Adds kernel impl for dequantizing per-channel quantized tensors to float
PiperOrigin-RevId: 299955689 Change-Id: I03c7b9693a2b86518b4b8dd9303b231fc4c025ee
This commit is contained in:
parent
0008a03e43
commit
185dd2376b
@ -1028,6 +1028,17 @@ cc_test(
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "per_channel_dequantize_test",
|
||||
srcs = ["per_channel_dequantize_test.cc"],
|
||||
deps = [
|
||||
":reference_base",
|
||||
":types",
|
||||
"//tensorflow/lite/kernels:test_util",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
exports_files(["optimized/eigen_tensor_reduced_instantiations_oss.h"])
|
||||
|
||||
filegroup(
|
||||
|
121
tensorflow/lite/kernels/internal/per_channel_dequantize_test.cc
Normal file
121
tensorflow/lite/kernels/internal/per_channel_dequantize_test.cc
Normal file
@ -0,0 +1,121 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/kernels/internal/reference/dequantize.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
#include "tensorflow/lite/kernels/test_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
using ::testing::ElementsAreArray;
|
||||
|
||||
TEST(PerChannelDequantize, TestInt8ToFloat_2D) {
|
||||
const std::vector<float> scales = {0.5, 0.25};
|
||||
const std::vector<int> zero_points = {-1, -1};
|
||||
const int quantized_dimension = 0;
|
||||
|
||||
const RuntimeShape shape({2, 5});
|
||||
|
||||
const std::vector<int8_t> input = {-128, -127, -126, -125, -124,
|
||||
123, 124, 125, 126, 127};
|
||||
std::vector<float> output(10, -1);
|
||||
|
||||
PerChannelDequantizationParams op_params;
|
||||
op_params.zero_point = zero_points.data();
|
||||
op_params.scale = scales.data();
|
||||
op_params.quantized_dimension = quantized_dimension;
|
||||
reference_ops::PerChannelDequantize(op_params, shape, input.data(), shape,
|
||||
output.data());
|
||||
EXPECT_THAT(output,
|
||||
ElementsAreArray(ArrayFloatNear({-63.5, -63, -62.5, -62, -61.5,
|
||||
31, 31.25, 31.5, 31.75, 32})));
|
||||
}
|
||||
|
||||
TEST(PerChannelDequantize, TestInt8ToFloat_3D) {
|
||||
const std::vector<float> scales = {0.5, 0.25, 0.5, 0.25, 1.0};
|
||||
const std::vector<int> zero_points = {-1, 1, -1, 1, 0};
|
||||
const int quantized_dimension = 2;
|
||||
|
||||
const RuntimeShape shape({1, 2, 5});
|
||||
|
||||
const std::vector<int8_t> input = {-128, -127, -126, -125, -124,
|
||||
123, 124, 125, 126, 127};
|
||||
std::vector<float> output(10, -1);
|
||||
|
||||
PerChannelDequantizationParams op_params;
|
||||
op_params.zero_point = zero_points.data();
|
||||
op_params.scale = scales.data();
|
||||
op_params.quantized_dimension = quantized_dimension;
|
||||
reference_ops::PerChannelDequantize(op_params, shape, input.data(), shape,
|
||||
output.data());
|
||||
EXPECT_THAT(output,
|
||||
ElementsAreArray(ArrayFloatNear({-63.5, -32, -62.5, -31.5, -124,
|
||||
62, 30.75, 63, 31.25, 127})));
|
||||
}
|
||||
|
||||
TEST(PerChannelDequantize, TestInt8ToFloat_4DDim0) {
|
||||
const std::vector<float> scales = {0.5, 0.25};
|
||||
const std::vector<int> zero_points = {-1, 1};
|
||||
const int quantized_dimension = 0;
|
||||
|
||||
RuntimeShape shape({2, 2, 5, 1});
|
||||
|
||||
const std::vector<int8_t> input = {-128, -127, -126, -125, -124, 123, 124,
|
||||
125, 126, 127, -128, -127, -126, -125,
|
||||
-124, 123, 124, 125, 126, 127};
|
||||
std::vector<float> output(20, -1);
|
||||
|
||||
PerChannelDequantizationParams op_params;
|
||||
op_params.zero_point = zero_points.data();
|
||||
