diff --git a/tensorflow/lite/toco/tflite/export.cc b/tensorflow/lite/toco/tflite/export.cc index d72a902001d..d109ab875b5 100644 --- a/tensorflow/lite/toco/tflite/export.cc +++ b/tensorflow/lite/toco/tflite/export.cc @@ -52,7 +52,7 @@ using ::tflite::Tensor; namespace { // Check if a TensorFlow Op is a control flow op by its name. -bool IsControlFlowOp(const string& tensorflow_op) { +bool IsControlFlowOp(const std::string& tensorflow_op) { // Technically this is equivalent to `::tensorflow::Node::IsControlFlow()`. // It requires to construct a `::tensorflow::Graph` to use that helper // function, so we simply hardcode the list of control flow ops here. @@ -68,7 +68,7 @@ bool IsControlFlowOp(const string& tensorflow_op) { } // Check if a TensorFlow Op is unsupported by the Flex runtime. -bool IsUnsupportedFlexOp(const string& tensorflow_op) { +bool IsUnsupportedFlexOp(const std::string& tensorflow_op) { if (IsControlFlowOp(tensorflow_op)) { return true; } @@ -82,14 +82,14 @@ bool IsUnsupportedFlexOp(const string& tensorflow_op) { } // Map from operator name to TF Lite enum value, for all builtins. -const std::map& GetBuiltinOpsMap() { - static std::map* builtin_ops = nullptr; +const std::map& GetBuiltinOpsMap() { + static std::map* builtin_ops = nullptr; if (builtin_ops == nullptr) { - builtin_ops = new std::map(); + builtin_ops = new std::map(); for (int i = BuiltinOperator_MIN; i <= BuiltinOperator_MAX; ++i) { BuiltinOperator op = static_cast(i); - string name = EnumNameBuiltinOperator(op); + std::string name = EnumNameBuiltinOperator(op); if (op != BuiltinOperator_CUSTOM && !name.empty()) { (*builtin_ops)[name] = op; } @@ -99,10 +99,10 @@ const std::map& GetBuiltinOpsMap() { } void WriteModelToString(const flatbuffers::FlatBufferBuilder& builder, - string* file_contents) { + std::string* file_contents) { const uint8_t* buffer = builder.GetBufferPointer(); int size = builder.GetSize(); - *file_contents = string(reinterpret_cast(buffer), size); + *file_contents = std::string(reinterpret_cast(buffer), size); } } // Anonymous namespace. @@ -115,7 +115,7 @@ OperatorKey::OperatorKey( bool enable_select_tf_ops) { // Get the op name (by Toco definition). const ::toco::Operator& op = *op_signature.op; - string name = HelpfulOperatorTypeName(op); + std::string name = HelpfulOperatorTypeName(op); bool is_builtin = false; const auto& builtin_ops = GetBuiltinOpsMap(); @@ -146,7 +146,7 @@ OperatorKey::OperatorKey( is_flex_op_ = true; flex_tensorflow_op_ = tensorflow_op; custom_code_ = - string(::tflite::kFlexCustomCodePrefix) + flex_tensorflow_op_; + std::string(::tflite::kFlexCustomCodePrefix) + flex_tensorflow_op_; } else { custom_code_ = tensorflow_op; } @@ -158,7 +158,7 @@ OperatorKey::OperatorKey( is_flex_op_ = true; flex_tensorflow_op_ = name; custom_code_ = - string(::tflite::kFlexCustomCodePrefix) + flex_tensorflow_op_; + std::string(::tflite::kFlexCustomCodePrefix) + flex_tensorflow_op_; } else { // If Flex is disabled or the original TensorFlow NodeDef isn't available, // we produce a custom op. This gives developers a chance to implement @@ -175,7 +175,7 @@ OperatorKey::OperatorKey( void LoadTensorsMap(const Model& model, TensorsMap* tensors_map) { // First find a list of unique array names. - std::set names; + std::set names; for (const auto& array_pair : model.GetArrayMap()) { names.insert(array_pair.first); } @@ -218,7 +218,7 @@ Offset>> ExportTensors( std::map> ordered_tensors; for (const auto& array_pair : model.GetArrayMap()) { - const string& tensor_name = array_pair.first; + const std::string& tensor_name = array_pair.first; const toco::Array& array = *array_pair.second; int buffer_index = buffers_to_write->size(); @@ -283,7 +283,7 @@ Offset> ExportOutputTensors( const Model& model, const details::TensorsMap& tensors_map, FlatBufferBuilder* builder) { std::vector outputs; - for (const string& output : model.flags.output_arrays()) { + for (const std::string& output : model.flags.output_arrays()) { outputs.push_back(tensors_map.at(output)); } return builder->CreateVector(outputs); @@ -295,10 +295,10 @@ Offset>> ExportOperatorCodes( const details::OperatorsMap& operators_map, FlatBufferBuilder* builder, const ExportParams& params) { // Map from operator name to TF Lite enum value, for all builtins. - std::map builtin_ops; + std::map builtin_ops; for (int i = BuiltinOperator_MIN; i <= BuiltinOperator_MAX; ++i) { BuiltinOperator