Add support for unrolling to the build rules.
PiperOrigin-RevId: 316851326 Change-Id: Icef09025b154f6d88c94884a7970f93022bcd160
This commit is contained in:
parent
70a617943c
commit
17cacd3a21
@ -15,9 +15,11 @@ def _gen_kernel_image_hdr_impl(ctx):
|
||||
|
||||
name = ctx.attr.name
|
||||
tile_sizes = ctx.attr.tile_size.replace("x", ",")
|
||||
same_shape = []
|
||||
cmd_args = []
|
||||
if ctx.attr.same_shape:
|
||||
same_shape.append("--same_shape=%s" % ctx.attr.same_shape)
|
||||
cmd_args.append("--same_shape=%s" % ctx.attr.same_shape)
|
||||
if ctx.attr.unroll_factors:
|
||||
cmd_args.append("--unroll_factors=%s" % ctx.attr.unroll_factors)
|
||||
|
||||
cubins = []
|
||||
images = []
|
||||
@ -30,7 +32,7 @@ def _gen_kernel_image_hdr_impl(ctx):
|
||||
inputs = [ctx.file.mlir_op],
|
||||
outputs = [cubin],
|
||||
executable = ctx.executable._tool,
|
||||
arguments = same_shape + [
|
||||
arguments = cmd_args + [
|
||||
"--tile_sizes=%s" % tile_sizes,
|
||||
"--arch=%s" % arch.split("_")[1],
|
||||
"--input=%s" % ctx.file.mlir_op.path,
|
||||
@ -74,6 +76,7 @@ _gen_kernel_image_hdr_rule = rule(
|
||||
"mlir_op": attr.label(mandatory = True, allow_single_file = True),
|
||||
"tile_size": attr.string(mandatory = True),
|
||||
"same_shape": attr.string(),
|
||||
"unroll_factors": attr.string(),
|
||||
"out": attr.output(mandatory = True),
|
||||
"symbol": attr.string(mandatory = True),
|
||||
"gpu_archs": attr.string_list(mandatory = True),
|
||||
@ -88,7 +91,7 @@ _gen_kernel_image_hdr_rule = rule(
|
||||
},
|
||||
)
|
||||
|
||||
def _gen_kernel_image_hdr(name, mlir_op, tile_size, tags = [], same_shape = None):
|
||||
def _gen_kernel_image_hdr(name, mlir_op, tile_size, tags = [], same_shape = None, unroll_factors = None):
|
||||
"""Generates a C header with fatbin data from a Tensorflow op."""
|
||||
if cuda_gpu_architectures():
|
||||
_gen_kernel_image_hdr_rule(
|
||||
@ -96,6 +99,7 @@ def _gen_kernel_image_hdr(name, mlir_op, tile_size, tags = [], same_shape = None
|
||||
mlir_op = mlir_op,
|
||||
tile_size = tile_size,
|
||||
same_shape = same_shape,
|
||||
unroll_factors = unroll_factors,
|
||||
out = "%s.h" % name,
|
||||
symbol = "k%s" % name.replace("_", " ").title().replace(" ", ""),
|
||||
gpu_archs = cuda_gpu_architectures(),
|
||||
@ -131,13 +135,14 @@ def _gen_mlir_op(name, type):
|
||||
out = "{name}_{type}.mlir".format(name = name, type = type),
|
||||
)
|
||||
|
||||
def gen_kernel_library(name, types, tile_size, tags = [], same_shape = None):
|
||||
def gen_kernel_library(name, types, tile_size, tags = [], same_shape = None, unroll_factors = None):
|
||||
""" Generate a library with kernels for a specific tensorflow op.
|
||||
|
||||
Args:
|
||||
name: The name of the tensorflow op.
|
||||
types: The types ("f16", "f32", "f64") for which a kernel should be generated.
|
||||
tile_size: The tiling specification, e.g. "16x16".
|
||||
unroll_factors: The unrolling specification, e.g. "4,4"
|
||||
tags: The tags which should be added to the library.
|
||||
same_shape: The information about which shapes are the same, e.g. "0,1".
|
||||
"""
|
||||
@ -154,6 +159,7 @@ def gen_kernel_library(name, types, tile_size, tags = [], same_shape = None):
|
||||
tile_size = tile_size,
|
||||
tags = tags,
|
||||
same_shape = same_shape,
|
||||
unroll_factors = unroll_factors,
|
||||
)
|
||||
|
||||
native.cc_library(
|
||||
|
Loading…
x
Reference in New Issue
Block a user