias_add(%arg0: tensor<?x?xf99>,
@ -10,19 +15,17 @@ func @bias_add(%arg0: tensor<?x?xf99>,
}
"""
[
gen_kernel_image_hdr(
name = "bias_add_{type}_kernel".format(type = type),
op = bias_add_kernel.replace("f99", type).replace("DT_TYPE", dtype),
same_shape = "0,2",
tile_size = "16x16",
)
for (type, dtype) in [
("f16", "DT_HALF"),
("f32", "DT_FLOAT"),
("f64", "DT_DOUBLE"),
]
]
gen_kernel_library(
name = "bias_add",
op = bias_add_kernel,
same_shape = "0,2",
tile_size = "16x16",
types = [
"f16",
"f32",
"f64",
],
)
relu_kernel = """
func @relu(%arg0: tensor<?xf99>) -> tensor<?xf99> {
@ -32,19 +35,17 @@ func @relu(%arg0: tensor<?xf99>) -> tensor<?xf99> {
}
"""
[
gen_kernel_image_hdr(
name = "relu_{type}_kernel".format(type = type),
op = relu_kernel.replace("f99", type).replace("DT_TYPE", dtype),
same_shape = "0,1",
tile_size = "256",
)
for (type, dtype) in [
("f16", "DT_HALF"),
("f32", "DT_FLOAT"),
("f64", "DT_DOUBLE"),
]
]
gen_kernel_library(
name = "relu",
op = relu_kernel,
same_shape = "0,1",
tile_size = "256",
types = [
"f16",
"f32",
"f64",
],
)
tanh_kernel = """
func @tanh(%arg0: tensor<?xf99>) -> tensor<?xf99> {
@ -54,14 +55,12 @@ func @tanh(%arg0: tensor<?xf99>) -> tensor<?xf99> {
}
"""
[
gen_kernel_image_hdr(
name = "tanh_{type}_kernel".format(type = type),
op = tanh_kernel.replace("f99", type).replace("DT_TYPE", dtype),
tile_size = "256",
)
for (type, dtype) in [
("f32", "DT_FLOAT"),
("f64", "DT_DOUBLE"),
]
]
gen_kernel_library(
name = "tanh",
op = tanh_kernel,
tile_size = "256",
types = [
"f32",
"f64",
],
)

View File

@ -1,6 +1,6 @@
"""Generates cubin headers for TF dialect ops."""
load("@local_config_cuda//cuda:build_defs.bzl", "cuda_gpu_architectures")
load("@local_config_cuda//cuda:build_defs.bzl", "cuda_gpu_architectures", "if_cuda")
def _lookup_file(filegroup, path):
"""Extracts file at (relative) path in filegroup."""
@ -61,12 +61,12 @@ def _gen_kernel_image_hdr_impl(ctx):
outputs = [ctx.outputs.out],
inputs = [fatbin],
tools = [bin2c],
command = "%s --static --const --type=int --name=%s %s 1> %s" %
command = "%s --static --const --type=char --name=%s %s 1> %s" %
(bin2c.path, ctx.attr.symbol, fatbin.path, ctx.outputs.out.path),
mnemonic = "bin2c",
)
_gen_kernel_image_hdr = rule(
_gen_kernel_image_hdr_rule = rule(
implementation = _gen_kernel_image_hdr_impl,
output_to_genfiles = True,
attrs = {
@ -87,10 +87,10 @@ _gen_kernel_image_hdr = rule(
},
)
def gen_kernel_image_hdr(name, op, tile_size, tags = [], same_shape = None):
def _gen_kernel_image_hdr(name, op, tile_size, tags = [], same_shape = None):
"""Generates a C header with fatbin data from a Tensorflow op."""
if cuda_gpu_architectures():
_gen_kernel_image_hdr(
_gen_kernel_image_hdr_rule(
name = name,
op = op,
tile_size = tile_size,
@ -100,3 +100,25 @@ def gen_kernel_image_hdr(name, op, tile_size, tags = [], same_shape = None):
gpu_archs = cuda_gpu_architectures(),
tags = tags,
)
def gen_kernel_library(name, op, types, tile_size, tags = [], same_shape = None):
if cuda_gpu_architectures():
type_to_dtype = {
"f16": "DT_HALF",
"f32": "DT_FLOAT",
"f64": "DT_DOUBLE",
}
for type in types:
_gen_kernel_image_hdr(
name = "{name}_{type}_kernel".format(name = name, type = type),
op = op.replace("f99", type).replace("DT_TYPE", type_to_dtype[type]),
tile_size = tile_size,
tags = tags,
same_shape = same_shape,
)
native.cc_library(
name = name + "_kernels",
hdrs = if_cuda(if_true = [":{name}_{type}_kernel".format(name = name, type = type) for type in types]),
tags = tags,
)