op = static_cast(i); - string name = EnumNameBuiltinOperator(op); + std::string name = EnumNameBuiltinOperator(op); if (op != BuiltinOperator_CUSTOM && !name.empty()) { builtin_ops[name] = op; } @@ -349,13 +349,13 @@ Offset>> ExportOperators( std::vector> op_vector; for (const auto& op : model.operators) { std::vector inputs; - for (const string& input : op->inputs) { + for (const std::string& input : op->inputs) { // -1 is the ID for optional tensor in TFLite output int id = model.IsOptionalArray(input) ? -1 : tensors_map.at(input); inputs.push_back(id); } std::vector outputs; - for (const string& output : op->outputs) { + for (const std::string& output : op->outputs) { outputs.push_back(tensors_map.at(output)); } const toco::OperatorSignature op_signature = {op.get(), &model}; @@ -428,15 +428,15 @@ Offset>> ExportBuffers( return builder->CreateVector(buffer_vector); } -tensorflow::Status Export(const Model& model, string* output_file_contents, +tensorflow::Status Export(const Model& model, std::string* output_file_contents, const ExportParams& params) { const auto ops_by_type = BuildOperatorByTypeMap(params.enable_select_tf_ops); return Export(model, output_file_contents, params, ops_by_type); } -void ParseControlFlowErrors(std::set* custom_ops, - std::vector* error_msgs) { - std::set unsupported_control_flow_ops; +void ParseControlFlowErrors(std::set* custom_ops, + std::vector* error_msgs) { + std::set unsupported_control_flow_ops; // Check if unsupported ops contains control flow ops. It's impossible // to implement these ops as custom ops at the moment. for (const auto& op : *custom_ops) { @@ -471,10 +471,10 @@ void ExportModelVersionBuffer( } tensorflow::Status Export( - const Model& model, string* output_file_contents, + const Model& model, std::string* output_file_contents, const ExportParams& params, const std::map>& ops_by_type) { - for (const string& input_array : model.GetInvalidInputArrays()) { + for (const std::string& input_array : model.GetInvalidInputArrays()) { if (model.HasArray(input_array)) { return tensorflow::errors::InvalidArgument( absl::StrCat("Placeholder ", input_array, @@ -509,11 +509,11 @@ tensorflow::Status Export( } // The set of used builtin ops. - std::set builtin_ops; + std::set builtin_ops; // The set of custom ops (not including Flex ops). - std::set custom_ops; + std::set custom_ops; // The set of Flex ops which are not supported. - std::set unsupported_flex_ops; + std::set unsupported_flex_ops; for (const auto& it : operators_map) { const details::OperatorKey& key = it.first; @@ -540,7 +540,7 @@ tensorflow::Status Export( "40-tflite-op-request.md\n and pasting the following:\n\n"; }; - std::vector error_msgs; + std::vector error_msgs; ParseControlFlowErrors(&custom_ops, &error_msgs); // Remove ExpandDims and ReorderAxes from unimplemented list unless they @@ -549,7 +549,7 @@ tensorflow::Status Export( // transformation is unable to run because the output shape is not // defined. This causes unnecessary confusion during model conversion // time. - std::set custom_ops_final; + std::set custom_ops_final; for (const auto& op_type : custom_ops) { if (op_type != "ReorderAxes" && op_type != "ExpandDims") { custom_ops_final.insert(op_type); diff --git a/tensorflow/lite/toco/tflite/export.h b/tensorflow/lite/toco/tflite/export.h index 3af77ffcf43..64f7c7b128f 100644 --- a/tensorflow/lite/toco/tflite/export.h +++ b/tensorflow/lite/toco/tflite/export.h @@ -35,19 +35,19 @@ struct ExportParams { // Transform the given tf.mini model into a TF Lite flatbuffer and deposit the // result in the given string. -tensorflow::Status Export(const Model& model, string* output_file_contents, +tensorflow::Status Export(const Model& model, std::string* output_file_contents, const ExportParams& params); // Export API with custom TFLite operator mapping. tensorflow::Status Export( - const Model& model, string* output_file_contents, + const Model& model, std::string* output_file_contents, const ExportParams& params, const std::map>& ops_by_type); // This is for backward-compatibility. // TODO(ycling): Remove the deprecated entry functions. inline void Export(const Model& model, bool allow_custom_ops, - bool quantize_weights, string* output_file_contents) { + bool quantize_weights, std::string* output_file_contents) { ExportParams params; params.allow_custom_ops = allow_custom_ops; params.quantize_weights = @@ -60,7 +60,7 @@ inline void Export(const Model& model, bool allow_custom_ops, // TODO(ycling): Remove the deprecated entry functions. inline void Export( const Model& model, bool allow_custom_ops, bool quantize_weights, - string* output_file_contents, + std::string* output_file_contents, const std::map>& ops_by_type) { ExportParams params; params.allow_custom_ops = allow_custom_ops; @@ -72,7 +72,7 @@ inline void Export( // This is for backward-compatibility. // TODO(ycling): Remove the deprecated entry functions. -inline void Export(const Model& model, string* output_file_contents) { +inline void Export(const Model& model, std::string* output_file_contents) { ExportParams params; params.allow_custom_ops = true; auto status = Export(model, output_file_contents, params); @@ -82,7 +82,7 @@ inline void Export(const Model& model, string* output_file_contents) { namespace details { // A map from tensor name to its final position in the TF Lite buffer. -using TensorsMap = std::unordered_map; +using TensorsMap = std::unordered_map; // A key to identify an operator. // Only when `type` is `kUnsupported`, `custom_code` is filled to diff --git a/tensorflow/lite/toco/tflite/export_test.cc b/tensorflow/lite/toco/tflite/export_test.cc index 19b77543c66..ed347a28d51 100644 --- a/tensorflow/lite/toco/tflite/export_test.cc +++ b/tensorflow/lite/toco/tflite/export_test.cc @@ -34,13 +34,13 @@ using ::testing::HasSubstr; class ExportTest : public ::testing::Test { protected: void ResetOperators() { input_model_.operators.clear(); } - void AddTensorsByName(std::initializer_list names) { - for (const string& name : names) { + void AddTensorsByName(std::initializer_list names) { + for (const std::string& name : names) { input_model_.GetOrCreateArray(name); } } - void AddOperatorsByName(std::initializer_list names) { - for (const string& name : names) { + void AddOperatorsByName(std::initializer_list names) { + for (const std::string& name : names) { if (name == "Conv") { auto* op = new ConvOperator; op->padding.type = PaddingType::kSame; @@ -153,14 +153,15 @@ class ExportTest : public ::testing::Test { } tensorflow::Status ExportAndReturnStatus(const ExportParams& params) { - string result; + std::string result; return Export(input_model_, &result, params); } - std::vector ExportAndSummarizeOperators(const ExportParams& params) { - std::vector names; + std::vector ExportAndSummarizeOperators( + const ExportParams& params) { + std::vector names; - string result; + std::string result; auto status = Export(input_model_, &result, params); if (!status.ok()) { LOG(INFO) << status.error_message(); @@ -171,10 +172,12 @@ class ExportTest : public ::testing::Test { for (const ::tflite::OperatorCode* opcode : *model->operator_codes()) { if (opcode->builtin_code() != ::tflite::BuiltinOperator_CUSTOM) { - names.push_back(string("builtin:") + ::tflite::EnumNameBuiltinOperator( - opcode->builtin_code())); + names.push_back( + std::string("builtin:") + + ::tflite::EnumNameBuiltinOperator(opcode->builtin_code())); } else { - names.push_back(string("custom:") + opcode->custom_code()->c_str()); + names.push_back(std::string("custom:") + + opcode->custom_code()->c_str()); } } @@ -185,7 +188,7 @@ class ExportTest : public ::testing::Test { const ExportParams& params) { std::vector indices; - string result; + std::string result; if (!Export(input_model_, &result, params).ok()) return indices; auto* model = ::tflite::GetModel(result.data()); @@ -257,7 +260,7 @@ TEST_F(ExportTest, ExportMinRuntime) { params.enable_select_tf_ops = false; params.quantize_weights = QuantizedBufferType::NONE; - string output; + std::string output; auto status = Export(input_model_, &output, params); auto* model = ::tflite::GetModel(output.data()); EXPECT_EQ(model->metadata()->size(), 1); @@ -265,7 +268,8 @@ TEST_F(ExportTest, ExportMinRuntime) { auto buf = model->metadata()->Get(0)->buffer(); auto* buffer = (*model->buffers())[buf]; auto* array = buffer->data(); - string version(reinterpret_cast(array->data()), array->size()); + std::string version(reinterpret_cast(array->data()), + array->size()); EXPECT_EQ(version, "1.6.0"); } @@ -275,7 +279,7 @@ TEST_F(ExportTest, ExportEmptyMinRuntime) { ExportParams params; params.allow_custom_ops = true; - string output; + std::string output; auto status = Export(input_model_, &output, params); auto* model = ::tflite::GetModel(output.data()); EXPECT_EQ(model->metadata()->size(), 1); @@ -283,7 +287,8 @@ TEST_F(ExportTest, ExportEmptyMinRuntime) { auto buf = model->metadata()->Get(0)->buffer(); auto* buffer = (*model->buffers())[buf]; auto* array = buffer->data(); - string version(reinterpret_cast(array->data()), array->size()); + std::string version(reinterpret_cast(array->data()), + array->size()); EXPECT_EQ(version, ""); } @@ -296,7 +301,7 @@ TEST_F(ExportTest, UnsupportedControlFlowErrors) { // The model contains control flow ops which are not convertible, so we should // check the returned error message. - string output; + std::string output; const auto ops_by_type = BuildOperatorByTypeMap(); auto status = Export(input_model_, &output, params, ops_by_type); EXPECT_EQ(status.error_message(), @@ -318,7 +323,7 @@ TEST_F(ExportTest, UnsupportedOpsAndNeedEnableFlex) { params.allow_custom_ops = false; params.enable_select_tf_ops = false; - string output; + std::string output; const auto ops_by_type = BuildOperatorByTypeMap(); auto status = Export(input_model_, &output, params, ops_by_type); EXPECT_EQ( @@ -348,7 +353,7 @@ TEST_F(ExportTest, UnsupportedOpsNeedCustomImplementation) { params.allow_custom_ops = false; params.enable_select_tf_ops = true; - string output; + std::string output; const auto ops_by_type = BuildOperatorByTypeMap(); auto status = Export(input_model_, &output, params, ops_by_type); EXPECT_EQ( @@ -378,7 +383,7 @@ TEST_F(ExportTest, UnsupportedControlFlowAndCustomOpsErrors) { // The model contains control flow ops which are not convertible, so we should // check the returned error message. - string output; + std::string output; const auto ops_by_type = BuildOperatorByTypeMap(); auto status = Export(input_model_, &output, params, ops_by_type); EXPECT_EQ( @@ -407,11 +412,11 @@ TEST_F(ExportTest, UnsupportedControlFlowAndCustomOpsErrors) { TEST_F(ExportTest, QuantizeWeights) { // Sanity check for quantize_weights parameter. BuildQuantizableTestModel(); - string unquantized_result; + std::string unquantized_result; Export(input_model_, true, /*quantize_weights*/ false, &unquantized_result); BuildQuantizableTestModel(); - string quantized_result; + std::string quantized_result; Export(input_model_, true, /*quantize_weights*/ true, &quantized_result); // The quantized models should be smaller. @@ -443,12 +448,13 @@ class OpSetsTest : public ExportTest { } } - std::vector ImportExport(std::initializer_list op_names) { + std::vector ImportExport( + std::initializer_list op_names) { ResetOperators(); if (!import_all_ops_as_unsupported_) { AddOperatorsByName(op_names); } else { - for (const string& name : op_names) { + for (const std::string& name : op_names) { auto* op = new TensorFlowUnsupportedOperator; op->tensorflow_op = name; input_model_.operators.emplace_back(op); @@ -644,7 +650,7 @@ TEST_F(VersionedOpExportTest, Export) { AddConvOp(false); AddConvOp(true); - string result; + std::string result; const auto ops_by_type = BuildFakeOperatorByTypeMap(); Export(input_model_, true, false, &result, ops_by_type); diff --git a/tensorflow/lite/toco/tflite/import.cc b/tensorflow/lite/toco/tflite/import.cc index 0f3dd48652e..136aa4ffaa8 100644 --- a/tensorflow/lite/toco/tflite/import.cc +++ b/tensorflow/lite/toco/tflite/import.cc @@ -99,7 +99,7 @@ void ImportTensors(const ::tflite::Model& input_model, Model* model) { void ImportOperators( const ::tflite::Model& input_model, - const std::map>& ops_by_name, + const std::map>& ops_by_name, const details::TensorsTable& tensors_table, const details::OperatorsTable& operators_table, Model* model) { // TODO(aselle): add support for multiple subgraphs. @@ -112,12 +112,12 @@ void ImportOperators( LOG(FATAL) << "Index " << index << " must be between zero and " << operators_table.size(); } - string opname = operators_table.at(index); + std::string opname = operators_table.at(index); // Find and use the appropriate operator deserialization factory. std::unique_ptr new_op = nullptr; if (ops_by_name.count(opname) == 0) { - string effective_opname = "TENSORFLOW_UNSUPPORTED"; + std::string effective_opname = "TENSORFLOW_UNSUPPORTED"; if (ops_by_name.count(effective_opname) == 0) { LOG(FATAL) << "Internal logic error: TENSORFLOW_UNSUPPORTED not found."; } @@ -147,10 +147,10 @@ void ImportOperators( auto input_index = inputs->Get(i); // input_index == -1 indicates optional tensor. if (input_index != -1) { - const string& input_name = tensors_table.at(input_index); + const std::string& input_name = tensors_table.at(input_index); op->inputs.push_back(input_name); } else { - const string& tensor_name = + const std::string& tensor_name = toco::AvailableArrayName(*model, "OptionalTensor"); model->CreateOptionalArray(tensor_name); op->inputs.push_back(tensor_name); @@ -159,7 +159,7 @@ void ImportOperators( auto outputs = input_op->outputs(); for (int i = 0; i < outputs->Length(); i++) { auto output_index = outputs->Get(i); - const string& output_name = tensors_table.at(output_index); + const std::string& output_name = tensors_table.at(output_index); op->outputs.push_back(output_name); } } @@ -173,7 +173,7 @@ void ImportIOTensors(const ModelFlags& model_flags, auto inputs = (*input_model.subgraphs())[0]->inputs(); if (inputs) { for (int input : *inputs) { - const string& input_name = tensors_table.at(input); + const std::string& input_name = tensors_table.at(input); model->flags.add_input_arrays()->set_name(input_name); } } @@ -184,7 +184,7 @@ void ImportIOTensors(const ModelFlags& model_flags, auto outputs = (*input_model.subgraphs())[0]->outputs(); if (outputs) { for (int output : *outputs) { - const string& output_name = tensors_table.at(output); + const std::string& output_name = tensors_table.at(output); model->flags.add_output_arrays(output_name); } } @@ -199,7 +199,7 @@ bool Verify(const void* buf, size_t len) { } // namespace std::unique_ptr Import(const ModelFlags& model_flags, - const string& input_file_contents) { + const std::string& input_file_contents) { ::tflite::AlwaysTrueResolver r; if (!::tflite::Verify(input_file_contents.data(), input_file_contents.size(), r, ::tflite::DefaultErrorReporter())) { diff --git a/tensorflow/lite/toco/tflite/import.h b/tensorflow/lite/toco/tflite/import.h index f5de3b53b5b..bac55aae8b9 100644 --- a/tensorflow/lite/toco/tflite/import.h +++ b/tensorflow/lite/toco/tflite/import.h @@ -24,17 +24,17 @@ namespace tflite { // Parse the given string as TF Lite flatbuffer and return a new tf.mini model. std::unique_ptr Import(const ModelFlags &model_flags, - const string &input_file_contents); + const std::string &input_file_contents); namespace details { // The names of all tensors found in a TF Lite model. -using TensorsTable = std::vector; +using TensorsTable = std::vector; // The names of all operators found in TF Lite model. If the operator is // builtin, the string representation of the corresponding enum value is used // as name. -using OperatorsTable = std::vector; +using OperatorsTable = std::vector; void LoadTensorsTable(const ::tflite::Model &input_model, TensorsTable *tensors_table); diff --git a/tensorflow/lite/toco/tflite/import_test.cc b/tensorflow/lite/toco/tflite/import_test.cc index b00c4124d83..6163ebab45b 100644 --- a/tensorflow/lite/toco/tflite/import_test.cc +++ b/tensorflow/lite/toco/tflite/import_test.cc @@ -134,9 +134,9 @@ class ImportTest : public ::testing::Test { input_model_ = ::tflite::GetModel(builder_.GetBufferPointer()); } - string InputModelAsString() { - return string(reinterpret_cast(builder_.GetBufferPointer()), - builder_.GetSize()); + std::string InputModelAsString() { + return std::string(reinterpret_cast(builder_.GetBufferPointer()), + builder_.GetSize()); } flatbuffers::FlatBufferBuilder builder_; const ::tflite::Model* input_model_ = nullptr; diff --git a/tensorflow/lite/toco/tflite/op_version.cc b/tensorflow/lite/toco/tflite/op_version.cc index cf127a9f459..efa53c69cae 100644 --- a/tensorflow/lite/toco/tflite/op_version.cc +++ b/tensorflow/lite/toco/tflite/op_version.cc @@ -29,7 +29,7 @@ namespace tflite { // Deprecated and please register new ops/versions in // tflite/tools/versioning/op_version.cc". -string GetMinimumRuntimeVersionForModel(const Model& model) { +std::string GetMinimumRuntimeVersionForModel(const Model& model) { // Use this as the placeholder string if a particular op is not yet included // in any Tensorflow's RC/Final release source package. Once that op is // included in the release, please update this with the real version string. @@ -37,8 +37,8 @@ string GetMinimumRuntimeVersionForModel(const Model& model) { // A map from the version key of an op to its minimum runtime version. // For example, {{kAveragePool, 1}, "1.5.0"}, means the 1st version of // AveragePool requires a minimum TF Lite