op_params.scale = scales.data();
|
||||
op_params.quantized_dimension = quantized_dimension;
|
||||
reference_ops::PerChannelDequantize(op_params, shape, input.data(), shape,
|
||||
output.data());
|
||||
EXPECT_THAT(output, ElementsAreArray(ArrayFloatNear(
|
||||
{-63.5, -63, -62.5, -62, -61.5, 62, 62.5,
|
||||
63, 63.5, 64, -32.25, -32, -31.75, -31.5,
|
||||
-31.25, 30.5, 30.75, 31, 31.25, 31.5})));
|
||||
}
|
||||
|
||||
TEST(PerChannelDequantize, TestInt8ToFloat_4DDim3) {
|
||||
const std::vector<float> scales = {0.5, 0.25, 0.5, 0.25, 1.0};
|
||||
const std::vector<int> zero_points = {-1, 1, -1, 1, 0};
|
||||
const int quantized_dimension = 3;
|
||||
|
||||
RuntimeShape shape({1, 2, 2, 5});
|
||||
|
||||
const std::vector<int8_t> input = {-128, -127, -126, -125, -124, 123, 124,
|
||||
125, 126, 127, -128, -127, -126, -125,
|
||||
-124, 123, 124, 125, 126, 127};
|
||||
std::vector<float> output(20, -1);
|
||||
|
||||
PerChannelDequantizationParams op_params;
|
||||
op_params.zero_point = zero_points.data();
|
||||
op_params.scale = scales.data();
|
||||
op_params.quantized_dimension = quantized_dimension;
|
||||
reference_ops::PerChannelDequantize(op_params, shape, input.data(), shape,
|
||||
output.data());
|
||||
EXPECT_THAT(output, ElementsAreArray(ArrayFloatNear(
|
||||
{-63.5, -32, -62.5, -31.5, -124, 62, 30.75,
|
||||
63, 31.25, 127, -63.5, -32, -62.5, -31.5,
|
||||
-124, 62, 30.75, 63, 31.25, 127})));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace tflite
|
@ -17,6 +17,8 @@ limitations under the License.
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
|
||||
@ -60,6 +62,35 @@ inline void DequantizeInteger(const tflite::DequantizationParams& op_params,
|
||||
}
|
||||
}
|
||||
|
||||
// Dequantizes per-channel quantized tensor to float.
|
||||
template <typename T>
|
||||
inline void PerChannelDequantize(
|
||||
const tflite::PerChannelDequantizationParams& op_params,
|
||||
const RuntimeShape& input_shape, const T* input_data,
|
||||
const RuntimeShape& output_shape, float* output_data) {
|
||||
// Ensure flat size is same.
|
||||
MatchingFlatSize(input_shape, output_shape);
|
||||
|
||||
const int32* zero_point = op_params.zero_point;
|
||||
const float* scale = op_params.scale;
|
||||
const int32 quantized_dimension = op_params.quantized_dimension;
|
||||
const int32 num_dims = input_shape.DimensionsCount();
|
||||
const int32* dims_data = input_shape.DimsData();
|
||||
std::vector<int> current_dim(num_dims, 0);
|
||||
|
||||
do {
|
||||
size_t offset =
|
||||
ReducedOutputOffset(num_dims, reinterpret_cast<const int*>(dims_data),
|
||||
current_dim.data(), 0, nullptr);
|
||||
const int channel = current_dim[quantized_dimension];
|
||||
const int32 val = input_data[offset];
|
||||
const float result =
|
||||
static_cast<float>(scale[channel] * (val - zero_point[channel]));
|
||||
output_data[offset] = result;
|
||||
} while (NextIndex(num_dims, reinterpret_cast<const int*>(dims_data),
|
||||
current_dim.data()));
|
||||
}
|
||||
|
||||
} // namespace reference_ops
|
||||
|
||||
} // namespace tflite
|
||||
|
@ -863,6 +863,12 @@ struct DequantizationParams {
|
||||
int32 zero_point;
|
||||
};
|
||||
|
||||
struct PerChannelDequantizationParams {
|
||||
const float* scale;
|
||||
const int32* zero_point;
|
||||
int32 quantized_dimension;
|
||||
};
|
||||
|
||||
struct FakeQuantParams {
|
||||
MinMax minmax;
|
||||
int32 num_bits;
|
||||
|
Loading…
Reference in New Issue
Block a user