From 17a758f7bb2aa3937da628669617e1e86c6bb449 Mon Sep 17 00:00:00 2001 From: Billy Lamberta Date: Tue, 5 Mar 2019 00:55:10 -0800 Subject: [PATCH] Pub lite PiperOrigin-RevId: 236802220 --- tensorflow/lite/g3doc/convert/cmdline_examples.md | 6 +++--- tensorflow/lite/g3doc/convert/python_api.md | 4 ++-- tensorflow/lite/g3doc/guide/ops_select.md | 2 +- .../lite/g3doc/performance/post_training_quantization.md | 2 +- 4 files changed, 7 insertions(+), 7 deletions(-) diff --git a/tensorflow/lite/g3doc/convert/cmdline_examples.md b/tensorflow/lite/g3doc/convert/cmdline_examples.md index 067f09a5576..139a6c9b521 100644 --- a/tensorflow/lite/g3doc/convert/cmdline_examples.md +++ b/tensorflow/lite/g3doc/convert/cmdline_examples.md @@ -64,19 +64,19 @@ tflite_convert \ --saved_model_dir=/tmp/saved_model ``` -[SavedModel](https://www.tensorflow.org/guide/saved_model.md#using_savedmodel_with_estimators) +[SavedModel](https://www.tensorflow.org/guide/saved_model#using_savedmodel_with_estimators) has fewer required flags than frozen graphs due to access to additional data contained within the SavedModel. The values for `--input_arrays` and `--output_arrays` are an aggregated, alphabetized list of the inputs and outputs in the [SignatureDefs](../../serving/signature_defs.md) within the -[MetaGraphDef](https://www.tensorflow.org/saved_model.md#apis_to_build_and_load_a_savedmodel) +[MetaGraphDef](https://www.tensorflow.org/saved_model#apis_to_build_and_load_a_savedmodel) specified by `--saved_model_tag_set`. As with the GraphDef, the value for `input_shapes` is automatically determined whenever possible. There is currently no support for MetaGraphDefs without a SignatureDef or for MetaGraphDefs that use the [`assets/` -directory](https://www.tensorflow.org/guide/saved_model.md#structure_of_a_savedmodel_directory). +directory](https://www.tensorflow.org/guide/saved_model#structure_of_a_savedmodel_directory). ### Convert a tf.Keras model diff --git a/tensorflow/lite/g3doc/convert/python_api.md b/tensorflow/lite/g3doc/convert/python_api.md index 06c7389053a..4d2c7361c9f 100644 --- a/tensorflow/lite/g3doc/convert/python_api.md +++ b/tensorflow/lite/g3doc/convert/python_api.md @@ -241,8 +241,8 @@ interpreter.allocate_tensors() In order to run the latest version of the TensorFlow Lite Converter Python API, either install the nightly build with [pip](https://www.tensorflow.org/install/pip) (recommended) or -[Docker](https://www.tensorflow.org/install/docker.md), or -[build the pip package from source](https://www.tensorflow.org/install/source.md). +[Docker](https://www.tensorflow.org/install/docker), or +[build the pip package from source](https://www.tensorflow.org/install/source). ### Converting models from TensorFlow 1.12 diff --git a/tensorflow/lite/g3doc/guide/ops_select.md b/tensorflow/lite/g3doc/guide/ops_select.md index 21649ea62ba..51320140e1c 100644 --- a/tensorflow/lite/g3doc/guide/ops_select.md +++ b/tensorflow/lite/g3doc/guide/ops_select.md @@ -34,7 +34,7 @@ choice. It also discusses some [known limitations](#known-limitations), the To convert a TensorFlow model to a TensorFlow Lite model with TensorFlow ops, use the `target_ops` argument in the -[TensorFlow Lite converter](../convert/index.md). The +[TensorFlow Lite converter](../convert/). The following values are valid options for `target_ops`: * `TFLITE_BUILTINS` - Converts models using TensorFlow Lite builtin ops. diff --git a/tensorflow/lite/g3doc/performance/post_training_quantization.md b/tensorflow/lite/g3doc/performance/post_training_quantization.md index 0aa7e5163a9..5fdf77b4011 100644 --- a/tensorflow/lite/g3doc/performance/post_training_quantization.md +++ b/tensorflow/lite/g3doc/performance/post_training_quantization.md @@ -3,7 +3,7 @@ Post-training quantization is a general technique to reduce model size while also providing up to 3x lower latency with little degradation in model accuracy. Post-training quantization quantizes weights from floating point to 8-bits of precision. This technique -is enabled as an option in the [TensorFlow Lite converter](../convert/index.md): +is enabled as an option in the [TensorFlow Lite converter](../convert/): ``` import tensorflow as tf