runtime version '1.5.0`. - static const std::map, string>* op_version_map = - new std::map, string>({ + static const std::map, std::string>* + op_version_map = new std::map, std::string>({ {{OperatorType::kAveragePool, 1}, "1.5.0"}, {{OperatorType::kAveragePool, 2}, "1.14.0"}, {{OperatorType::kAveragePool, 3}, kPendingReleaseOpVersion}, @@ -253,7 +253,7 @@ string GetMinimumRuntimeVersionForModel(const Model& model) { tflite::BuildOperatorByTypeMap(false /*enable_select_tf_ops=*/); OperatorSignature op_signature; op_signature.model = &model; - string model_min_version; + std::string model_min_version; for (const auto& op : model.operators) { if (op_types_map.find(op->type) == op_types_map.end()) continue; op_signature.op = op.get(); diff --git a/tensorflow/lite/toco/tflite/op_version_test.cc b/tensorflow/lite/toco/tflite/op_version_test.cc index 14b086471b7..8466fc35ad7 100644 --- a/tensorflow/lite/toco/tflite/op_version_test.cc +++ b/tensorflow/lite/toco/tflite/op_version_test.cc @@ -27,9 +27,9 @@ TEST(OpVersionTest, MinimumVersionForSameOpVersions) { Model model; // Float convolutional kernel is introduced since '1.5.0'. std::unique_ptr conv(new ConvOperator()); - const string conv_input = "conv_input"; - const string conv_filter = "conv_filter"; - const string conv_output = "conv_output"; + const std::string conv_input = "conv_input"; + const std::string conv_filter = "conv_filter"; + const std::string conv_output = "conv_output"; conv->inputs.push_back(conv_input); conv->inputs.push_back(conv_filter); conv->outputs.push_back(conv_output); @@ -44,8 +44,8 @@ TEST(OpVersionTest, MinimumVersionForSameOpVersions) { // Float softmax kernel is introduced since '1.5.0'. std::unique_ptr softmax(new SoftmaxOperator()); - const string softmax_input = "softmax_input"; - const string softmax_output = "softmax_output"; + const std::string softmax_input = "softmax_input"; + const std::string softmax_output = "softmax_output"; softmax->inputs.push_back(softmax_input); softmax->outputs.push_back(softmax_output); array_map[softmax_input] = std::unique_ptr(new Array); @@ -60,9 +60,9 @@ TEST(OpVersionTest, MinimumVersionForMultipleOpVersions) { Model model; // Dilated DepthWiseConvolution is introduced since '1.12.0'. std::unique_ptr conv(new DepthwiseConvOperator()); - const string conv_input = "conv_input"; - const string conv_filter = "conv_filter"; - const string conv_output = "conv_output"; + const std::string conv_input = "conv_input"; + const std::string conv_filter = "conv_filter"; + const std::string conv_output = "conv_output"; conv->inputs.push_back(conv_input); conv->inputs.push_back(conv_filter); conv->outputs.push_back(conv_output); @@ -77,10 +77,10 @@ TEST(OpVersionTest, MinimumVersionForMultipleOpVersions) { // FullyConnected op with kShuffled4x16Int8 weight format is introduced from // '1.10.0'. std::unique_ptr fc(new FullyConnectedOperator()); - const string fc_input = "fc_input"; - const string fc_weights = "fc_weights"; - const string fc_bias = "fc_bias"; - const string fc_output = "fc_output"; + const std::string fc_input = "fc_input"; + const std::string fc_weights = "fc_weights"; + const std::string fc_bias = "fc_bias"; + const std::string fc_output = "fc_output"; fc->inputs.push_back(fc_input); fc->inputs.push_back(fc_weights); fc->inputs.push_back(fc_bias); @@ -121,10 +121,10 @@ TEST(OpVersionTest, MinimumVersionForMixedOpVersions) { // FullyConnected op with kShuffled4x16Int8 weight format is introduced from // '1.10.0'. std::unique_ptr fc(new FullyConnectedOperator()); - const string fc_input = "fc_input"; - const string fc_weights = "fc_weights"; - const string fc_bias = "fc_bias"; - const string fc_output = "fc_output"; + const std::string fc_input = "fc_input"; + const std::string fc_weights = "fc_weights"; + const std::string fc_bias = "fc_bias"; + const std::string fc_output = "fc_output"; fc->inputs.push_back(fc_input); fc->inputs.push_back(fc_weights); fc->inputs.push_back(fc_bias); diff --git a/tensorflow/lite/toco/tflite/operator.cc b/tensorflow/lite/toco/tflite/operator.cc index fee10a19787..be539cf6054 100644 --- a/tensorflow/lite/toco/tflite/operator.cc +++ b/tensorflow/lite/toco/tflite/operator.cc @@ -238,7 +238,7 @@ class SpaceToBatchND TocoOperator* op) const override {} int GetVersion(const OperatorSignature& op_signature) const override { - const string& input_name = op_signature.op->inputs[0]; + const std::string& input_name = op_signature.op->inputs[0]; const Array& input_array = op_signature.model->GetArray(input_name); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); @@ -268,8 +268,8 @@ class Sub : public BuiltinOperatorinputs[0]; - const string& input2_name = op_signature.op->inputs[1]; + const std::string& input1_name = op_signature.op->inputs[0]; + const std::string& input2_name = op_signature.op->inputs[1]; const Array& input1_array = op_signature.model->GetArray(input1_name); const Array& input2_array = op_signature.model->GetArray(input2_name); ::tflite::OpSignature op_sig = @@ -305,8 +305,8 @@ class Div : public BuiltinOperatorinputs[0]; - const string& input2_name = op_signature.op->inputs[1]; + const std::string& input1_name = op_signature.op->inputs[0]; + const std::string& input2_name = op_signature.op->inputs[1]; const Array& input1_array = op_signature.model->GetArray(input1_name); const Array& input2_array = op_signature.model->GetArray(input2_name); ::tflite::OpSignature op_sig = @@ -339,7 +339,7 @@ class BatchToSpaceND TocoOperator* op) const override {} int GetVersion(const OperatorSignature& op_signature) const override { - const string& input_name = op_signature.op->inputs[0]; + const std::string& input_name = op_signature.op->inputs[0]; const Array& input_array = op_signature.model->GetArray(input_name); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); @@ -662,9 +662,9 @@ class Mul : public BuiltinOperatorinputs[0]; - const string& input2_name = op_signature.op->inputs[1]; - const string& output_name = op_signature.op->outputs[0]; + const std::string& input1_name = op_signature.op->inputs[0]; + const std::string& input2_name = op_signature.op->inputs[1]; + const std::string& output_name = op_signature.op->outputs[0]; const Array& input1_array = op_signature.model->GetArray(input1_name); const Array& input2_array = op_signature.model->GetArray(input2_name); const Array& output_array = op_signature.model->GetArray(output_name); @@ -1440,7 +1440,7 @@ class Unpack : public BuiltinOperatorinputs[0]; + const std::string& input_name = op_signature.op->inputs[0]; const Array& input_array = op_signature.model->GetArray(input_name); // If the op take int8/uint8 input, it is version 2. if (input_array.data_type == ArrayDataType::kInt8 || @@ -1577,7 +1577,7 @@ class Where : public BuiltinOperator WriteFlexOpOptions( - const string& tensorflow_node_def) { + const std::string& tensorflow_node_def) { auto fbb = absl::make_unique(); ::tensorflow::NodeDef node_def; @@ -1597,7 +1597,7 @@ std::unique_ptr WriteFlexOpOptions( class TensorFlowUnsupported : public BaseOperator { public: - TensorFlowUnsupported(const string& name, OperatorType type, + TensorFlowUnsupported(const std::string& name, OperatorType type, bool enable_select_tf_ops) : BaseOperator(name, type), enable_select_tf_ops_(enable_select_tf_ops) {} @@ -1676,7 +1676,7 @@ class TensorFlowUnsupported : public BaseOperator { case tensorflow::AttrValue::kList: if (attr.list().s_size() > 0) { auto start = fbb->StartVector(key); - for (const string& v : attr.list().s()) { + for (const std::string& v : attr.list().s()) { fbb->Add(v); } fbb->EndVector(start, /*typed=*/true, /*fixed=*/false); @@ -1736,10 +1736,11 @@ class TensorFlowUnsupported : public BaseOperator { break; case flexbuffers::FBT_BOOL: (*attr)[key].set_b(value.AsBool()); - if (string(key) == "_output_quantized") { + if (std::string(key) == "_output_quantized") { op->quantized = value.AsBool(); } - if (string(key) == "_support_output_type_float_in_quantized_op") { + if (std::string(key) == + "_support_output_type_float_in_quantized_op") { op->support_output_type_float_in_quantized_op = value.AsBool(); } break; @@ -2095,9 +2096,9 @@ std::map> BuildOperatorByTypeMap( return result; } -std::map> BuildOperatorByNameMap( +std::map> BuildOperatorByNameMap( bool enable_select_tf_ops) { - std::map> result; + std::map> result; std::vector> ops = BuildOperatorList(enable_select_tf_ops); @@ -2109,7 +2110,7 @@ std::map> BuildOperatorByNameMap( } bool ShouldExportAsFlexOp(bool enable_select_tf_ops, - const string& tensorflow_op_name) { + const std::string& tensorflow_op_name) { // If Flex ops aren't allow at all, simply return false. if (!enable_select_tf_ops) { return false; diff --git a/tensorflow/lite/toco/tflite/operator.h b/tensorflow/lite/toco/tflite/operator.h index 19d92145e0c..fb79b97f46e 100644 --- a/tensorflow/lite/toco/tflite/operator.h +++ b/tensorflow/lite/toco/tflite/operator.h @@ -30,7 +30,7 @@ class BaseOperator; // Return a map contained all know TF Lite Operators, keyed by their names. // TODO(ycling): The pattern to propagate parameters (e.g. enable_select_tf_ops) // is ugly here. Consider refactoring. -std::map> BuildOperatorByNameMap( +std::map> BuildOperatorByNameMap( bool enable_select_tf_ops = false); // Return a map contained all know TF Lite Operators, keyed by the type of @@ -41,7 +41,7 @@ std::map> BuildOperatorByTypeMap( // Write the custom option FlexBuffer with a serialized TensorFlow NodeDef // for a Flex op. std::unique_ptr WriteFlexOpOptions( - const string& tensorflow_node_def); + const std::string& tensorflow_node_def); // These are the flatbuffer types for custom and builtin options. using CustomOptions = flatbuffers::Vector; @@ -71,11 +71,11 @@ struct Options { class BaseOperator { public: // Build an operator with the given TF Lite name and tf.mini type. - BaseOperator(const string& name, OperatorType type) + BaseOperator(const std::string& name, OperatorType type) : name_(name), type_(type) {} virtual ~BaseOperator() = default; - string name() const { return name_; } + std::string name() const { return name_; } OperatorType type() const { return type_; } // Given a tf.mini operator, create the corresponding flatbuffer options and @@ -111,7 +111,7 @@ class BaseOperator { } private: - string name_; + std::string name_; OperatorType type_; }; @@ -123,7 +123,7 @@ class BaseOperator { // Helper function to determine if a unsupported TensorFlow op should be // exported as an Flex op or a regular custom op. bool ShouldExportAsFlexOp(bool enable_select_tf_ops, - const string& tensorflow_op_name); + const std::string& tensorflow_op_name); } // namespace tflite diff --git a/tensorflow/lite/toco/tflite/operator_test.cc b/tensorflow/lite/toco/tflite/operator_test.cc index a4fe01e4afd..cb466fef079 100644 --- a/tensorflow/lite/toco/tflite/operator_test.cc +++ b/tensorflow/lite/toco/tflite/operator_test.cc @@ -30,8 +30,8 @@ namespace { class OperatorTest : public ::testing::Test { protected: // Return the operator for the given name and type. - const BaseOperator& GetOperator(const string& name, OperatorType type) { - using OpsByName = std::map>; + const BaseOperator& GetOperator(const std::string& name, OperatorType type) { + using OpsByName = std::map>; using OpsByType = std::map>; static auto* by_name = new OpsByName(BuildOperatorByNameMap()); @@ -86,7 +86,7 @@ class OperatorTest : public ::testing::Test { // Verify serialization and deserialization of simple operators (those // that don't have any configuration parameters). template - void CheckSimpleOperator(const string& name, OperatorType type) { + void CheckSimpleOperator(const std::string& name, OperatorType type) { Options options; auto output_toco_op = SerializeAndDeserialize(GetOperator(name, type), T(), &options); @@ -99,7 +99,7 @@ class OperatorTest : public ::testing::Test { } template - void CheckReducerOperator(const string& name, OperatorType type) { + void CheckReducerOperator(const std::string& name, OperatorType type) { T op; op.keep_dims = false; diff --git a/tensorflow/lite/toco/tflite/types.cc b/tensorflow/lite/toco/tflite/types.cc index 96cad557baf..9d4ab8434d1 100644 --- a/tensorflow/lite/toco/tflite/types.cc +++ b/tensorflow/lite/toco/tflite/types.cc @@ -25,7 +25,7 @@ DataBuffer::FlatBufferOffset CopyStringToBuffer( const Array& array, flatbuffers::FlatBufferBuilder* builder) { const auto& src_data = array.GetBuffer().data; ::tflite::DynamicBuffer dyn_buffer; - for (const string& str : src_data) { + for (const std::string& str : src_data) { dyn_buffer.AddString(str.c_str(), str.length()); } char* tensor_buffer; @@ -58,12 +58,12 @@ DataBuffer::FlatBufferOffset CopyBuffer( void CopyStringFromBuffer(const ::tflite::Buffer& buffer, Array* array) { auto* src_data = reinterpret_cast(buffer.data()->data()); - std::vector* dst_data = + std::vector* dst_data = &array->GetMutableBuffer().data; int32_t num_strings = ::tflite::GetStringCount(src_data); for (int i = 0; i < num_strings; i++) { ::tflite::StringRef str_ref = ::tflite::GetString(src_data, i); - string this_str(str_ref.str, str_ref.len); + std::string this_str(str_ref.str, str_ref.len); dst_data->push_back(this_str); } }